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Abstract: For some sound sources, the function of the square of sound pressure amplitudes on the
sphere in the far field is an integrable function or can be integrated with geometrical simplifications,
so an exact or approximated analytical expression for the sound power can be calculated. However,
often the sound pressure on the sphere in the far field can only be defined in discrete points, for which
a numerical integration is required for the calculation of the sound power. In this paper, two new
algorithms, Anchored Radially Projected Integration on Spherical Triangles (ARPIST) and Spherical
Quadrature Radial Basis Function (SQRBF), for surface numerical integration are used to calculate the
sound power from the sound pressures on the sphere surface in the far field, and their solutions are
compared with the analytical and the finite element method solution. If function values are available
at any location on a sphere, ARPIST has a greater accuracy and stability than SQRBF while being
faster and easier to implement. If function values are available only at user-prescribed locations,
SQRBF can directly calculate weights while ARPIST needs data interpolation to obtain function
values at predefined node locations, which reduces the accuracy and increases the calculation time.

Keywords: surface numerical integration on the sphere; smooth functions; sound power

1. Introduction

Two basic approaches for calculating the sound power of sound sources are used in the
literature. In the first approach, the sound power is calculated directly from the vibrations
of the sound source and the sound pressure on the surface of the source. In the second
approach, the sound power is calculated from the sound pressure on a sphere in the far
field. References [1–6] provide a detailed overview of both approaches. This article deals
with the second approach, i.e., the calculation of the sound power from the sound pressures
in the far field.

The calculation of sound power from sound pressures in the far field is based on a
sufficiently large distance to the sound source at which the sound pressure is approximately
in phase with the approximately radially directed fluid particle velocity [2]. The sound
field described is similar to the plane sound field; hence, this is the reason its theory and
expressions are used.

The sound pressures in the far field are calculated from the plane sound source
vibrations using the surface integral (Rayleigh integral). The vibrational field can be
defined with approximated analytical functions, e.g., with a series of expansions, so that
the surface integral is an integrable function; i.e., an analytic solution can be obtained, at
least an approximate one. There are a number of sound sources for which an analytical
solution for sound pressures or for sound power is obtained (rigid piston, beam, plate) and
they are often cited in the relevant literature [7,8]. In practice, such solutions can sometimes
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be associated with real sound sources, e.g., a rigid piston with a loudspeaker, but the added
value of such solutions is the possibility for a comparison with other methods which are
also used in this paper. For example, a mathematical derivation for sound pressure on
a hemisphere in the far field with a vibrating circular rigid piston in its center uses an
approximation [7] to define a function of distance between a point on the source and a point
on the hemisphere, for which the Rayleigh surface integral has an analytical solution. So,
the surface integral for sound power calculated from the function of the sound pressures
has an approximate analytical solution with sufficient accuracy for reference, which points
to the importance of using other approximate methods for the confirmation of the results,
e.g., numerical surface integrals.

The numerical surface integral on a plane surface is often applied, and its accuracy
has been confirmed [9]. However, numerical surface integration on the sphere is still
under development [10–13], and there is a lack of articles dealing with the application of
this method for the calculation of sound power. Recently, new algorithms, SQRBF and
ARPIST, for the calculation of the surface numerical integral on the sphere have been
proposed [10,14], and their accuracy for the calculation of sound power is analyzed in
this article.

2. Sound Power from Sound Pressure in the Far Field

The radiated sound power can be obtained by integrating the far-field intensity
→
I over

a spherical surface centered on the source [2] as follows:

Π(ω) =
∫

S

→
I (θ, φ, ω) •→n dS (1)

where the unit vector
→
n is normal to the infinitesimal surface dS on the sphere, ω is the

sound source vibration angular frequency, and ¯ represents a time average. Directivity
of the sound field on the sphere in the far field for two indentical point sources vibrating
in phase on the opposite sides and on distance e from the reference horizontal plane is
shown in Figure 1, while the directivity of the sound field on the hemisphere in the far field
created by a vibrating rigid circular flat piston in a baffle is shown in Figure 2 [8].
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Figure 2. Directivity of the baffled rigid circular piston.

In both cases, it is necessary to calculate the surface integral on the sphere surface in the
far field in order to define the sound power. The sound pressure in the far field for curved
(or irregularly shaped) sound sources [2] can be calculated using the Kirchhoff–Helmholtz
integral equation. This method includes knowledge of sound pressures and their normal
derivative on the surface of a sound source from which the sound power can be defined
directly, so in practice, the far field is not used for the calculation of the sound power for
this type of source. Therefore, the plane sound source is used as a reference example in this
article, and the theory of sound radiation around curved sound sources is not described.

For plane sound sources in the baffle, the coordinate system in Figure 3 is used, so the
sound power can be calculated with the following expression:

Π(ω) =
∫ 2π

φ=0

∫ π/2

θ=0
I(θ, φ, ω)R2sin θdθdφ (2)

where θ, φ, and R are the coordinates of dS on the hemisphere.

Acoustics 2023, 5 4 FOR PEER REVIEW  3 
 

 

 

Figure 2. Directivity of the baffled rigid circular piston. 

In both cases, it is necessary to calculate the surface integral on the sphere surface in 

the far field in order to define the sound power. The sound pressure in the far field for 

curved (or irregularly shaped) sound sources [2] can be calculated using the Kirchhoff–

Helmholtz integral equation. This method includes knowledge of sound pressures and 

their normal derivative on the surface of a sound source from which the sound power can 

be defined directly, so in practice, the far field is not used for the calculation of the sound 

power for this type of source. Therefore, the plane sound source is used as a reference 

example in this article, and the theory of sound radiation around curved sound sources is 

not described. 

For plane sound sources in the baffle, the coordinate system in Figure 3 is used, so 

the sound power can be calculated with the following expression: 

Π̅(𝜔) = ∫ ∫ 𝐼(̅𝜃, 𝜙, 𝜔)𝑅2 sin 𝜃 𝑑𝜃𝑑𝜙
𝜋 2⁄

𝜃=0

2𝜋

𝜙=0

 (2) 

where θ, ϕ, and R are the coordinates of dS on the hemisphere. 

It can be assumed that the functions of sound pressures are smooth in the periods 

between zero values (Figures 1 and 2), which is the basis for the selection of the surface 

numerical integral. 

 

Figure 3. The hemisphere and vibrating sound source with referent coordinates. Figure 3. The hemisphere and vibrating sound source with referent coordinates.



Acoustics 2023, 5 1002

It can be assumed that the functions of sound pressures are smooth in the periods
between zero values (Figures 1 and 2), which is the basis for the selection of the surface
numerical integral.

The time-averaged sound intensity at a point on a hemisphere of radius R and for a
defined excitation frequency is a vector quantity given by the time-averaged product of the
sound pressure p and the particle velocity vector

→
v :

→
I (R, θ, φ) =

1
T

∫ T

0
p(R, θ, φ, t)

→
v (R, θ, φ, t)dt (3)

where t is the time and T is a suitable interval of time.
In the far field, the component of the air particle velocity that is in-phase with the

pressure is radially directed [2]. Consequently, the sound intensity vector is also radially

directed (
→
I = I

→
n ) and, as in the plane sound wave, is given by the product of the sound

pressure and particle velocity. Just as with the plane sound wave, the particle velocity in
the far field for the harmonic vibration of the source is equal to the following:

∼
v(R, θ, φ, ω) =

∼
p(R, θ, φ, ω)

ρ0c
(4)

where ρ0 is the density of the sound media, c is the sound velocity, and ∼ represents the
complex amplitude (phasor). It follows that the sound intensity is equal to the following:

I(R, θ, φ, ω) =
1
2

Re
{∼

p
∗
(R, θ, φ, ω)

∼
v(R, θ, φ, ω)

}
=

∣∣∣∼p(R, θ, φ, ω)
∣∣∣2

2ρ0c
(5)

where
∣∣∣∼p(R, φ, θ, ω)

∣∣∣ is the amplitude of the sound pressure p(R, φ, θ, t), * represents the
conjugate complex number, and the intensity is directed radially from the sound source.
Therefore, the only variable that should be defined for the calculation of sound power is
the sound pressure on a hemisphere in the far field.

The sound infinitesimal pressure dp for a point P in the far field produced by the
velocity of the oscillation of an infinitesimal element of a plane sound source,

∼
v, with the

surface dS can be calculated as follows [1,2]:

dp = i
ρ0ck
2πd

∼
vdSei(ωt−kd) (6)

where d is the distance between the far-field point and the infinitesimal element of a plane
sound source, and k is the sound wave number.

The sound pressure in the point P produced by the whole vibrating source, with the
surface S, can then be calculated by a Rayleigh surface integral [1]:

p = i
ρ0ckeiωt

2π

∫
S

∼
ve−ikd

d
dS (7)

where the oscillation of the source infinitesimal surface dS is given by the product of the
complex amplitude of the surface velocity

∼
v and the phase change ωt.

The next step consists of the introduction of the expression for the distance from the
far-field point to the point on the sound source surface into Equation (7). The formula for
the distance is as follows [8]:

d =
√

R2 + r2 − 2Rrsin θcos(φ− α) (8)
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where α is the angle in the sound source plane (Figure 3), and r is the distance between the
infinitesimal surface dS of the sound source and coordinate system origin.

Equation (8) can be simplified for the point in far-field (R >> r) when the distance
R can be approximated as equal to d in the denominator for all infinitesimal surfaces dS
of Equation (7). However, in the exponent, the distance d can only be approximated as
follows:

d = R− rsin θcos (φ− α) + O
(

r2

R

)
(9)

At a long range, where R >> r, the term r2 can be dropped, thus implying that (r2/R) is
negligible. Once the simplified expressions are introduced into Equation (7), the simplified
formula becomes the following:

p(R, φ, θ, t) = i
ρ0ckei(ωt−kR)

2πR

∫
S

∼
v(r, α)e

ik r sinθcos (φ−α)
dS (10)

The solution of the sound power for plane sound sources in the baffle includes the
surface integral on the hemisphere as follows:

Π(ω) =
∫ π/2

0

∫ 2π

0

∣∣∣∼p(R, θ, φ, ω)
∣∣∣2

2ρ0c
R2sin θdθdφ (11)

and the existence of its analytical solution depends on the sound pressure function. The
chosen examples in this article include the functions of sound pressures which have an
analytical solution for the surface integral so that a comparison with the numerical results
can be made.

3. New Algorithms for Numerical Surface Integral on a Sphere

In this article, two algorithms for numerical integration on the surface of a sphere
are analyzed (SQRBF and ARPIST). For each technique, the integration of any smooth
distribution of acoustical pressures over the whole sphere is the sum of the scalar product
of the function values at the quadrature points and the weights.

3.1. SQRBF

SQRBF or Spherical Quadrature Radial Basis Function (SQRBF) of Reeger and Forn-
berg [14–16] is used for the numerical surface integration on a sphere so it can be used for
the calculation of sound power from known sound pressures on a sphere in the far field.
SQRBF creates quadrature weights for N arbitrarily scattered nodes and the numerical
integration is performed using the following expression:

IS2( f ) :=
x

S2

f (x, y, z)dS ≈
N

∑
i=1

Wi f (xi, yi, zi) (12)

where S2 is a spherical surface, f (x, y, z) represents the function of scalar values to be
integrated on a sphere, N is the number of triangle vertices defining a net of spherical
triangles over a sphere (Figure 4), and Wi is a weighting set derived from several coordinate
transformations, (x, y, z)→ (xi, yi, zi) .
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As shown in [14], the triangle vertices on a sphere are firstly optimally positioned
with spherical Delaunay triangulation, which results in a new set of spherical triangles
τ = {τk}K

k=1. The surface integral of a complete sphere is also defined as being equal to the
sum of the surface integrals of all the spherical triangles on a spherical surface.

IS2( f ) =
K

∑
k=1

x

τk

f (x, y, z)dS (13)

where K is the number of spherical triangles.
Then, the projection of triangle vertices to a tangent plane is performed by using a

gnomic projection (Figure 4). For each of the spherical triangles τk with the midpoint
(x̂k, ŷk, ẑk), the projection is realized by a transformation of the vertices’ coordinates. The
midpoint is taken to be the average of the vertices of the spherical triangle τk in the plane
they form, projected radially to the sphere’s surface; however, any point contained in the
spherical triangle would also be suitable. The sphere of radius R is rotated so that the
midpoint of the triangle lies on the vertex of the sphere. The coordinates of the vertices
projected on the tangent plane are then given by the following [14]:

(
x
′
k, y

′
k

)
=


(

Rx
z , Ry

z

)
, for x̂2

k + ŷ2
k = 0(

R[ẑk(x̂kx+ŷky)−z(x̂2
k+ŷ2

k)]√
x̂2

k+ŷ2
k(x̂kx+ŷky+ẑkz)

, R2(x̂ky−ŷkx)√
x̂2

k+ŷ2
k(x̂kx+ŷky+ẑkz)

)
, else

(14)

All coordinates refer to the same Cartesian coordinate system whose origin is in the
center of a sphere. The integral, Equation (12), for a triangle is now defined on the surface
of its tangent plane, and an expression for a complete sphere is as follows:

IS2( f ) =
K

∑
k=1

x

τk

f
(

x
′
k, y

′
k

) R3(
R2 +

(
x′k
)2

+
(
y′k
)2
) 3

2
dx
′
kdy

′
k (15)

The approximation of the last expression for each projected triangle τk is performed
by interpolating the integrand over the projected vertices in the tangent plane, based on
the radial basis function (RBF) finite differences (FD) method [14] and then integrating the
interpolant. Then, an RBF-FD type weight set wk is created for a current reference triangle,
and the new approximated expression is as follows:

IS2( f ) ≈
K

∑
k=1

n

∑
j=1

(wk)j f
((

x
′
k

)
j
,
(

y
′
k

)
j

)
R3(

R2 +
(
x′k
)2

+
(
y′k
)2
) 3

2
(16)
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where n represents the number of the nearest neighbors (the nodes projected to the same
tangent plane as the current reference triangle; see Figure 2). If Ki (i = 1, 2,. . ., N) represents
a set of all pairs (k,j), the surface integral takes the final form:

IS2( f ) ≈
N

∑
i=1

 ∑
(k,j)∈Ki

(wk)j
R3(

R2 +
(
x′k
)2

+
(
y′k
)2
) 3

2


︸ ︷︷ ︸

Wi

f (xi, yi, zi) (17)

after the transformation of the coordinates
((

x
′
k

)
j
,
(

y
′
k

)
j

)
→ (xi, yi, zi) . Equation (17)

represents the solution for the surface numerical integral on a sphere. The MATLAB imple-
mentations of SQRBF for a complete sphere are available at https://www.mathworks.com/
matlabcentral/fileexchange/51214-spherical_quadrature_rbf-quadrature_nodes (accessed
on 15 October 2023.) and for a smooth surface with boundaries at https://www.mathworks.
com/matlabcentral/fileexchange/63938-bounded-smooth-surface-quadrature-rbf (accessed
on 15 October 2023). For more details, see articles [14,17,18].

3.2. ARPIST

ARPIST or Anchored Radially Projected Integration on Spherical Triangles is an
algorithm for the computation of the numerical integration of a sufficiently smooth function
over a spherical triangle. The algorithm is based on an easy-to-implement transformation to
the spherical triangle from its corresponding linear triangle via radial projection (Figure 5).
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Figure 5. Projection from a reference triangle to a spherical triangle via a linear triangle. 
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See Figure 5 for a schematic of the mapping. 
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where 𝐽 = ‖𝑝⃗𝜉 × 𝑝⃗𝜂‖ is the Jacobian determinant of the mapping from the reference tri-

angle to the curved triangle. 
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For a spherical triangle S, the vertices are defined as vertices
→
x 1,

→
x 2 and

→
x 3. Without

a loss of generality, assume the vertices are in counterclockwise order with respect to the
outward normal to the sphere. Let r denote the radius of the sphere, i.e., r =

∥∥∥→x i

∥∥∥. Let
T denote its corresponding flat (linear) triangle x1x2x3, and let (ξ, η) denote the natural
coordinates of T, so that T has the parameterization as follows:

→
x (ξ, η) = (1− ξ − η)

→
x 1 + ξ

→
x 2 + η

→
x 3 (18)

for 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ 1− ξ. Let p̂
(→

x
)
= r

→
x∥∥∥→x ∥∥∥ , which projects a point x ∈ T onto a

point in S. We then obtain a radial projection as follows:

→
p (ξ, η) = p̂

(→
x (ξ, η)

)
=

r
→
x (ξ, η)∥∥∥→x (ξ, η)

∥∥∥ (19)

See Figure 5 for a schematic of the mapping.

https://www.mathworks.com/matlabcentral/fileexchange/51214-spherical_quadrature_rbf-quadrature_nodes
https://www.mathworks.com/matlabcentral/fileexchange/51214-spherical_quadrature_rbf-quadrature_nodes
https://www.mathworks.com/matlabcentral/fileexchange/63938-bounded-smooth-surface-quadrature-rbf
https://www.mathworks.com/matlabcentral/fileexchange/63938-bounded-smooth-surface-quadrature-rbf
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Given a function f on the spherical triangle S, the integral is as follows:∫
S

f
(→

p
)

dA =
∫ 1

0

∫ 1−ξ

0
f
(→

p (ξ, η)
)

Jdηdξ (20)

where J =
∥∥∥→p ξ ×

→
p η

∥∥∥ is the Jacobian determinant of the mapping from the reference
triangle to the curved triangle.

Although the idea of radial projection is simple, care is taken to ensure the stable
computation of the Jacobian determinant of the transformation. The algorithm overcomes
potential instabilities in computing the Jacobian determinant of the transformation, even
for poorly shaped triangles, by properly selecting one of the vertices as the “anchor” to
avoid catastrophic cancellation errors. After a number of mathematical transformations,
the next expression is defined as follows (for details, please see [1])

∫
S

f
(→

p
)

dA = r2det
[→

x 1,
→
x 2,
→
x 3

]∫ 1

0

∫ 1−ξ

0

f
(→

p (ξ, η)
)

∥∥∥→x (ξ, η)
∥∥∥3 dηdξ (21)

An efficient quadrature rule based on the Gaussian quadrature over the linear triangle
T is then obtained where additional quadrature point locations are predefined from the
position of a triangle and the degree of the quadrature. If {(ξi, wi)|1 ≤ i ≤ q} defines the
degree-p quadrature over T, where ξi are the quadrature points, wi are the corresponding
weights, and the integrand f

(→
p
)

: S→ R is continuously differentiable to the pth order,
then the following expression can be used:∫

S
f
(→

p (ξ)
)

dA = r2det
[→

x 1,
→
x 2,
→
x 3

]
∑

i

wi∥∥∥→x (ξi)
∥∥∥3 f

(→
p (ξi)

)
+ AO

(
hp+1

)
(22)

where h denotes the longest edge of the triangle and A = area(T). This theorem follows from
the two-dimensional Taylor series expansion [19] and the high-order chain rule [20]. The
MATLAB and Python implementations of ARPIST are available at https://github.com/
numgeom/arpist (accessed on 15 October 2023.). For more details, see article [10].

4. Examples

The following are examples of a comparison of the results for the sound pressures
and the sound power of a vibrating circular flat rigid piston in an infinite baffle, calculated
using the proposed methods. The results are verified using the finite element method
(Ansys, version 2020R1).

4.1. Sound Pressures on a Sphere in the Far Field

The accuracy of the calculation of the sound power from the sound pressures in the far
field is affected by the accuracy of the sound pressure calculation. Therefore, the simplest
geometry (circular flat rigid piston) is chosen because the sound pressure in the far field
can be expressed by an analytic function.

The properties of the sound medium (air) are the density ρ0 = 1.225 kg/m3 and the
velocity of sound c = 340 m/s, while the properties of the circular flat rigid piston are the
vibration displacement amplitude W0 = 0.005 m and the radius of the piston a = 0.075 m.

The far field is defined as the space behind the last local energy minimum where the
amplitude of the sound pressure attenuates with inverse proportionality to the distance
from the source. Also, the far field can be defined as the space where the pattern of the
radiation (i.e., the positions of the local minima and maxima in the space) do not depend
on the distance from the source. This definition is equal to Fraunhofer diffraction in optics,
which is valid when the Fresnel number, F = a2/(λR), where a is the radius of the sphere

https://github.com/numgeom/arpist
https://github.com/numgeom/arpist
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which surrounds the sound source, is much smaller than 1. The reference distance of the
far field that is common in engineering practice is as follows:

R >
8a2

λ
(23)

so for a maximum frequency of analysis f = 12,000 Hz and velocity of sound c, the reference
distance is 1.58 m. This value is higher than the radius of the near field which is defined
with the Rayleigh distance, D = πa2/λ [9,21]. The radius of the far-field hemisphere is
taken as R = 2.5 m.

In this example, sound pressures in the far field are calculated with the analytical
solution of the Rayleigh integral (Equation (29)), the surface numerical integration of the
Rayleigh integral (Equation (27)), and the finite element method (Ansys).

For the definition of the analytical solution of the sound pressure around a vibrating
circular flat rigid piston, it is useful to provide the expression (10) in polar coordinates
because of its circular geometry:

p(R, φ, θ, t) = i
ρ0ckei(ωt−kR)

2πR

∫
S

v0eikrsin θcos (φ−α)rdrdα (24)

where v0 is the amplitude of the velocity.
The complete surface of a rigid piston vibrates in-phase so the initial phase is set to

zero and the complex amplitude
∼
v just has the real part, which is equal to the following:

v0 = ωW0 (25)

where W0 is the displacement amplitude of the piston vibration, and the velocity function
for the harmonically vibrating circular rigid piston has the following form:

v(t) = v0eiωt (26)

The final equation for the sound pressure of the circular rigid piston (Rayleigh integral)
can be written as follows:

p(R, θ, t) = i
ρ0ωW2

0 e−ikReiωt

2πR

a∫
r=0


2π∫

α=0

eikrsin (θ)cos (α)dα

rdr (27)

where a is the piston radius, and the pressure is equal for all values of φ due to the symmetry
of the piston (Figure 3).

A part of Equation (27), eiωt, is used to define the instanteneous velocity v(t) of the
infinitesimal elements in Equation (26) and is written outside of the integral because the
velocity of all infinitesimal elements has the same amplitude and phase.

Now, the real part of Equation (27) is tabulated in terms of the Bessel function.∫ a

r=0

∫ π

α=0
cos(krsin(θ)cos(α))dαrdr = π

aJ1(kasinθ)

ksinθ
(28)

and after the analytical integration of the Rayleigh integral, a pressure field around the
vibrating circular rigid piston in the far field (a� R) can be defined as follows:

p(R, θ, t) = iρ0ω2W0eiωte−ikR a
R

[
J1(kasinθ)

ksinθ

]
(29)

For a comparison of the results, a numerical integration of the Rayleigh integral for
a flat piston, Equation (27), was performed via MATLAB’s vpaintegral function (high-
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precision numerical integration which uses variable-precision arithmetic and a semi-
symbolic quadrature) [17].

Also, a finite element model was created using Ansys. The finite element model
consisting of approximately 500,000 nodes was used for the final simulation. The types
of finite elements used were FLUID29 and FLUID129, which are commonly used in the
modelling of the interaction of body and fluids and whose main usage is the modelling of
sound waves [22]. Two-dimensional elements (Figure 6) were used because the radiation
of a rigid piston is an axisymmetric problem.
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Figure 6. Schematic representation of the finite element model of the circular piston in an infinite baffle.

The analytical and numerical results of the Rayleigh integral are equal when rounded
to four decimal places, which proves the quality of numerical surface integration on a flat
surface. The results were obtained using the MATLAB programming language and are
shown in Table 1 as “Rayleigh integral”.

Table 1. Comparison of sound pressures obtained with the Rayleigh integral and the finite ele-
ment model.

Rayleigh Integral Finite Element Model

Omega
(rad/s) Min (Pa) Max (Pa) Min (Pa) Max (Pa) Difference

(%)

0 0 0 0 0 0
500

(Figure 8a) 1.72 1.7227 1.7202 1.7222 0.01%

1000 6.8488 6.8906 6.8484 6.8876 −0.01%
1500 15.2927 15.5039 15.288 15.493 −0.03%
2000 26.8973 27.5624 26.878 27.529 −0.07%
2500 41.4499 43.0662 41.4 42.991 −0.12%
3000 58.6822 62.0153 58.581 61.868 −0.17%
3500 78.2751 84.4095 78.098 84.149 −0.23%
4000 99.8631 110.2489 99.565 109.9 −0.30%
4500 123.0401 139.5334 122.61 139.23 −0.35%
5000 147.3655 172.263 146.96 172.05 −0.28%
5500 172.3711 208.4376 172.05 208.35 −0.19%
6000 197.5736 248.0571 197.3 248.06 −0.14%
6500 222.4554 291.1214 222.02 291.32 −0.20%
7000 246.5262 337.6306 246.07 337.79 −0.19%
7500 269.2771 387.5844 268.89 387.54 −0.14%
8000 290.2156 440.9828 289.84 441.57 −0.13%
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Table 1. Cont.

Rayleigh Integral Finite Element Model

Omega
(rad/s) Min (Pa) Max (Pa) Min (Pa) Max (Pa) Difference

(%)

8500 308.8679 497.8258 308.49 499.1 −0.12%
9000 324.7868 558.1131 324.62 559.18 −0.05%
9500 337.5587 621.8448 337.47 622.5 −0.03%

10,000 346.8109 689.0206 346.26 689.36 −0.16%
10,500 352.2176 759.6405 351.73 761.55 −0.14%
11,000 353.5478 833.7043 352.82 839.64 −0.21%
11,500 350.4603 911.2119 350.1 915.1 −0.10%
12,000

(Figure 8b) 342.9279 992.1631 343.01 993.95 0.02%

The results obtained using the finite element model created with Ansys (Figure 7)
were slightly different but very close, which verifies the results. The comparison is shown
in Table 1.
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Figure 7. Sound pressure at the intersection of the hemisphere and the plane perpendicular to the
piston plane (e.g., plane xz with r = R in Figure 3).

In Figure 8, the sound pressures on the sphere in the far field for different circular
frequencies ω are shown in order to refer to the nature of pressure distribution (the existence
of smooth curves). The sound pressures on the sphere in the far field shown in Figure 8a was
calculated for ω = 500 rad/s, and the sound pressures in in Figure 8b for ω = 12,000 rad/s,
while corresponding sound powers are listed in Table 1.
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Figure 8. Sound pressures in far field: (a) ω = 500 rad/s, (b) ω = 12,000 rad/s, and (c) ω = 72,000 

rad/s. 
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Figure 8. Sound pressures in far field: (a) ω = 500 rad/s, (b) ω = 12,000 rad/s, and
(c) ω = 72,000 rad/s.

4.2. Sound Power from Sound Pressure, Analytical vs. Numerical Solution

Now, when a function of the sound pressures on a hemisphere of radius R in the far
field is defined, the sound intensity at a point can be defined with Equation (5) and the
sound power of a vibrating circular rigid piston can be defined from Equation (2) as follows:

Π =
ρ0ω4W2

0 A2
p

4πc

∫ π/2

θ=0

4{J1[kasinθ]}2

(ka)2sinθ
dθ (30)

where Ap is the piston area [23]. This integral has only approximate solutions, analytical
and numerical.

In this example, the sound power is calculated using an approximate analytical solu-
tion of the integral of the series expansion of the Bessel function, Equation (33), and the
numerical integration of a function of one scalar θ, Equation (30). The results are verified
using the finite element method (Ansys). The numerical integration for one coordinate or
for two coordinates on a plane are performed with the MATLAB function vpaintegral. The
obtained results for the sound pressure on the sphere in the far field (27) and for the sound
power of a vibrating circular rigid flat piston in a baffle (30) are used for comparison in our
examples.

The properties of the rigid piston and the sound medium (air) are the same as in
Example 1.
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The approximation in the form of series expansion of the Bessel function can be
used [24]:

J1(x) =
∞

∑
s=0

(−1)sx2s+1

22s+1(s + 1)(s!)2 (31)

and after inclusion in Equation (30), the sound power expression for a circular rigid piston
of radius a can be found as follows:

Π =
ρω4W2

0 A2
p

4πc

∞

∑
q=0

∞

∑
s=0

(−1)q+s(ka)2(q+s)

4(q+s)(q + 1)(s + 1)(q!)2(s!)2

∫ π/2

θ=0
sin2(q+s)+1(θ)dθ (32)

where the sum of q arises due to the squaring of the Bessel function.
If the first two values (0 and 1) of the indices q and s are considered, there are four

different combinations of them: (q,s) = (0,0), (0,1), (l,0), and (1,1). Substituting these combi-
nations into Equation (32) separately, integrating them, adding them up, and simplifying
them, the total approximate sound power can be obtained as follows:

Π ∼=
ρω4W2

0 A2
p

4πc

[
1− 1

6
(ka)2 +

1
120

(ka)4
]

(33)

In Figure 9, it can be seen that the results obtained using the different approaches are
almost exactly the same except for the analytical solution in Equation (33). Normally, it
is expected that the analytical solution is the most accurate, but Equation (33) is a rough
approximation.
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Figure 9. Sound power results.

The values obtained with the numerical integration of a function of one scalar θ
in Equation (30) were also compared with the values obtained using the acoustic finite
elements for a wider range of angular frequency values. The results were, again, very close
and almost identical for the most part of it (Figure 10) but discrepancies occurred at very
high frequencies, which indicates the inaccuracy of the Ansys.
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4.3. Sound Power from Sound Pressure, New Algorithms for Numerical Integration on the Sphere

In the next example, the new algorithms ARPIST and SQRBF for surface numerical
integration on a sphere are tested for calculating the sound power by the surface integration
of sound pressures in the far field. For a vibrating circular flat rigid piston, the function of
the sound pressures on a hemisphere in the far field is known so its values in referent points
can be defined. In practice, an analytic function may not be available; for example, the data
values may be sampled at some scattered data points. Mathematically, it simply means
that the values at the quadrature points of the numerical integration must be reconstructed
from the scattered data values, and the sound power can only be solved by the numerical
surface integral. Consequently, such a procedure reduces the accuracy and increases the
calculation time.

The results are compared with a numerical integration of a function of one scalar θ in
Equation (30).

For the calculation of the sound power for a vibrating flat circular rigid piston in a
baffle, the surface integral of the hemisphere is needed. In this article, SQRBF and ARPIST
were used to calculate the sound power for a complete sphere, and the results are divided by
two. This approach is based on the equivalent sound pressures of a point on the hemisphere
and of imagined mirror point on a sphere (on the opposite side of the baffle). In such a case,
expression (2) gives the same result as the following expression:

Π(ω) =
1
2

∫ 2π

φ=0

∫ π

θ=0
I(θ, φ, ω)R2sin θdθdφ (34)

The algorithms ARPIST and SQRBF for the numerical quadrature on a sphere were
performed with different parameters, ensuring its usefulness even on computers with a
lower computing capacity.

The parameters for SQRBF that were changed in different runs of the model are the
order of the polynomial (m), number of the nearest neighbors (n), and number of nodes (N).
The “rules” for the choice of the values of these parameters are as follows: (a) the order of
the polynomial should be equal to or lower than 13 because of MATLAB code limitations;
and (b) the expressions N/n ≥ 10 and n ≥ (m + 1)(m + 2)/2 must be fulfilled to ensure
accurate results.

Two sets of input parameters were used. The first set of results was obtained for the
“lowest value” parameters that would ensure the results to be within the 0.2% of those
obtained using the numerical integration of a scalar function of one scalar θ in Equation (30).
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The parameters were calibrated with a trial-and-error procedure, and the following set
of parameters was shown to provide both accurate results and a relatively low calculation
time for the computers used: polynomial order m = 7, number of the nearest neighbors
n = 80, and number of nodes N = 2500.

In order to check the accuracy of the model for its use on computers with a much lower
capacity, significantly lower parameters were used for the second simulation: polynomial
order m = 4, number of the nearest neighbors n = 20, and number of nodes N = 200.

The parameters for the ARPIST were the number of triangle elements and Gaussian
quadrature rule. In this article, degree-4 with six quadrature points per triangle and the
Gaussian quadrature rules for linear triangles from [25] were used. Also, the sphere was
divided with equal triangles creating an icosahedron.

A comparison of the results obtained with the new algorithms ARPIST and SQRBF is
shown in Table 2.

Table 2. Comparison of numerical results.

ω (rad/s)

Π (W)
Numerical
Integral of

Function of One
Scalar θ,

Equation (30)

Π (W)
Numerical

Quadrature –
SQRBF, 200

Nodes

Difference
(%)

Π (W)
Numerical

Quadrature –
SQRBF, 2500

Nodes

Difference
(%)

Π (W)
Numerical

Quadrature –
ARPIST
Degree-4,
1920 q.n.

Difference
(%)

0 0 0 - 0 - 0 -
500 0.1396 0.1378 −1.29 0.1394 −0.14 0.1396 0
1000 2.2203 2.1918 −1.28 2.2166 −0.17 2.2203 0
1500 11.1269 10.9849 −1.28 11.1084 −0.17 11.1269 0
2000 34.6708 34.2310 −1.27 34.6138 −0.16 34.6708 0
2500 83.1151 82.0690 −1.26 82.9798 −0.16 83.1152 1.20 × 10−4

3000 168.5471 166.4460 −1.25 168.2759 −0.16 168.5472 5.93 × 10−5

3500 304.1349 300.3781 −1.24 303.6523 −0.16 304.1350 3.29 × 10−5

4000 503.3099 497.1912 −1.22 502.5243 −0.16 503.3099 0
4500 778.9220 769.6002 −1.20 777.7295 −0.15 778.9221 1.28 × 10−5

5000 1142.4167 1128.9878 −1.18 1140.7060 −0.15 1142.4169 1.75 × 10−5

5500 1603.0804 1584.6158 −1.15 1600.7400 −0.15 1603.0807 1.87 × 10−5

6000 2167.4006 2143.0009 −1.13 2164.3260 −0.14 2167.4011 2.31 × 10−5

6500 2838.5769 2807.4298 −1.10 2834.6789 −0.14 2838.5774 1.76 × 10−5

7000 3616.2145 3577.6519 −1.07 3611.4275 −0.13 3616.2152 1.94 × 10−5

7500 4496.2212 4449.7712 −1.03 4490.5101 −0.13 4496.2221 2 × 10−5

8000 5470.9154 5416.3455 −1.00 5464.2817 −0.12 5470.9164 1.83 × 10−5

8500 6529.3439 6466.6908 −0.96 6521.8304 −0.12 6529.3451 1.84 × 10−5

9000 7657.7965 7587.3790 −0.92 7649.4888 −0.11 7657.7978 1.70 × 10−5

9500 8840.4899 8762.9028 −0.88 8831.5163 −0.10 8840.4913 1.58 × 10−5

10,000 10,060.3883 9976.4759 −0.83 10,050.9165 −0.09 10,060.3898 1.49 × 10−5

10,500 11,300.1169 11,210.9248 −0.79 11,290.3480 −0.09 11,300.1184 1.33 × 10−5

11,000 12,542.9196 12,449.6266 −0.74 12,533.0797 −0.08 12,542.9211 1.20 × 10−5

11,500 13,773.6090 13,677.4406 −0.70 13,763.9385 −0.07 13,773.6103 9.44 × 10−6

12,000 14,979.4566 14,881.5836 −0.65 14,970.1981 −0.06 14,979.4576 6.68 × 10−6

From Table 2, it can be seen that very accurate results can be obtained with both
algorithms but ARPIST gives a higher accuracy. However, additional tests are performed
for the ARPIST and SQRBF algorithms for higher values of the input parameters to compare
them. The results are presented in Table 3. The sound power for ω = 72,000 rad/s is listed
in Table 3 while the sound pressures on a sphere in the far-field is shown in Figure 8c.
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Table 3. Comparison of higher set of input parameters.

m n N Π (W)
SQRBF

Difference from
Equation (30) (%)

(Elem. Num. ×
6 Quad. Nodes)

Π (W)
ARPIST

(Degree-4)

Difference from
Equation (30) (%)

ω = 4000 rad/s

13 500 7000 503.0846 −0.04
13 800 8000 503.4717 0.03 7680 503.3099 0
13 1000 10,000 503.1052 −0.04
13 1000 15,000 503.1452 −0.03
13 1000 20,000 503.3092 −1.39 × 10−5

ω = 12,000 rad/s

13 1000 20,000 14,979.4492 −4.94 × 10−7 17,280 14,979.4566 0

ω = 72,000 rad/s (Figure 8c)

13 1000 20,000 478,691.0053 −4.57 × 10−6 17,280 478,691.1647 2.87 × 10−5

From these simulations, it is obvious that the accuracy of the quadrature further
increases with the increase in the parameters and that it approaches a 0% difference to the
reference numerical solution (Equation (30)). Both algorithms have a high accuracy, and it
can be concluded that for the same number of triangle vertices in SQRBF and quadrature
points in ARPIST, ARPIST has a higher accuracy. Both algorithms are relatively fast (the
calculation time was in the order of several seconds).

5. Conclusions

In this paper, the accuracy and efficiency of new algorithms for numerical integration
on a spherical surface (ARPIST and SQRBF) and the possibility of its use for calculating
the sound power of sound sources were analyzed. The calculations were performed for a
vibrating rigid flat circular piston because analytical solutions for the sound pressure and
the sound power exist, so they can be compared with the results of the numerical surface
integration.

The detailed analyses described in this paper led to the following conclusions:

- For some sources, it is possible to define integrable functions for the calculation of
sound pressure or sound power with an accuracy corresponding to the mathematical
simplifications used;

- For other sources, it is not possible to define integrable functions so that numerical
surface integration must be used;

- The accuracy of the algorithms ARPIST and SQRBF for numerical integration on a
sphere’s surface increases with the increase of its parameters, approaching almost a
0% difference to the reference numerical solution;

- If function values are available at any location on a sphere, ARPIST has a higher
accuracy and stability than SQRBF while being faster and easier to implement;

- If function values are available only at user-prescribed locations, SQRBF can directly
calculate weights while ARPIST requires high-accuracy scattered data interpolation
to obtain function values at these Gaussian quadrature locations from the (coarser
sampled) data at the original scattered nodes. Such a procedure reduces the accuracy
and increases the calculation time.

All the calculated results were in good agreement.
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