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A.; Sotošek, V.; Batičić, L. Endothelial
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Abstract: Cardiac surgery is one of the highest-risk procedures, usually involving cardiopulmonary
bypass and commonly inducing endothelial injury that contributes to the development of periopera-
tive and postoperative organ dysfunction. Substantial scientific efforts are being made to unravel
the complex interaction of biomolecules involved in endothelial dysfunction to find new therapeutic
targets and biomarkers and to develop therapeutic strategies to protect and restore the endothelium.
This review highlights the current state-of-the-art knowledge on the structure and function of the
endothelial glycocalyx and mechanisms of endothelial glycocalyx shedding in cardiac surgery. Partic-
ular emphasis is placed on potential strategies to protect and restore the endothelial glycocalyx in
cardiac surgery. In addition, we have summarized and elaborated the latest evidence on conventional
and potential biomarkers of endothelial dysfunction to provide a comprehensive synthesis of crucial
mechanisms of endothelial dysfunction in patients undergoing cardiac surgery, and to highlight their
clinical implications.

Keywords: anesthesia; cardiac surgery; endothelium; endothelial dysfunction; endothelial glycocalyx;
intensive care

1. Introduction

Cardiac surgery involves procedures on the heart and thoracic aorta. It plays an impor-
tant role in the treatment of heart diseases whose prevalence is continuously increasing [1].
Currently, more than a million cardiac surgeries are performed annually worldwide [2].
The indications for cardiac surgery are described in detail in the 2019 guidelines jointly
produced by three associations: the European Association for Cardio-Thoracic Surgery
(EACTS), the European Association of Cardiothoracic Anesthesiology and Intensive Care
(EACTAIC), and the Quality and Outcomes Committee of the European Board of Cardio-
vascular Perfusion (EBCP) [3]. Overall, the most common heart pathologies that need
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surgical treatment are severe valvular stenosis or regurgitation and an advanced form of
ischemic heart disease.

In patients with valvular heart disease, depending on the valve affected, surgical
treatment includes valve reconstructions or replacement during open heart surgery [4].
In patients with an advanced form of the ischemic heart disease, when medical and/or
invasive cardiological therapy are insufficient, cardiac surgery should be performed [5,6].
Possible treatment modalities include minimally invasive or open cardiac surgery [7,8].

Most cardiac surgeries are performed with cardiopulmonary bypass (CPB), which
temporarily replaces the heart and lung functions with an artificial circuit consisting of
a pump and an oxygenation membrane [1]. CPB allows a bloodless surgical field and
quiescent heart while maintaining systemic perfusion and adequate oxygenation. Roller
and centrifugal pumps on the CPB machine produce non-pulsatile flow, which is still the
most frequent type of CPB [9]. Recently, the pulsatile flow has been introduced; it is thought
to be more physiological because it mimics arterial pulsations. Nowadays, considerable
efforts are being made to identify underlying mechanisms involved in organ dysfunction
following cardiac surgery, and the non-pulsatile flow is considered one of them. Although
the 2019 EACTS/EACTAIC/EBCP guidelines recommend the use of pulsatile flow during
CPB in adult open-heart surgery, there is still a lack of evidence for its beneficial effect over
non-pulsatile flow [3].

There are also some other mechanisms related to perioperative organ dysfunction
in cardiac surgery, including the release of numerous mediators and vascular endothelial
dysfunction. Inflammatory mediators such as interleukin (IL)-1, IL-6, IL-8, IL-12, and
IL-18 are released due to the chronic inflammation of the myocardium caused by stenosis
of the vessels and the surgical stress itself [10–12]. There is also a noticeable secretion
of degradation products of the endothelial glycocalyx due to the activation of the pro-
inflammatory cascade and the need for abundant volume compensation with the aim of
maintaining hemodynamic stability during and after the procedure, which leads to the
secretion of the atrial natriuretic peptide and consequently damage to the endothelial
glycocalyx [13]. The moderation of resultant endothelial dysfunction has become a focus of
clinical and animal research.

The disorders of endothelial glycocalyx are also detected in non-cardiac surgery,
as anesthetics, fluid overload and ishemic-reperfuison injury can affect the degradation
of endothelial glycocalyx. However, disorders of endothelial glycocalyx are more pro-
nounced in the cardiac surgery where among others, the extensive contact of blood and the
artificial circuits during the CPB lead to a prominent surgical stress response. Moreover,
the patients undergoing cardiac surgery have higher endothelial dysfunction before the
surgical procedure due to the immanent characteristic of their basic disease.

Thus, in this narrative review, we aim to present the mechanisms involved in vascular
endothelial dysfunction and its clinical implications in patients undergoing cardiac surgery.
We will also emphasize potential strategies for the protection and preservation of the
endothelial glycocalyx during surgery, which could lead to improved patient outcomes.

2. Basic Structure and Function of Endothelial Glycocalyx

The blood vessel wall has three layers: tunica interna or intima, tunica media, and
tunica externa or adventitia. The tunica interna is located next to the lumen and covered
with one layer of endothelial cells attached to the basement membrane. These cells are in
direct contact with blood components and form a barrier to the tissue. As such, endothelial
cells exert numerous functions, including control of extravasation of fluids, ions, and
molecules and regulation of vascular tone, blood coagulation, and leukocyte activation in
the inflammatory and immune response [14]. Endothelial cells also produce components of
the glycocalyx, which covers their luminal (apical) side [15]. The glycocalyx and attached
plasma proteins, such as albumin, orosomucoid, antithrombin III and growth factors, form
the endothelial surface layer (ESL) [16,17] (Figure 1).
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carbohydrate groups covalently attached to the protein by covalent bonds, whereas pro-
teoglycans are proteins attached to at least one glycosaminoglycan chain. They both an-
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ecules that consist of variable extracellular domains, a transmembrane domain, and a cy-
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Figure 1. Structure of endothelial glycoaylyx. Schematic representation of the basic structure of
endothelial glycocalyx (EG) under normal physiologycal conditions. EG forms a protective layer
of glycosaminoglycans, proteoglycans (syndecans, glypicans) and incorporated proteins on the
luminal side of vascular endothelial cells, preventing direct contact of blood elements with the blood
vessel wall. The components of EG transmit intraluminal events to endothelial cells activating the
enzymes (protein kinase C) and intracellular signaling pathways. Abbreviations: Alb—albumin, BM—
basement membrane, ChS—chondroitin sulphate, EG—endothelial glycocalyx, ESL—endothelial
surphace layer, GLYP 1—glypican 1, GP—glycoprotein, HS—heparan sulphate, Orm—orosomucoid,
PKC—protein kinase C, SA—sialic acid, SYN 1—syndecan 1, VEC—vascular endothelial cell.

Before the use of electron and confocal microscopy, the existence of the endothelial gly-
cocalyx was unknown. Around 70 years ago, a thin structure was discovered that is known
today as the endothelial glycocalyx, which prevents the direct contact of blood elements
with the blood vessel wall [16,17]. Dr Stanley Bennett was the first who proposed the term
endothelial glycocalyx for this extracellular polysaccharide-rich structure [18]. Glycopro-
teins and proteoglycans are the main components and the basic structure of the endothelial
glycocalyx. Glycoproteins are glycosylated molecular complexes containing carbohydrate
groups covalently attached to the protein by covalent bonds, whereas proteoglycans are
proteins attached to at least one glycosaminoglycan chain. They both anchor glycocalyx to
the vascular endothelial cells, creating a matrix with incorporated soluble and insoluble
components [19]. Some of these components are plasma proteins, enzymes, cofactors, su-
peroxide dismutase, antithrombin III, thrombomodulin, and xanthine-oxidoreductase [20].
Glycoproteins and proteoglycans are mostly cell adhesion molecules that consist of variable
extracellular domains, a transmembrane domain, and a cytoplasmic tail and belong to
selectin, immunoglobulin, or integrin receptor families [15]. It was also noticed that the
endothelial glycocalyx acts as a filter for plasma proteins depending on their size and
charge [18]. The glycoproteins have short carbohydrate side chains, which are capped
with sialic acid [21]. The studies showed that sialic acid in the endothelial glycocalyx
significantly contributes to its negative charge and that reduction of sialic acid content
results in the reduction of vascular endothelium negative surface charge [21].

Proteoglycans bind long, negatively charged, hydrophilic, unbranched glycosamino-
glycan chains of disaccharide units [22,23]. Some of the glycosaminoglycans are chondroitin
sulphate (associated with syndecans), heparan sulphate (associated with syndecans and
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glypicans), hyaluronic acid (hyaluronan; binds to surface receptors, e.g., CD44), and der-
matan sulphate (covalently attached to serine residues of core proteins) [24]. Heparan
sulphates are the most abundant and comprise 50–90% of all glycosaminoglycans [25]. The
sulfonation of glycosaminoglycans significantly contributes to the negative charge of en-
dothelial glycocalyx, which allows the binding of proteins from blood [26]. Syndecans and
glypicans are the most significant proteoglycans, along with biglycans, decorins, mimecans,
and perlecans, which are all present in the endothelial glycocalyx. So far, there are four
known syndecans—syndecan-1, -2, -3, and -4 [27]. The syndecans are incorporated into the
cell membrane. Their cytoplasmic tails are in contact with protein kinase C and may initiate
different intracellular signaling events [27]. Through the connections with proteins of the
cytoskeleton, syndecans allow for the transmission of extracellular mechanical forces to the
cell [28]. Additionally, they participate in the regulation of the inflammatory response in
infection and trauma. Syndecans express many glycosaminoglycan chains, which bind cy-
tokines and initiate the inflammatory response. Animal models showed the involvement of
syndecans in various aspects of inflammation, from leukocyte recruitment to the resolution
of inflammation. Furthermore, the upregulation of syndecan expression during inflamma-
tion and a direct relationship between serum syndecan level and severity of inflammation
were reported in humans [27]. Although the role of syndecan-1 in inflammation is the most
studied, other syndecans are also involved in the inflammatory response [29].

The glypican family has six members—glypican-1 to glypican-6. Unlike synde-
cans, which are transmembrane structures, glypicans are connected to the cell membrane
via glycosylphosphatidylinositol molecules in the areas of lipid rafts rich in signaling
molecules [30]. Glypican-1 consists of the core protein and three heparan sulfate chains. It
is a coreceptor in many signaling pathways, such as vascular endothelial growth factor-A,
transforming growth factor-β, and bone morphogenic protein. Hence, glypican-1 mod-
ulates those pathways through the interactions with ligands and receptors on the cell
surface [31]. It is also involved in signaling pathways that result in the activation of
endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production [32]. It was
demonstrated that glypican-1 is overexpressed in various types of cancers (breast, pan-
creatic, glioma) and that its high level of expression correlates with poor prognosis [30].
Additionally, the glypican-1 isoform, as the component of the glycocalyx, has a significant
role in shear stress mechanosensation and mechanotransduction. [31]. The endothelial
glycocalyx protrudes in the lumen of the blood vessel, and it is constantly under the shear
stress generated by blood flow. However, the endothelial glycocalyx also connects to the cell
membrane and cytoskeleton and includes the molecules that activate signaling pathways,
such as syndecans [27]. Hence, the endothelial glycocalyx translates blood shear forces
to functional and genetic changes inside the endothelial cells [24]. The results of shear
force sensing and transducing are eNOS activation, NO production, and vasodilatation [33].
The cell culture and animal model study by Mahmoud et al. showed that the inhibition
of glypican-1 results in endothelial cell dysfunction and inflammation through enhanced
inflammatory gene expression, monocyte adhesion, and inhibited NO expression [24].

Various pathogens can be present in the cardiovascular system and blood. Therefore,
the endothelial glycocalyx is also exposed to these pathogens and protects endothelial cells
by providing the physical distance barrier and preventing adhesion [15]. When bacteria
enter the blood, they must penetrate the endothelial cells to colonize the tissue. Since
most gram-negative and gram-positive bacteria have negatively charged surfaces, and the
endothelial glycocalyx is also negatively charged, it repels pathogens and prevents their
access to endothelial cells [34]. Regarding the viruses, they mostly have a negative surface
at pH 7.4. Accordingly, the endothelial glycocalyx represents the electrostatic charge barrier
for the viruses as well [35].

Since the endothelial glycocalyx covers the luminal side of the blood vessels [36], it
participates in the regulation of endothelial permeability and leukocyte and platelet adhe-
sion [37–39]. Thus, it contributes to the physical and biochemical health of the endothelium
and the vasculature [40–43]. Additionally, the endothelial glycocalyx is constantly exposed
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to the circulating enzymes, which cause the mechanical and biochemical degradation of the
endothelial glycocalyx followed by the renovation process [44], making it a very dynamic
structure (Figure 2).
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Figure 2. Mechanisms of endothelial glycocalyx degradation (“shedding”). Any pathological situa-
tion, like trauma or ischemia/reperfusion injury, can lead to degradation of endothelial glycocalyx
(EG). Shear stress activates inflammatory cells, which release highly reactive chemicals (ROS, RNS),
cytokines, and proteaze enzymes. Consequently, the inhibition of endothelial nitric oxide synthase
(eNOS) synthesis and protein kinase C (PKC) activity result in impared ability of vasodilatation
and inhibition of intracellular signaling pathways, thus leading to EG degradation, dysfunction of
endothelial cells’ regulatory functions, and leukocyte and platelet adhesion. Abbreviations: Alb—
albumin, ChS—chondroitin sulphate, eNOS—endothelial nitric oxyde synthase, GLYP 1—glypican 1,
GP—glycoprotein, HPSE—heparanase, HS—heparan sulphate, IL-1—interleukin-1, IL-6—interleukin-
6, MMP—matrix metaloproteinase, Orm—orosomucoid, PKC—protein kinase C, RNS—reactive
nitrogen species, ROS—reactive oxygen species, SA—sialic acid, SYN 1—syndecan 1, TNF- α—tumor
necrosis factor alpha.

3. Endothelial Glycocalyx Shedding in Cardiac Surgery

The endothelial glycocalyx is a dynamic structure characterized by an ongoing balance
between its degradation and restoration, which is a result of continuous exposure to
pressure and shear stress. Trauma, ischemia/reperfusion injury, and the contact of blood
with the artificial surface of the CPB circuit contribute to acute inflammation during cardiac
surgery, which can lead to the degradation (“shedding”) of the endothelial glycocalyx.

Inflammatory response and surgical trauma lead to an activation of the immune re-
sponse, predominantly cytokine and chemokine production, complement activation, and
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production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) [15,45].
Activated neutrophils and mast cells produce RNS and ROS and release a variety of en-
zymes, predominantly heparanases, hyaluronidases, neuraminidases, metalloproteinases,
and matrix metalloproteinases (MMPs) that shed glycocalyx components [46,47]. When
released, heparanase cleaves heparan sulphate and facilitates glycocalyx degradation [48].
In addition, heparanase mediates the release of proinflammatory cytokines, including
tumor necrosis factor-alpha (TNF-α), IL-1 and IL-6, interferon-gamma, and chemokines
(CXCL-8) embedded in the glycocalyx layer [49] that have been shown to further mediate
glycocalyx shedding [50]. Furthermore, proinflammatory cytokines promote phagocytes to
release MMPs, which shed components of the endothelial glycocalyx including glypican-1
and endomucin [51]. Diminished concentrations of glypican-1 and endomucin promote
leukocyte binding to endothelium, leading to impaired mechanosensation [52,53].

It seems that one of the main roles in endothelial glycocalyx shedding has a metal-
loproteinase protein family [54,55]. Extracellular matrix turnover is regulated by MMPs,
which are a family of endogenous proteolytic enzymes, containing zinc responsible for the
degradation of the extracellular matrix and capable of degrading endothelial cell-surface
proteins. Consequently, these processes lead to an oxidative stress-induced disruption of
the endothelial glycocalyx. Being synthesized by endothelial cells, MMPs play a central
role in vascular remodeling. Increasing scientific evidence shows that MMP dysregulation
is essential in cardiovascular pathologies [56]. Atherosclerotic plaques are known to show
higher expressions of MMP-1, -2, and -9, and patients with ischemic heart disease have
higher levels of circulating MMPs than healthy controls, suggesting that matrix remodeling
via MMPs may represent an important therapeutic target [44,57,58]. In this context, Ali
et al. [44] have shown that histone deacetylase represents a novel epigenetic regulatory
mechanism in the oxidative stress-mediated MMPs’ upregulation and their tissue inhibitor
downregulation, leading to glycocalyx remodeling and highlighting a potential novel
therapeutic target.

Activated MMPs, especially MMP-9 and MMP-13, can cleave syndecan-1 below the at-
tachment site, thereby inducing the shedding of syndecan-1 and consequently of hyaluronic
acid and chondroitin sulphate, which are attached to syndecan-1 [15,59].

It has been shown that MMPs cleave hyaluronan receptor CD44, resulting in additional
glycocalyx damage [52]. When shed, the increased plasma concentration of glycocalyx
components can be found in the plasma and easily detected [60]. Recently, increases
in syndecan-1, heparan sulphate, and hyaluronan were detected in patients undergoing
cardiac surgery [61]. Shed glycocalyx components promote a vicious cycle that increases the
production of ROS and RNS, which further damage the endothelial glycocalyx. In health,
the production of ROS and RNS is constantly reduced by the antioxidant system, but in a
pathological state such as cardiac surgery, the imbalance occurs in favor of oxidation, which
promotes proteolysis and glycocalyx shedding, and increases vascular permeability and
endothelial dysfunction [62]. Endothelial degradation mediated by ROS and RNS can occur
directly by the activation of enzymes that shed components of the endothelial glycocalyx,
predominantly chondroitin, heparan sulfate, dermatan sulfate, and hyaluronic acid [63,64],or
indirectly via activation of MMPs and inhibition of the endogenous antioxidant system [47,65].
In addition to endothelial degradation caused by inflammation, glycocalyx shedding
during cardiac surgery can be a result of ischemia-reperfusion injury [66]. Cardiac ischemia-
reperfusion injury occurs during percutaneous coronary angioplasty, CABG, and heart
transplant surgery [67]. Studies have shown that cardiac surgery and CPB could result in
the degradation of the glycocalyx and the shedding of its components, such as syndecan-1
and heparan sulfate, into the bloodstream [68–72].

Recently, Dekker et al. [61], as well as some previous studies [61,73,74], have shown
that CPB-associated microcirculatory perfusion disturbances persist for the first three
postoperative days, underlining the fragility of the microvascular network and delayed
restoration capacity following acute injury.
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A recent study elucidated the impact of the ischemia-reperfusion phenomenon on
glycocalyx degradation during early reperfusion in clinical open-heart surgery. Aortic
declamping provoked the rapid elevation of systemic levels of extracardiac syndecan-1.
Syndecan-1 concentrations in systemic circulation began to increase already before aortic
cross-clamping, that is, before the onset of ischemia [71,75]. Findings from the animal
model [76] showed that ischemia-reperfusion injury can shed the endothelial glycocalyx
via increased production of ROS and RNS or secondary inflammatory response [77,78],
resulting in increased serum concentrations of syndecan-1 and heparan sulphate [75,77].

The use of CPB also induces an intense inflammatory response initiated by the contact
of blood with an artificial foreign surface and cardioplegia delivery [77]. Interestingly,
high concentrations of syndecan-1 and heparan sulphate are found in patients undergoing
off-pump CABG surgery despite the lack of CPB. This can result from ischemia-reperfusion
injury from the temporary ligation of coronary arteries, reversible low cardiac output
during surgery, or hypotension [76].

The administration of fluids to the patients before the induction of anesthesia is a com-
mon practice based on the preoperative assumption of volume depletion because of fluid
shifting and blood loss during surgery, and due to perioperative fasting. Accumulating
evidence is against that practice, showing that infused fluids can cause the elevation of
biomarkers suggestive of endothelial glycocalyx shedding [72,79]. A recent study showed a
consistent increase in heparan sulfate for each liter of intravenous fluid delivered, suggest-
ing that fluid resuscitation could lead to iatrogenic damage to the endothelium, resulting in
a poor outcome and increased mortality [80]. To avoid acute volume loading that can lead
to excessive hemodilution, increased microvascular permeability and edema, researchers
suggest using rational fluid management during surgery, matching the type and volume of
the fluids to the patient’s actual clinical needs [72,81].

The animal studies showed that it takes five to seven days for the endothelial gly-
cocalyx to restore to its native thickness after shedding [55]. However, preclinical and
clinical studies in humans showed a more rapid restoration of the damaged endothelial
glycocalyx. In their experimental study, Menash et al. showed rapid adherence of heparan
sulfate to the damaged glycocalyx, while more recently, the measurement of glycocalyx by
in vitro microscopy revealed the thickening of the damaged endothelial glycocalyx in the
clinical setting [82].

4. The Impact of Endothelial Glycocalyx Shedding on Endothelial Cells in
Cardiac Surgery

There are many physiological functions of the endothelium, and the estimated weight
of endothelial cells in an adult is about 1 kg, so we can consider the endothelium to be
an organ [82]. The endothelium provides a structural barrier between the blood and
solid tissues and monitors the flow of nutrients, diffusion of oxygen, carbon dioxide, and
hydrogen ions, and transport of hormones and regulatory molecules [83,84]. Endothelial
cells regulate blood vessel tone, local tissue flow, and in the long term, the density of the
blood vessels in tissue by paracrine and endocrine effects [85]. The endothelial glycocalyx
is situated on the surface of endothelial cells and maintains smoothness and reduces
friction to the blood flow, thus supporting the normal function of the endothelium in the
supervision of the clothing process, fibrinolysis, and leukodiapedesis [43,86]. This complex
physiological role of the endothelium is altered under the influence of harmful substances
and inflammatory mediators [83]. Various stimuli and risk factors stimulate endothelial
cells to produce and secrete cytokines, chemokines, and growth factors into circulation [87].

Endothelial cells express mechanoreceptors, which allow them to sense changes in
blood flow [88]. In areas of low or oscillation shear stress, turbulent blood movement
damages the glycocalyx and leaves the surface of endothelial cells unprotected [89–91]. The
stripped endothelial cells become dysfunctional and lose their fine physiological regulatory
functions, such as flow-dependent vasodilatation and capillary-level barrier function, and
acquire adhesive properties towards leukocytes and platelets, thus initiating the soft plaque
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formation that becomes prone to rupture over time [87,91–93]. In the setting of shear stress
such as CPB, the endothelial glycocalyx degradation products and proteases [93] were
found in the circulation compared with healthy controls, and they particularly increased
during ischemia [93]. Following cardiac surgery, elevated levels of degraded glycocalyx
components such as heparan sulphate, syndecan-1, and hyaluronan are detected in the
blood and urine of patients due to the activation of sheddases, heparinase, MMPs, and
hyaluronidase, respectively, which are all probably of endothelial origin [87,91,93,94]. Ad-
ditionally, the atrial natriuretic peptide can shed hyaluronic acid and syndecan-1, and there
are other possible sheddases, such as thrombin, elastase, plasmin, tryptase, and cathepsin
B [93]. To date, it is not known whether endothelial glycocalyx degradation products
could stimulate circulating antigen-presenting cells comprising circulating endothelial cells
and emphasize their antigen-presenting properties that support and direct the immune
response of T cells. It is of scientific interest that the memory T cell subset provides a
sustained immune response in patients during and after cardiac surgery [95,96]. Active cy-
totoxic Th1 lymphocytes rich in the cytotoxic mediator TNF-α receptor apoptosis-induced
ligand are considered responsible for the damage to the endothelial cells [97,98]. It is not
known whether the concentration of circulating endothelial cells correlates with glycocalyx
degradation products in patients during and after CPB, although damage to the endothelial
glycocalyx leads to the detachment of the dysfunctional endothelial cells from the base-
ment membrane [99], increased frequency of dysfunctional circulating endothelial cells
and memory T cells [100,101]. There may be a correlation between endothelial glycocalyx
degradation products and the frequency of circulating endothelial cells and memory T cells,
as they are all increased in the exacerbation of endothelial dysfunction during CPB. Circulat-
ing endothelial cells could act as non-professional antigen-presenting cells and they could
recognize, bind, process, and present glycocalyx degradation products originating from
the damaged arterial wall to the memory effector T lymphocytes in direct contact during
CPB [102]. Production of a particular set of cytokines by activated circulating endothelial
cells could provide a specific microenvironment, which supports the pro-inflammatory
orientation of the immune response in patients during and after CPB. Therefore, plasma
concentrations of endothelial glycocalyx components and proteases could be biological
laboratory markers of endothelial cell damage and activation of dysfunctional endothelium
during CBP, which might govern the pro-inflammatory immune system activation and
can be a useful prognostic tool. In experiments in vitro, glycocalyx degradation products
are recognized by pattern recognition receptors (PRRs) on the surface of human dendritic
cells, human monocyte-derived macrophages, human T and B lymphocytes, NK cells,
and endothelial cells as danger signals [103–105]. Heparan sulphate and small fragments
of hyaluronic acid bound to toll-like receptors TLR-2 and TLR-4 eventually lead to the
activation of transcription factors such as NFkB, JNK, and AP-1, and subsequent induction
of genes important in immune response [95,106]. The result is the increased synthesis
of cytokines TNF-α, IL-1β, IL-2, myocardial level of IL-6, and chemokines MIP-2, KC,
RANTES, and MCP-1 [95,106]. Small hyaluronic fragments have this effect in endothelial
cells, dendritic cells, macrophages, fibroblasts, and epithelial cells [106]. In this setting, TLR
signaling leads to the activation of T cells, vascular dysfunction, and ischemia-reperfusion
injury [106–109].

Endothelial cells in mice express TLR-2 whose endogenous ligands are biglycan and
hyaluronic acid fragments as well as TLR-4 with its known ligands like oxidized LDL
and HSP60 [110]. In vitro, TLR-2 and TLR-4 expressed on macrophages after stimulation
support a pro-inflammatory immune response by the production of TNF-α and MIP-2 [111].
Accordingly, in vivo, the activation of TLR-2 and TLR-4 in mice shows a proatherogenic
effect [112]. Human vascular endothelium expresses PRRs, among which TLR-1, TLR-
2, TLR-4, and TLR-6 are mainly located in the aorta, carotid and subclavian artery, and
temporal, mesenteric, and iliac arteries; while TLR-3 is located in the aorta, and TLR-7 and
TLR-9 are located in iliac arteries and increased during endothelial dysfunction underlying
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arterial hypertension, diabetes, hypercholesterolemia, and hyperuricemia, which ensure
endothelial cell activation with PRR ligands [112–115].

Human-circulating endothelial cells express a wide range of co-stimulatory molecules
in different amounts, such as CD80, CD86, OX40, ICOS, CD137, CD2, and CD58, which
enable them to provide the second signal for specific activation of memory T cells after
binding to corresponding receptors such as ICOS, 4-1BB (CD137), and OX40 on T cells,
respectively [111,115].

Endothelial cells are sentinels of local tissue antigens, including degraded glycocalyx
components, which are able to recognize and present them to the circulating effector mem-
ory cells, serving as non-professional antigen-presenting cells [116]. However, endothelial
cells seem unable to provide adequate co-stimulation for naïve T cells to promote their
proliferation, cytotoxic potential, and Th1 differentiation, but can stimulate them to produce
cytokines [110,116].

5. Detection of Endothelial Glycocalyx Shedding in Cardiac Surgery

Standard laboratory and biochemical techniques are widely used in scientific and clin-
ical investigations to evaluate soluble glycocalyx shedding parameters in cardiac surgery.
Knowledge of the concentration changes of circulating molecules involved in endothelial
glycocalyx shedding is essential for understanding the mechanisms of these processes and
developing new therapeutic strategies. Most of the crucial bioactive molecules, metabo-
lites, cytokines, and other parameters included in endothelial glycocalyx shedding in
cardiac surgery can be detected, as well as their concentrations measured in serum or
plasma by commercially available enzyme-linked immunosorbent assay (ELISA) or en-
zyme immunoassay (EIA) kits, following manufacturer’s protocols. The most studied
endothelial glycocalyx biomarkers in cardiac surgery and their changes are shown in
Table 1 [12,61,70,75,117–135].

Table 1. The most commonly studied endothelial glycocalyx biomarkers and their changes in patients
undergoing cardiac surgeries.

Endothelial
Disfunction Marker Mechanism of Action

Type of
Procedure/
Pathology

Biomaterial Change Reference

Heparan sulphate

Regulates cell growth,
inflammatory response,
blood coagulation
process

CABG, AVR S, P
↑
0
↓

[70,75,129,131,134]
[128]

[61,130]

Syndecan-1
Growth factor receptor
activation, cell adhesion,
matrix adhesion

CABG, AVR S, P ↑
0

[12,70,75,128–131,133,134]
[61]

Hyaluronic acid

lymphocyte activation,
tissue regeneration,
inflammation response,
angiogenesis

CABG S, P, U ↑ [70,129–132,134]

Chondroitin sulphate Tissue elasticity CABG S ↑ [122]

Soluble vonWillebrand
Factor Antigen (vWFAg) Platelet adherence CABG, AVR P ↑ [119,126,127]

E-selectin Cell adhesion OPCABG, CABG P ↑
0

[121,131,135]
[117]

P-selectin Cell adhesion OPCABG, CABG P ↑ [124,135]
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Table 1. Cont.

Endothelial
Disfunction Marker Mechanism of Action

Type of
Procedure/
Pathology

Biomaterial Change Reference

ICAM-1
Cell to cell, cell to
extracellular matrix
adhesion

OPCABG, CABG P ↑ [117,124,135]

VCAM-1
Cell to cell, cell to
extracellular matrix
adhesion

OPCABG, CABG P ↑ [117,121]

VEGF
Cell to cell, cell to
extracellular matrix
adhesion

OPCABG, CABG P ↑ [125]

Angiopioetin-1

Angiogenesis,
endothelial cell
migration, endovascular
lining

OPCABG, CABG P ↓ [120,123]

Angiopioetin-2

Angiogenesis,
endothelial cell
migration, endovascular
lining

OPCABG, CABG S ↑ [118,120,123,131]

Biomaterial: P—plasma, S—serum, U—urine; Type of procedure/pathology: CABG –coronary artery by-
pass grafting, OPCABP—off pump coronary artery bypass grafting, AVR—aortic valve replacement; Change:
(↑) increase, (↓) decrease, (0) no change.

The protein expression of target peptides/proteins can be quantified by the Western
blot technique. However, to identify novel microvascular variables related to the level of
microvascular dysfunction, an effective method including sublingual videomicroscopy
by sidestream darkfield, including the Gycocheck™ software imaging, has been devel-
oped [136]. This technique allows us to evaluate endothelial surface layer properties and
microvascular perfusion, quantify vascular density, perfused boundary region correlated
with endothelial glycocalyx dimensions, red blood cell content and velocity, as well as
blood flow in sublingual microvessels, absolute and static capillary blood volume, capillary
recruitment and dynamic capillary blood volume, and other parameters, which can be
used to assess and associate the microvascular health score with disease severity [137].
Knowledge of the interdependence between these variables is the key to understanding
microvascular dysfunction, and this method has a high potential to detect microvascular
dysfunction in critically ill patients.

6. Strategies to Protect and Restore Endothelial Glycocalyx in Cardiac Surgery

Possibilities to protect and regenerate the glycocalyx are the subject of intensive re-
search [138–144]. There is accumulating evidence that meticulous fluid therapy, volatile
anesthesia, normoglycemia, and maintenance of normal plasma albumin levels can mini-
mize glycocalyx injury. The regeneration and protection of the glycocalyx are especially
significant in the early perioperative period.

6.1. Fluid and Volume Management and Protein-Based Therapy

It has been suggested that during sepsis there is a dissociation between the macro-
circulatory and microcirculatory systems. The levels of endothelial glycocalyx shedding
and microcirculatory disorder do not always coincide, and the infused fluids may cause an
increase in biomarkers indicative of detachment of the endothelial glycocalyx [143–145]. A
recent study showed a consistent increase in heparan sulfate for each liter of intravenous
fluid delivered, suggesting that fluid resuscitation could lead to iatrogenic damage to
the endothelium [146]. Similarly, fluid management is important for a cardiac surgery
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patient in the perioperative period since acute hypervolemic hemodilution could result
in mechanical stress and natriuretic peptide-mediated glycocalyx injury, leading to loss
of administered fluids in the interstitial space [147]. Hypervolemia can cause endothelial
glycocalyx shedding. Liberal perioperative fluid administration resulting in a positive fluid
balance is associated with increased morbidity [79]. The main principles guiding fluid
therapy consider a zero-balance approach in all patients, maintaining central euvolemia and
avoiding hypervolemia in the perioperative period. Glycocalyx-sparing “restrictive” fluid
regimens have been shown to reduce postoperative morbidity and lengthy hospitalization,
compared with “liberal” regimens [79,148,149].

Human albumin and fresh frozen plasma are blood products that could be applied for
glycocalyx regeneration [150]. Fresh frozen plasma contains all plasma proteins needed
for the regeneration of the endothelial glycocalyx with strong protective and regenerative
effects [150,151]. It has been shown that treatment with fresh frozen plasma results in an
increase in glycocalyx thickness and an increased level of syndecan-1 following hemor-
rhage [144]. It has been suggested that the positive effects of fresh frozen plasma on the
endothelial glycocalyx could partly be attributed to fibrinogen, but further studies are
needed to elucidate the therapeutic potential of fibrinogen [152,153]. Human albumin is the
standard treatment in cases of low blood volume and water retention, and it has been sug-
gested to have protective and restoration effects on the endothelial glycocalyx, physically
reinforcing its structure and overweighting the shedding, thus ensuring the integrity of
endothelial monolayer through the transport of sphingosine-1-phosphate [154–158]. Benefi-
cial effects of albumin bound to the glycocalyx have been demonstrated in rats and guinea
pigs [156,159–164], but there are conflicting results with human albumin when compared to
fresh frozen plasma [165,166]. In addition, in an animal model of heart transplantation, sup-
plementing histidinetryptophan-ketoglutarate solution with 1% human albumin reduced
glycocalyx shedding, myocardial oedema, and intracoronary adhesion of leukocytes [159].
In hemorrhagic shock, plasma replacement improves glycocalyx parameters compared to
resuscitation with lactated Ringer’s solution [142].

6.2. Maintaining Normoglycemia

Both acute and chronic hyperglycemia have been suggested to cause glycocalyx dam-
age and cardiovascular complications, which are major causes of mortality in patients with
diabetes mellitus [163]. In vitro studies with endothelial cells showed that high-glucose
media significantly decreases glycosaminoglycan, syndecan-1 and heparan sulphate levels.
The loss of heparan sulphate results in endothelial dysfunction because of the increased
permeability and impaired NO production [164] In vivo study showed that acute hyper-
gycemia resulted in a 50% glycocalyx thickness reduction [165]. Therefore, maintaining
normoglycemia is important in the perioperative period since even brief exposure to hyper-
glycemia could result in glycocalyx shedding [166,167]. In addition, O’Hora et al. reported
that both insulin and metformin increased arterial dilatation with a direct effect on NO
synthesis in anesthetized pigs [168].

Empagliflozin, a sodium–glucose co-transporter-2 inhibitor (SGLT2i), has been found
to preserve glycocalyx integrity, increase heparan sulphate synthesis, and restore the
mechanotransduction response of endothelial cells with damaged glycocalyx in human
abdominal aortic endothelial cells [169].

Metformin is a biguanide antidiabetic drug that lowers glucose levels and has been
suggested to have protective effects against vascular complications [136,170,171]. Met-
formin treatment has been shown to reduce the frequency of major adverse cardiac events
after 24 months of follow-up in prediabetic patients [172]. It has been shown to counter the
effect of hyperglycemia and enhance glycocalyx density and thickness in association with the
effect on glycocalyx function and reduction of hyperglycemia-induced endothelial cell surface
adhesion molecules E-selectin and intracellular adhesion molecule-1 (ICAM-1) [141]. It has
been found to decrease blood concentrations of inflammation markers such as IL-1, IL-6,
TNF-α, and CRP in prediabetic patients with stable angina and non-obstructive coronary
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stenosis [173]. In addition, metformin has also been shown to reduce glycocalyx-dependent
stiffness and actin polymerization [141]. In metformin-treated male diabetic mice, there was
an increase in whole-body glycocalyx volume similar to that of non-diabetic control [140].
We must keep in mind the potential risk of metformin usage in patients with unstable or
acute cardiovascular conditions [174,175].

6.3. Atherosclerotic Plaque Stabilizers

Sulodexide has been suggested as the most suitable for glycocalyx regeneration as it is
a source of the glycocalyx constituent heparan sulphate [176–178]. It is used in the treatment
of peripheral vascular diseases such as diabetic nephropathy and prophylaxis and in the
treatment of thromboembolic diseases [176]. Treatment with sulodexide in patients with
type 2 diabetes mellitus during a 2-month period has been shown to increase glycocalyx
thickness in retinal and sublingual microcirculation and reduce the transcapillary escape
rate of albumin [177]. Sulodexide has been shown to improve proteinuria in patients with
diabetes mellitus [179,180], which is an indirect marker of glycocalyx destruction [181,182]
and microvascular dysfunction due to increased permeability [183,184]. Due to compet-
itive binding to glycocalyx-associated proteins, the heparin portion of sulodexide could
result in heparan sulfate glycocalyx component shedding [185,186]. In addition, dermatan
sulfate is not a natural component of the endothelial glycocalyx, and as such, could be
considered a foreign substance [150]. There is no evidence that sulodexide could restore
glycocalyx-mediated endothelial cell function and interendothelial communication as in
healthy vessels [40]. Sulodexide exerts minimal anti-coagulant effects in vivo, but attention
is necessary when administered in larger doses in the perioperative setting due to a poten-
tial bleeding tendency [187]. Recent evidence suggests that statins may prevent endothelial
dysfunction by decreasing the expression of adhesion and inflammation molecules. A low
simvastatin dose has been shown to reduce the expression of VCAM-1 and ICAM-1. In
addition, statin therapy inhibited endothelial reticulum stress by reducing intracellular
cholesterol accumulation and by blocking intracellular signal transduction [188]. The statin
representative, rosuvastatin, has been shown to significantly increase endothelial cell glyco-
calyx volume in patients on hypercholesterolemia therapy but not to non-cholesterolemic
levels [189]. Statin therapy has been suggested as a promising perioperative intervention
because short-term administration of rosuvastatin to patients with familial hypercholes-
terolemia improved systemic glycocalyx volume [189]. Although rosuvastatin appears to
increase capillary glycocalyx thickness in hypercholesterolemic patients, it did not decrease
glycocalyx permeability in hypercholesterolemia, suggesting limitations in glycocalyx
regeneration [189].

6.4. Anti-Inflammatory Treatment

Inflammatory stimuli increase the production of pro-inflammatory mediators such
as ROS, RNS, and pro-inflammatory cytokines that activate MMS able to cleave proteo-
glycans, thus degrading the glycocalyx [190,191]. Blocking the proinflammatory cascade
could reduce glycocalyx degradation [191]. Increased glycocalyx shedding associated
with increased plasma levels of syndecan, heparan sulphate, and hyaluronan has been
detected in septic patients in correlation with severity [192–194]. One should keep in mind
that therapeutic approaches that decrease the immune response can render the patient
more susceptible to infection. Etanercept, a TNF-α inhibitor, has been shown to reduce
inflammation-induced glycocalyx shedding [195,196]. In the study by Nieuwdorp et al.,
healthy adult volunteers received a low-dose endotoxin to induce glycocalyx destruction,
and it was found that treatment with etanercept abolished the elevation in endotoxin-
induced elevation of plasma levels of hyaluronic acid and hyaluronidase, as well as limited
the endotoxin-induced reduction in glycocalyx thickness, although glycocalyx thickness
did not reach pre-endotoxin levels [197]. In the study by Chappell et al., pretreatment with
hydrocortisone has been found to alleviate glycocalyx destruction caused by inflammation
due to infused TNF-α or ischemia in guinea pig hearts [198]. In addition, hydrocortisone
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reduced glycocalyx degradation in ischemia-reperfusion models [66], and completely sup-
pressed the shedding of syndecan-1 and heparan sulfate in inflammatory conditions caused
by TNF-α [198]. Stress doses of hydrocortisone have been found to attenuate perioperative
inflammatory responses and improve early postoperative outcomes in high-risk cardiac
surgery patients [199,200]. Brettner et al. showed that pretreatment with hydrocortisone
ameliorated the shedding of heparan sulfate in patients undergoing cardiac surgery with
CPB but had no relevant influence on various clinical parameters or patient mortality [129].
Hydrocortisone is also the recommended treatment in patients with septic shock refractory
to fluids and vasopressors [201].

The anti-inflammatory drug poloxamer-188 used to increase tissue oxygenation and
reduce painful episodes in sickle cell disease has been suggested to have a beneficial effect
on endothelial cell glycocalyx [202,203]. In the study performed on Sprague-Dawley male
rats, Torres et al. have found that post-hemorrhagic treatment with poloxamer-188 could
restore glycocalyx thickness to 85% of pre-hemorrhagic baseline conditions, significantly
lower plasma syndecan-1 level, and decrease glycocalyx-associated vascular permeability
to the pre-hemorrhagic baseline level [203]. Since atherosclerosis is considered a chronic
inflammatory disease, it has been suggested that novel anti-inflammatory drugs may be
useful to prevent endothelial dysfunction and coronary artery disease. Tocilizumab is a
monoclonal human antibody that blocks IL-6 receptors and is used in the treatment of
rheumatoid arthritis. In a recent study on patients with rheumatoid arthritis, tocilizumab
treatment was found to increase endothelial glycocalyx thickness and reduce arterial
stiffness [204]. The tyrosine-kinase inhibitor imatinib was found to ameliorate endothelial
dysfunction in rabbits on a high cholesterol diet. In addition, imatinib treatment decreased
blood CRP and lipid levels [205].

6.5. Anticoagulants

Anticoagulant antithrombin supplementation has been widely used to treat sepsis-
induced disseminated intravascular coagulation. A multicenter retrospective study sug-
gested a trend towards reduced in-hospital all-cause mortality in patients receiving an-
tithrombin supplementation [206]. In the study by Chappell et al., antithrombin treatment
has been found to alleviate glycocalyx destruction, suppress shedding of syndecan-1 and
heparan sulfate, and block vessel leakage caused by inflammation due to infused TNF-α
or ischemia in guinea pig hearts [198,207]. El Saadani et al. showed that intravenous
antithrombin and enoxaparin treatment reduced leukocyte adhesion and transit in the
blood–brain barrier after traumatic brain injury, suggesting possible usage in the restoration
of glycocalyx barrier functionality [208]. Lipowski et al. showed that low-molecular-weight
heparin can inhibit glycocalyx shedding and decrease leukocyte adhesion in male Wistar
rats [185]. In a septic shock model, Yini et al. showed that treatment with crystalloids and
antibiotics only partially reversed the glycocalyx degradation, while the treatment addition
of unfractionated heparin normalized the endothelial glycocalyx, suggesting a protective
or anti-inflammatory effect of heparin leading to reduced glycocalyx shedding [209]. On
the other hand, VanTeeffelen et al. showed that heparin competed with the heparan sulfate
component of the glycocalyx, releasing the proteins bound to heparan sulfate, thus leading
to the degradation of the glycocalyx structure and impairment of its barrier function [210].
Intravenous injection of low-molecular heparin results in a 3-fold increase in the enzymatic
activity responsible for the release of embedded proteins from endothelial cell glycocalyx
and increased protein detachment from the glycocalyx into the plasma in diabetic patients
and control [211,212]. Thus, the role of heparin in the protection and regeneration of the
endothelial glycocalyx is controversial, and although heparin could prevent endothelial
glycocalyx shedding, further studies are needed to elucidate a potentially negative effect
on barrier functionality [185,211,212].
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6.6. Anaesthetics and Anesthetic Technique

There is cumulating experimental evidence that volatile anesthetics such as sevoflu-
rane have been found to protect the glycocalyx in post-ischemic coronary beds and improve
coronary vascular function [39,213]. There are experimental studies on the protective effect
of sevoflurane against endothelial glycocalyx degradation by ischemia-reperfusion injury,
and it has been shown to protect the endothelial glycocalyx better than propofol against
ischemia-reperfusion injury in a porcine model [39,213,214]. In contrast to the experimental
results, sevoflurane did not show a better protective effect on the endothelial glycocalyx
than propofol in clinical studies of lung resection and knee ligament surgery [215,216]. A
recent study conducted in patients with gastric cancer undergoing minimally invasive
gastrectomy demonstrated that total intravenous anesthesia with propofol and remifentanil
showed superior protective effects against endothelial glycocalyx damage during surgery in
contrast to volatile anesthesia with sevoflurane and remifentanil. Both types of anesthetics
could not prevent postoperative syndecan-1 shedding, supporting the previous clinical
studies showing comparable effects of these agents on endothelial glycocalyx damage in
surgical patients [217]. A recent randomized control study demonstrated that sevoflu-
rane could decrease glycocalyx degradation in patients undergoing heart valve surgery
with CPB [218].

Epidural anesthesia may partially attenuate the surgical inflammatory response, and
it is conceivable that glycocalyx would benefit from such practice. Single-shot neuraxial
anesthesia, however, does not appear to dampen the inflammatory response to the same
degree [219–221].

7. Conclusions

Cardiac surgery is one of the highest-risk procedures because it results in endothelial
damage, which contributes to the development of organ dysfunction in the periopera-
tive period. Understanding the physiology and pathophysiology of many aspects of the
endothelial glycocalyx allows clinicians to choose the most appropriate technique and
fluid management that can help prevent glycocalyx damage or degradation during cardiac
surgery. It has been shown that endothelial glycocylyx is disrupted at the early stages of
disease development, suggesting that glycocalyx components may be potential biomarkers
of early disease. However, despite the known pathological sequences at the molecular
level that lead to glycocalyx damage, with serious consequences for patients undergoing
cardiac surgery, the clinical utility is unfortunately limited to meticulous fluid management,
normoglycemia maintenance, and albumin use, which can help prevent glycocalyx damage
or degradation during cardiac surgery. Therefore, it is critical to develop new approaches
and therapeutic strategies targeted at the protection and restoration of the glycocalyx.
Further scientific efforts should be invested in recognizing key events behind glycocalyx
injury for the purpose of discovering new therapeutic options for endothelial glycocalyx
protection in cardiovascular pathologies and cardiovascular surgery.
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