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Abstract: Quetiapine is a second-generation antipsychotic drug available for two and half decades.
Due to increased misuse, prescription outside the approved indications, and availability on the black
market, it is being encountered in medicolegal autopsies more frequently. For instance, it has been
linked to increased mortality rates, most likely due to its adverse effects on the cardiovascular system.
Its pharmacokinetic features and significant postmortem redistribution challenge traditional sampling
in forensic toxicology. Therefore, a systematic literature review was performed, inclusive of PubMed,
the Web of Science—core collection, and the Scopus databases; articles were screened for the terms
“quetiapine”, “death”, and “autopsy” to reevaluate each matrix used as a surrogate endpoint in the
forensic toxicology of quetiapine-related deaths. Ultimately, this review considers the results of five
studies that were well presented (more than two matrices, data available for all analyses, for instance).
The highest quetiapine concentrations were usually measured in the liver tissue. As interpreted
by their authors, the results of the considered studies showed a strong correlation between some
matrices, but, unfortunately, the studies presented models with poor goodness of fit. The distribution
of quetiapine in distinct body compartments/tissues showed no statistically significant relationship
with the length of the postmortem interval. Furthermore, this study did not confirm the anecdotal
correlation of peripheral blood concentrations with skeletal muscle concentrations. Otherwise, there
was no consistency regarding selecting an endpoint for analysis.

Keywords: forensic toxicology; quetiapine; relevant matrix; tissue modeling

1. Introduction

Quetiapine is an atypical antipsychotic drug (a second-generation antipsychotic drug)
used to treat schizophrenia, bipolar, borderline personality, and major depressive disor-
ders; broadly speaking, this treatment has numerous neurocognitive, neuroprotective,
and potential off-label indications [1,2]. Developed in 1985, the US approved quetiapine
for medical use in 1997; now, it is on the World Health Organization’s List of Essential
Medicines [3,4]. Regarding the non-approved uses of approved drugs, the most frequent
such use for quetiapine is its wide use as a sleep aid due to its sedating effects [5,6]. The
benefits of off-label use do not appear to outweigh the side effects. Nevertheless, it is
reported to treat conditions such as Tourette’s syndrome, musical hallucinations, etc. [7–9].
Unlike most other antipsychotics, its hypnotic and sedative effects offset any problems
with patient compliance.

Quetiapine’ appears to have low dopamine receptor affinity and intense antihistamine
activity, which renders it similar to sedating antihistamines [10]. Approximately 90% of
serotonin in the human body is stored in the gastrointestinal tract, and quetiapine has a
moderate affinity for its receptors [11]. Notwithstanding, quetiapine shows an affinity
for various neurotransmitter receptors [12]. Not only does it enhance the serotoniner-
gic transmission, but serotonin, a key neurotransmitter of the brain–gut axis, also plays
a vital role in the pathogenesis of emotional distress and gastrointestinal diseases [13].
Specifically, it binds serotonin (5-hydroxytryptamine; 5HT) 5HT2A, adrenergic (α1), mus-
carinic, and histaminergic receptors, and it has a relatively weak affinity for dopamine D2
receptors [14,15], with an occupancy half-life about twice as long as that for plasma. All of
these are cell-surface receptors that intervene in cellular communication.
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For quetiapine toxicity to be fatal, it is necessary to combine it with other drugs [16].
Acute overdose typically results in sedation or hypotension and tachycardia, but cardiac
arrhythmias, coma, and death have also been reported [17]. For some of them, severe
overdosage may result in seizures requiring intubation/mechanical ventilation.

Some cases are hallmarked by cardiac and sinus tachycardia [18–20]. Generally,
10–25 mg/L levels are observed in the blood samples obtained from fatal cases dur-
ing postmortem examinations. Non-toxic levels in postmortem blood extend to around
0.8 mg/kg, but, at the same time, toxic levels in postmortem blood can begin at 0.35 mg/kg.
The serum or plasma of quetiapine overdose survivors had concentrations ranging from
1 to 10 mg/L [21–23].

Even though the blockage of histamine-1 receptors produces the soothing effect of
quetiapine, arrhythmogenic effects result from the channel inhibition of the ether-a-go-
go-related gene (hERG). This may influence the QT interval [24]. The presence of some
cardiovascular pathologies, for example, coronary disease, could be the lethal trigger
if quetiapine is used, as seen in polydrug intoxications [25,26]. Quetiapine’s deadly ef-
fect is governed by whether some medication potentiates this inhibition effect and, if so,
to what extent [27,28]. As for respiratory depression, Culebras et al. reported its inci-
dence in three patients on combined antipsychotic–opioid therapy [29]. In randomized
clinical trials (RCTs) involving humans, considering the interactions of first-generation
antipsychotics and morphine, sedation was scored on a sedation score tool. In eight of the
fourteen RCTs, increased sedation scores were reported when morphine and droperidol
were combined [19,27]. After the drug’s ingestion and its rapid absorption, it reaches the
maximum plasma concentration after 1.5 h, where it binds mostly (83%) to non-specific
plasma proteins (human albumin) [13,15,30]. Quetiapine’s bioavailability depends mainly
on its first-pass metabolism, which is as poor as 9% [31,32]. Notably, the liver metabolizes
many drugs, resulting in the production of water-soluble compounds that can be excreted
via the bile [33]. In one stage, this process relies upon the “phase 1 reactions” mediated
by cytochrome p450 (CYP). Oxidation, reduction, and hydrolysis reactions are mainly di-
rected by the CYP isozyme CYP3A4. This explains why any drug interaction that modifies
quetiapine’s metabolism and pharmacokinetics is more likely to occur with drugs that are
inhibitors or inducers of CYP3A4, rather than inhibitors of CYP2D6.

Bearing all of this in mind, this systematic review of the literature aims to identify
studies with sufficient laboratory data to identify an alternative matrix to be used in the
forensic investigation of quetiapine-related deaths.

2. Use and Misuse

In a formal sense, issues related to the misuse and abuse potential of quetiapine have
not been regarded as a danger. However, those who administer quetiapine should be cau-
tious when prescribing it to individuals with a history of substance abuse (particularly with
opioids or anxiolytics). These individuals are “loose cannons” and are at increased risk.

Typically, people whose deaths are related to quetiapine are men in their mid-forties.
Their leading causes of death at this age are drug toxicity and natural diseases. Less
frequently, however, these deaths are linked to physical assaults [17].

Occasionally, quetiapine is associated with drug misuse, but it has limited potential
for misuse [34]. Misuse is most often seen in patients with a history of polysubstance abuse
and/or mental illness (especially those who are detained in prisons or secure psychiatric
institutions) because the limited access to alternative intoxicants brings quetiapine to
the fore.

However, quetiapine has been found to be associated with drug-seeking behavior
more than any other atypical antipsychotic. It has standardized street prices and slang
terms, such as “Q-ball” (referring to the intravenous injection of quetiapine mixed with
cocaine), either alone or in combination with other drugs [16,19].
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Quetiapine-Related Fatalities and Fatal Toxicity

Due to increased misuse and availability on the black market, quetiapine-associated
deaths are frequently seen in medicolegal practice. Unintentional self-poisoning fatali-
ties are classically related to substance abuse, mental health issues, and physical health
problems; quetiapine is no exception. Fatalities—complex suicides and suicide attempts
involving antipsychotic or sedative–hypnotic medications are frequently seen [35–37]. Poi-
soning homicides are rare, though they have been described, and quetiapine is used only
to incapacitate the victim (as in pediatric homicides) [16,38,39].

Some reports on quetiapine-related deaths and series lack clinical details or provide
only single quetiapine serum concentrations rather than a kinetic course. However, in-
creasing numbers of studies provide more detailed clinical and analytical data on severe
overdose cases. Available data from 1998 to 2021 in England and Wales could be a helpful
introduction to the field. In Figure 1, six hundred ninety-six deaths involving quetiapine
were presented [40]. A similar, increasing trend of misuse, non-fatal, and fatal overdoses
was registered in Victoria (Australia) in the study (2006–2016) conducted by Lee et al. [41].
Mortality data from the European Union are not available
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Figure 1. Quetiapine-related mortality in England and Wales 1998–2021 [40].

Kales et al. provided estimates of the direct mortality risk over 180 days, comparing
individual antipsychotic agents and valproic acid. The mortality risk was found to vary,
ranging from quetiapine (lowest) to haloperidol (highest). In fact, quetiapine use had the
lowest effect on mortality, with a 3.2% (95% CI = 1.6–4.9%; p < 0.01) higher mortality risk
than antidepressants (31; 95% CI = 21–62) [42,43].

As reported by Breivik et al., a Norwegian cohort showed no clear relationship for the
length of the postmortem interval [44]. Their study showed that the postmortem interval
was weakly correlated (positive correlation) with the quetiapine concentration in peripheral
blood (mg/L). Moreover, the regression model was invalid (p = 0.27) with poor goodness
of fit (R2 = 0.16). The same was found for central blood, brain, muscle, and liver tissue.
This result agreed with the study of Vignali et al., where a weak positive correlation of
postmortem interval was noted only for liver tissue [45]. When the post-mortem interval has
been so long that extensively putrefied bodies are assessed, the analysis of entomological
samples may support and complement the toxicological results [46]. Even in the case of
dried blood spots, the quantification of quetiapine is possible with good recovery rates,
within the concentration range of 0.05–1.0µg/mL [47].

3. A Systematic Review Strategy and a Meta-Analysis

This study used a systematic literature review based on PRISMA guidelines to as-
sess the postmortem management of quetiapine-related deaths (Figure 2) [48,49]. The
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term “quetiapine-related death” refers to deaths where quetiapine was linked to the cause
of death anywhere in the causal chain. The literature is abundant in such cases; they
are either complex suicides or homicides (where quetiapine was the reason for seda-
tion/incapacitation), accidental intoxications, or polydrug overdoses.
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Figure 2. Methodology of literature search—systematic review according to the PRISMA guide-
lines [49].

Starting from their inception, PubMed, Web of Science—core collection, and the
Scopus databases were screened for “quetiapine” AND “death” AND “autopsy.” After
finding 156 records, 32 duplicates were eliminated after being found using the automated
bibliography tool. Finally, three systematic reviews, and nine case reports of a single case,
were eliminated. Such an approach resulted in 112 entries (English language, “no-single
case “case report, original papers, literature reviews, and meta-analyses), of which 47 full
texts were available. Five researchers listed in Table 1. involving post-analytical results
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obtained from multiple matrices were included in the meta-analysis and discussed in this
paper (therefore, were inclusion/exclusion criteria).

Table 1. Characteristics of the included studies.

Study Year Participants Method Interventions Correction of the
Measurement Units

Anderson and Fritz [50] 2000 7 Experimental case series Postmortem toxicology no

Hopenwasser et al. [51] 2004 8 Experimental case series Postmortem toxicology no

Parker and McIntyre [18] 2005 21 Experimental case series Postmortem toxicology no

Vignali et al. [45] 2020 13 Experimental case series Postmortem toxicology yes

Breivik et al. [44] 2020 14 Experimental case series Postmortem toxicology no

The meta-analysis correlation of blood quetiapine with other matrices lacks a marked
significance level (p-value). In cases where this was missing, the correlation could not be
proved, so this was considered to be incomplete outcome data (attrition bias, Figure 3). The
same was the case in the absence of a marked control cohort. Studies by Anderson and
Fritz [50] and Vignali et al. [45] have the form of case reports, even though they do present
several cases (Table 1), so this is considered a risk of selection bias (random sequence
generation issue). The reason for this problem lies in the practice of forensic pathologists
(and all forensic toxicologists are either pathologists or are related closely to forensic
pathologists) to rely on experience and individual customary practice in formulating their
opinions is a potential source of low goodness of fit or statistically insignificant results in
some cases. Conversely, case reports play a critical role in defining new entities, applying
toxicological expertise, and obtaining data that other researchers could not accept due to
regulations Not considering “post-mortem factors” was considered an “other bias” issue.
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4. Relevant Matrices

Out of five studies included in this meta-analysis, 238 toxicological analyses involving
63 postmortems were performed. Although analyses were performed on a series of different
matrices, those that were most frequently used (and are more traditional) are given in
Figure 4.
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4.1. The Liver and Its Lobar Structure

The liver is a highly vascularized, large (typically weighing around 1.5 kg), and
encapsulated organ situated to a large extent in the upper right front portion of the abdomen.
It is divided into two major lobes; the smaller left lobe partially overlays the ventricle [52,53].

The left lobe is smaller and more flattened than the right. Its undersurface presents
a gastric impression and omental tuberosity. Brevik et al. prepared a report of seven
participants (7/14, 50%) from whom paired samples of liver tissue were obtained (both
lobes). A paired t-test of two samples for means established no significant difference
regarding quetiapine accumulation in either lobe. The left liver lobe is most likely more
susceptible than the right lobe to the postmortem redistribution of zopiclone, and some of its
constituents are thinner due to its anatomical proximity to the stomach (see Table 2) [54,55].
The documented postmortem redistribution of the drug from the biliary system can also
contribute to its apparent accumulation in hepatic tissue [44,56,57]. Classic biliary anatomy
includes the left hepatic duct, which emerges from the umbilical fissure along the inferior
border of the left lobe. The right hepatic duct drains the right liver lobe and comprises two
major branches, the right posterior duct and the right anterior duct [58].

Table 2. Table of correlations and a goodness of fit for quetiapine concentrations in liver tissue vs.
bile or stomach content.

Study Year Pearson Correlation Coefficient (r) R2 (Goodness of Fit) p-Value Matrix

Anderson and Fritz [50] 2000 0.21 0.04 0.22 Bile

Anderson and Fritz [50] 2000 0.51 0.26 0.02 Gastric content

Hopenwasser et al. [51] 2004 0.99 0.97 0.19 Bile

Hopenwasser et al. [51] 2004 −0.33 0.11 0.23 Gastric content

Parker and McIntyre [18] 2005 −0.15 0.02 0.04 Gastric content

Vignali et al. [45] 2020 0.52 0.28 0.0005 Bile

4.2. First-Pass Effect and the Liver

The liver is the body’s primary site for drug metabolism and contains the largest
quantity of the critical cytochrome enzyme system, liver alcohol dehydrogenase, and many
other enzymes. Like most xenobiotics, including drugs, quetiapine’s pharmacology and
toxicology are largely inextricably linked to its metabolism. Due to its significant metabolic
potential, central anatomical position, and ability to take away chemicals from the blood,
the liver constitutes an organ with a high susceptibility to the effects of xenobiotics. The
liver’s involvement is the most obvious in transaminase elevations. These typically occur
by the third week of treatment, and levels return to baseline with continued quetiapine
administration [56].

The drug’s volume of distribution while it spreads throughout the body is 10 ± 4 Ukg [15,50].
Quetiapine is orally administered as a fumarate salt in the form of tablets. Daily doses
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in adults range from 150 to 750 mg, and steady-state concentrations are achieved within
two days of dosing [59]. No specific plasma proteins that carry quetiapine were iden-
tified; however, it is converted into the active proteins and metabolites norquetiapine
and 7-hydroxy quetiapine [60,61]. Both were assessed in patients autopsied in the study
of Vignali et al. The authors found (peripheral) blood levels of norquetiapine to be
258.93 (95% CI = −22.63–540.48). Blood levels of 7-hydroxy quetiapine were 45.88 (95%
CI = −8.24–83.52) [22,45].

The cytochrome P450 (CYP) system has been observed to extensively metabolize
quetiapine in the liver, with less than 5% of the original drug appearing in urine (and
minimally in other excretions). Around 73% of 150mg of quetiapine radiolabeled with
100 mCi 14C was recovered in the urine and 21% in the feces within 168 h of administration.
The mean terminal half-life of quetiapine is about six hours; in its unchanged form, it
accounted for less than 1% of the excreted substance [15,62].

Though quetiapine is excreted with urine, it has a low renal elimination rate (less than
5%) and a relatively large volume of distribution (Vd = 10 l/kg), so forced diuresis is no
longer recommended [63,64]. The elimination half-life can be easily calculated as follows:

As assessed in several case series, the concentration level of quetiapine was noticeably
higher in the liver tissue than in any other postmortem sample [18,44,50]. This paradigm
was most evident in the study of Parker and McIntyre (16.09 (CI 95% = 4.96–27.22) mg/kg).
However, the linear regression model showed no statistical significance (the p-value was
0.09). Anderson and Fritz showed a more distinct and statistically significant positive
correlation of quetiapine concentrations between the peripheral blood and liver tissue
(R2 = 0.99; p = 0.01), although their study consisted of only five participants who were
eligible for the linear regression model (27.86 (CI 95% = −31.05 to 86.77 mg/kg)). An-
other study that assessed quetiapine concentrations in eight liver samples reported 5.11
(CI 95% = 1.11–9.11 mg/kg) [51]. In this regard, the study that included the most sizable
cohort was that of Vignali et al. from 2020. It comprised 12 liver samples with mean
quetiapine concentrations of 1002.9811 (CI 95% = 57.64–1948.32 mg/kg) [45].

4.3. Liver Tissue from Fresh Cadavers

Resected liver biopsies can be sliced with retained original cellular diversity and
in vivo cellular architecture. They can be cultured ex vivo for two weeks [65,66]. Routine
toxicology is performed on these tissues using mass spectrometry (GC-MS) or specific high-
pressure liquid chromatography (HPLC) [30,67]. Both methods are relatively sensitive,
with a limit of quantification for HPLC of µg/L, and the GC-MS method is accurate to
2 µg/L [15] (see Table 3).

Table 3. Correlation and goodness of fit for peripheral blood and liver tissue.

Study Year Pearson Correlation Coefficient (r) R2 (Goodness of Fit) p-Value

Anderson and Fritz [50] 2000 0.82 0.68 0.23

Hopenwasser et al. [51] 2004 −0.28 0.08 0.94

Parker and McIntyre [18] 2005 0.37 0.14 0.04

Breivik et al. [44] 2020 0.82 0.66 0.27

Vignali et al. [45] 2020 −0.26 0.07 0.25

4.4. Liver Tissue Modeling

Normal hepatocytes, constituting nearly 60% of the total cell population within the
liver, along with the HepaRG cell line, are capable of performing the majority of liver
functions, including many drug-processing activities at various levels [68]. Transcribing
liver-specific genes at high levels without fresh human tissue is challenging, but it can even
provide differentiated hepatocyte-like HepaRG cells. In fact, it is more successful than any
other liver cell line. As HepaRG cells express most of the drug-processing genes, including
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major CYPs and UGTs, it should not be surprising that these cell lines have been used as
pharmacological and toxicological models [68–70]. According to Le Daré et al., a higher
quetiapine metabolism was observed in differentiated HepaRG cells (50% of quetiapine
metabolized) compared to pHH (25% of quetiapine metabolized) [71–73]. This helps meet
the desired feature of human cell models, stably expressing the functional properties of
the in vivo cells they are derived from in order to predict the toxicity of chemicals [74].
Indeed, in vitro models of human liver preparations seem to be the most lucrative models
with maximum feasibility. Cellular and subcellular systems are included in these models,
and they can equally contain HepG2 and HuH7 hepatic cell lines (developed from liver
tumors and preserved hepatocytes) [74–76]. The primary functional cells of the liver, the
hepatocytes, have historically been challenging to culture ex vivo. Various complementary
in vitro liver models have been introduced to overcome this difficulty. These models are
classically categorized into 2D and 3D models. At the same time, none are simple and
effective for predicting all hepatic functions (specifically, the clearance of chemicals).

Even though 2D models are flexible, affordable, and valuable for studies that require
large numbers of cells, most cell lines do not have normal liver-specific functions, includ-
ing those relevant to toxicology. They are genetically abnormal and do not adequately
reproduce hepatocyte biology. Meanwhile, 3D cultures offer cell–cell and cell–extracellular
matrix interactions, though these methods are often more challenging to translate into
high-throughput tactics. Primary hepatocytes in 3D modeling can form spheroids, pro-
longing the maintenance of hepatic phenotype and function. The ability to transiently
proliferate and self-organize is a well-known ability of hepatic cells, and it has also been
taken advantage of in forming liver organoids. Organoid models have been developed
from various hepatic cell types, and all exhibit various degrees of similarity to human
hepatocytes [66,77,78]. Hepatocytes with or without non-parenchymal cells can be spatially
patterned in 3D, using, for instance, soft lithography. Combining 3D printing technologies
with cytocompatible biological “inks” enables engineers to bioprint tissue models, incorpo-
rating parenchymal and stromal cells in spatially patterned arrangements. Unfortunately,
such “futuristic” models are challenging to make and maintain.

Since in vivo quetiapine metabolism pathways generate well-defined metabolite
derivatives, this drug was used to explore the consistency of the in vitro metabolic model.
Out of many emerging preclinical human-relevant in vitro models used to evaluate toxic
injury to the liver, in silico modeling has shown good potential in terms of its affordability
and easy maintenance [68]. Mathematical modeling, referred to as physiologically based
pharmacokinetic (PBPK) modeling, is basically an in silico technique where mathematical
modeling is used to inform and optimize the design in, for instance, forensic toxicology [79].
In the same context, forensic toxicologists should benefit from the estimated time course
concentrations [80]. Reported human blood concentrations of quetiapine were considered
in the context of the environment that includes the receptor (gut), metabolizing agent (liver),
and central compartments with blood-to-plasma concentration ratios (Rb) and liver-to-
plasma concentration ratios (Kp,h) [81,82]. Alternatively, some other compounds may be
estimated using in silico tools. All of these are important clinical parameters for calculating
pharmacokinetic (PK) properties [83]. In recent years, there has been significant progress
in developing liver-emulating technologies, including liver-on-a-chip. Biochemical and
metabolic information is chip-generated [84]. However, this advanced and highly sensi-
tive technology is still in its infancy, as methodologies, procedures, and standards render
the obtained data difficult to handle in the grossing room or in medicolegal settings in
general [85].

4.5. Blood

Since the drug’s blood level is the one that affects the individual, blood is the most
important tissue for toxicological analysis. This accounts for central (e.g., heart) and
peripheral (e.g., femoral) blood. Although there are cases where peripheral vs. central
blood concentrations differed significantly, none of the five included studies showed
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significant differences between the endpoints (p-values varied from 0.18 to 0.59; for overall
effect see Figure 5). The results from previous studies indicate that drug concentrations in
the central blood are generally higher than in the peripheral blood [86].
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Figure 5. Forest plot of comparison of different blood matrices. For four studies that considered
central and peripheral blood, pooled variance (Sp2) was calculated at 245.89 ng/mL with a pooled
standard deviation of ±15.68 [18,44,45,50].

4.6. Brain Tissue

Several studies considered brain tissue’s quetiapine, and in the study of Breivik et al.
this concentration correlated moderately (positive correlation) with that in the peripheral
blood (r = 0.5); unfortunately, the linear regression model was below the level of statistical
significance [44]. Skov et al. even claim brain concentrations are about four times those in
the blood [87] (see Table 4 containing data reviewed here).

Table 4. Table of correlations and goodness of fit for quetiapine concentrations in peripheral blood vs.
brain tissue.

Study Year Pearson Correlation Coefficient (r) R2 (Goodness of Fit) p-Value

Hopenwasser et al. [51] 2004 Only two samples 0.19

Breivik et al. [44] 2020 0.50 0.25 0.24

Vignali et al. [45] 2020 0.05 0.002 0.25

4.7. Skeletal Muscle

Breivik et al. even concluded that, in the absence of blood, skeletal muscle may
be treated as a preferred matrix for quetiapine concentrations since its concentration in
skeletal muscle correlated well with that in peripheral blood. Hopenwasser et al.’s related
data indicate a strong positive correlation between blood and skeletal muscle quetiapine
concentrations. Their study participants showed r = 0.98 in a linear model with R2 = 0.97.
Unfortunately, the p-value was, likewise, inappropriate at 0.07 [51]. A strong positive
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correlation (r = 0.92) was obtained in a linear model with a p-value of 0.98. The same was
true in the cohort of Vignali et al. in which a strong correlation was obtained for a poor
model (r = 0.80, R2 = 0.63, p-value = 0.51) [44,45]. Nevertheless, quetiapine’s implication in
the metabolism of lipids in the skeletal muscle is visible in lipidomics [88].

In conclusion, Burghardt et al.’s findings suggest that atypical antipsychotics change
the lipid profiles of human skeletal muscle, so the role of that tissue in quetiapine metabolism
should be assessed in the future [62,88]. Precisely because of this, it should be no surprise
that Breivik et al. (b) validated the method for determining quetiapine in postmortem
skeletal tissue [89].

5. Other Matrices

The blood, the brain, the liver, and the muscle tissue were all used as preferred
matrices in those five studies of interest to this review. Of 238 samples assessed, 59 (24.79%)
were liver tissue. Blood, as a primary tissue of toxicological interest, whether central or
peripheral, was considered in 54/238 (22.59%) and 43/238 (18.07%) cases, respectively.
Brain and skeletal muscle were both bordering on 10% of cases. The brain was assessed in
25/238 (10.5%), and the skeletal muscle in 247/38 (10.1%).

Other less frequently used matrices are given in Figure 6.
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Pathologists’ choices seem unfortunate since bile and vitreous are traditionally preferred
matrices in forensic toxicology [90]. More so considering moderate positive correlations of
femoral blood’s quetiapine and the concentrations of quetiapine in vitreous or bile. However,
peripheral blood’s quetiapine and its concentrations in vitreous correlated (though weakly)
in the study of (r = 0.32, R2 = 0.11, p-value = 0.04) [18]. Vignali et al. correlated bile with
peripheral blood more straightforwardly (r = 0.52, R2 = 0.28, p-value = 0.01) [45].

Lastly, quetiapine concentrations in hair segments have been assessed. Such an
assessment is a step forward in therapeutic drug monitoring. Not counting the practical
significance of this endpoint in forensic toxicology. Unfortunately, none of the five studies
considered included hair concentrations of quetiapine, so more detailed calculations are
unavailable. For the completeness of this review, note that several studies have been
published over the years on antipsychotics in hair, and quetiapine is not an exception.
Studies also report quetiapine concentrations in nails [91–94]. Nevertheless, nails should
be preferred as a relevant matrix since they retain certain substances more likely to have
concentrations than hair [95,96].
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6. Conclusions

When blood is not available, the analysis of other tissues can provide important
information that helps diagnose potential intoxication with quetiapine. The search for an
adequate alternative endpoint seems rational, considering the increasing trend of quetiapine
misuse and overdoses.

The relatively high concentrations of quetiapine in the liver tissue, and the modest (if
any) statistical significance when correlating other endpoints with blood, cast a suspicion on
any straightforward recommendation for selecting a relevant matrix. Further investigations
and the integration of results obtained in silico and in vitro are needed to improve routine
forensic toxicology. Recent endeavors where hair or nails were used as surrogate endpoints
point out the advantages of keratin matrices that are much more resistant to post-mortem
decomposition than other biological samples. Even though the evidence on the feasibility of
keratinized matrices in this regard is missing, these reports could answer this paper’s query.
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