Abstract | Zglob kuka, po tipu sferoidna artikulacija, spaja konveksno zglobno tijelo, glavu femora i konkavno zglobno tijelo acetabulum. Totalna endoproteza kuka ugrađuje se kao zamjena za patološki promijenjen kuk (kod fraktura, artrotskih promijena, degenerativnih promjena i sl.) s ciljem smanjenja boli, ispravljanja deformiteta i povratka funkcije.
Od osamnaestog stoljeća krenuli su pokušaji zamjene kuka kad je 1890. Themistocles Gluck ugradio polukuglastu protezu od slonovače. Slijede pokušaji umetanja interpozituma raznih materijala (tetive, mišići, staklo, tkanina...), no svi su pokušaji bili bezuspješni. Prvu su akrilnu protezu ugradili braća Judet 1946. godine u Parizu, ali zbog nestabilnosti i destrukcije kosti, nije se pokazala uspješnom. Godinama su se mijenjali materijali i operativne tehnike sve do početka moderne endoprotetike, šezdesetih godina, kada Charneley uvodi koštani cement i polietilenski acetabulum. Koštani je cement po sastavu polimer metilmetakrilata (PMMA). Da bi bio vidljiv na RTG snimkama dodaju mu se barij sulfat i cirkonij dioksid. Kako bi se pri reviziji razlikovao od okolnog tkiva, dodaje se klorofil ili metilen. Prvi ga je uveo Charneley 1958. za fiksaciju femoralne komponente.
Danas se koriste modularne femoralne komponente endoproteza zgloba kuka s posebnom glavom, vratom i trupom, koje dolaze u više dimenzija s ciljem oponašanja anatomskih i biomehaničkih odnosa.
Sile koju proteza mora „trpiti” u nekim situacijama iznose 10 do 12 tjelesnih težina. Da bi izbor proteze bio optimalan, zahvat uspješno izveden te kako bi zahtjevi moderne medicine bili zadovoljeni odabirom proteze, operater mora poznavati specifičnosti biomehanike zgloba kuka. Zbog velikog povećanja broja pacijenata kandidata za umjetni kuk, postoji potreba za poboljšanjem proteze i tehnike operacije u vidu boljih materijala koji će omogućiti dugotrajnost, skratiti vrijeme operacije kako bi smanjili rizik za pacijenta, ubrzali oporavak i smanjili trajanje hospitalizacije ( i ujedno smanjili opterećenje zdravstvenog sustava). S obzirom na zastupljenost, medicinsku i društvenu važnost navedenog problema, smatram da će budućnost donijeti nova rješenja. |
Abstract (english) | The hip joint connects the convex articular body, head of femor, and the concave body, acetabulum. By type this is a sphaeroidal articulation.
Total hip endoprosthesis is installed as a replacement for pathologically altered hip (for fractures, arthrotic changes, degenerative changes, etc.) With the aim of reducing pain, correction of deformities and restoration of the functions.
From the eighteenth century onwards, attempts of hip replacement had begun, when, finally, in 1890 Themistocles Gluck installed a hemispherical prosthetic made out of ivory. This was followed by attempts to insert interposits made of various materials (such as tendons, muscles, glass, fabric), but all attempts were unsuccessful. The first acrylic prosthesis was installed by the Judet brothers in Paris in 1946 but due to the instability and destruction of the bones, it has not been successful. For years materials and operating techniques have been changing until the beginning of modern athroplasty in the 1960s when Charneley introduced the bone cement and polyethylene acetabulum. Bone cement is composed by a polymer of methyl methacrylate (PMMA). In order to be visible on X-ray images, barium sulphate and zirconium dioxide are added. To distinguish the cement from the surrounding tissue during the revision, methylene or chlorophyll is added. It was firstly introduced in 1958 by Charneley for the fixation of the femoral component.
Today, modular femoral components of total hip endoprosthesis with a special head, neck and body (which come in several sizes), are used with the aim of mimicking the anatomical and biomechanical relationships present in the hip joint.
The forces that the prosthesis must "endure" in some cases amounts up to 10 to 12 times of a body's weight. To make optimal selection of prosthesis, to performe the operation
20
successfully and to meet the requirements of modern medicine, the operator must know the specifics of the biomechanics of the hip joint .
Due to the large increase in the number of patients eligible for hip replacement, there is a need for improvement of the prosthesis itself and the technique of the operation in the form of better materials that will enable longer life, shorten the time of the surgical procedure ( in order to reduce the risk to the patient), speed up recovery and reduce the length of hospital stay, at the same time reducing the burden of the health care system. With regard to the representation and medical and social importance of this problem, I believe that the future will bring new solutions. |