Sažetak (engleski) | Regenerative medicine shows significant potential in treating kidney diseases through the application of various types of stem and progenitor cells, including mesenchymal stem cells (MSCs), renal stem/progenitor cells, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). Stem cells possess the unique ability to repair injured organs and improve impaired functions, making them a key element in the research of therapies for kidney tissue repair and organ regeneration. In kidney transplantation, reperfusion injury can cause tissue destruction, leading to an initially low glomerular filtration rate and long-term impact on function by creating irreversible interstitial fibrosis. MSCs have proven useful in repairing early tissue injury in animal models of kidney, lung, heart, and intestine transplantation. The use of stem cell therapies in solid organ transplantation raises the question of whether autologous or allogeneic cells should be preferred. Adipose-derived stem cells (ASCs), characterized by the lack of HLA Class II molecules and low expression of HLA Class I and co-stimulatory signals, are considered immune-privileged. However, the actual risk of graft rejection associated with allogeneic ASCs remains unclear. It has been demonstrated that donor-derived ASCs can promote the development of Treg cells in vitro, and some degree of tolerance induction has been observed in vivo. Nevertheless, a study comparing the efficacy of autologous and allogeneic ASCs in a rat model with a total MHC mismatch for kidney transplantation showed that donor-derived administration of ASCs did not improve the grafts’ survival and was associated with increased mortality through an immunologically mediated mechanism. Given the lack of data, autologous ASCs appear to be a safer option in this research context. The aim of this review was to examine the differences between autologous and allogeneic ASCs in the context of their application in kidney transplantation therapies, considering potential immune reactions and therapeutic efficacy. Some have argued that ASCs harvested from end-stage renal disease (ESRD) patients may have lower regenerative potential due to the toxic effects of uremia, potentially limiting their use in transplantation settings. However, evidence suggests that the beneficial properties of ASCs are not affected by uremia or dialysis. Indeed, some investigators have demonstrated that ASCs harvested from chronic kidney disease (CKD) patients exhibit normal characteristics and function, maintaining consistent proliferative capacity and genetic stability over time, even after prolonged exposure to uremic serum Furthermore, no differences were observed in the response of ASCs to immune activation or their inhibitory effect on the proliferation of alloantigen-activated peripheral blood mononuclear cells between patients with normal or impaired renal function. This review presents the current achievements in stem cell research aimed at treating kidney diseases, highlighting significant progress and ongoing efforts in the development of stem cell-based therapies. Despite the encouraging results, further research is needed to overcome the current limitations and fully realize the potential of these innovative treatments. Advances in this field are crucial for developing effective therapies that can address the complex challenges associated with kidney damage and failure. |