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Abstract: A disturbed balance within the dental biofilm can result in the dominance of cariogenic and
periodontopathogenic species and disease development. Due to the failure of pharmacological treat-
ment of biofilm infection, a preventive approach to promoting healthy oral microbiota is necessary.
This study analyzed the influence of Streptococcus salivarius K12 on the development of a multispecies
biofilm composed of Streptococcus mutans, S. oralis and Aggregatibacter actinomycetemcomitans. Four
different materials were used: hydroxyapatite, dentin and two dense polytetrafluoroethylene (d-
PTFE) membranes. Total bacteria, individual species and their proportions in the mixed biofilm
were quantified. A qualitative analysis of the mixed biofilm was performed using scanning electron
microscopy (SEM) and confocal laser scanning microscopy (CLSM). The results showed that in
the presence of S. salivarius K 12 in the initial stage of biofilm development, the proportion of S.
mutans was reduced, which resulted in the inhibition of microcolony development and the complex
three-dimensional structure of the biofilm. In the mature biofilm, a significantly lower proportion of
the periodontopathogenic species A. actinomycetemcomitans was found in the salivarius biofilm. Our
results show that S. salivarius K 12 can inhibit the growth of pathogens in the dental biofilm and help
maintain the physiological balance in the oral microbiome.

Keywords: mixed oral biofilm; A. actinomycetemcomitans; S. salivarius; dental biofilm; dentin; hydrox-
yapatite; d-PTFE membranes

1. Introduction

The oral microbiome is a community consisting of about 500 commensal, symbiotic
and pathogenic bacterial species [1,2]. A change in the balance of the oral microbiota leads
to the development of oral diseases such as dental caries and periodontal and perioimplant
diseases and conditions [3–5]. It is also associated with the development of systemic
diseases, bacterial endocarditis, pneumonia and stroke [6–10].

Microorganisms from the oral cavity create a biofilm on all biotic and abiotic surfaces.
The initial colonizers of the dental biofilm are streptococci, actinomycetes and veilonellae,
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which create attachment sites for other bacterial species [11,12]. The proportion of a
particular species will depend on its ability to grow and outgrow neighboring cells. If
there is a change in regulatory parameters such as nutrition, oral hygiene and host defense,
favorable conditions can be created for pathogenic species within the biofilm and disease
development [12,13].

As these diseases are not caused by a single pathogen but by biofilm microbial com-
munities, classical pharmacological treatment has limitations. Bacteria in the biofilm are
significantly more resistant to antimicrobial agents, and long-term use can cause sup-
pression of healthy oral microbiota [14–16]. Numerous research studies have focused
on inhibiting biofilm formation in terms of finding new materials with anti-adhesive
properties [17–19]. The modern concept of combating biofilm infections is based on an
ecological–bacterial approach, which aims to maintain physiological homeostasis within
the biofilm. The measures of this preventive approach refer to promoting the growth of
oral microbiota associated with health and reducing the virulent properties of biofilms [20].

Inspired by the promotion of healthy oral microbiota, this study aimed to examine
whether Streptococcus salivarius K12 can influence the colonization and growth of other
oral bacteria in a mixed biofilm. S. salivarius is a commensal bacterium, dominant in the
oral cavity of healthy people. It has been proven that some strains have anti-inflammatory
properties, produce bacteriocins and are antagonists to different bacterial species, including
some with cariogenic potential [21–23]. Moreover, in recent clinical studies, it has been
established that the administration of S. salivarius affects the improvement of clinical aspects
in patients with COVID-19 [24,25].

In addition to S. salivarius, strains of Streptococcus oralis, Streptococcus mutans and
Aggregatibacter actinomycetemcomitans—species commonly present in subgingival biofilms—
were used in this study [26]. S. mutans is a species attributed with a highly cariogenic
potential. This streptococcus is resistant to environmental stress and extremely resistant
to low pH, which potentiates the breakdown of carbohydrates, thus stimulating other
acidogenic species [27,28]. S. oralis is a member of the commensal oral microbiota, an
opportunistic pathogen dominant in the initial stage of plaque formation, which can
enhance the growth of potential pathogens in the plaque [29–31]. A. actinomycetemcomitans
is a pathobiont that can play a crucial role in developing an infection by suppressing the
host’s response. It is associated with periodontitis [9,32].

The study was conducted on four different materials: hydroxyapatite and dentin,
which are most often used for in vitro studies of dental biofilm, and two d-PTFE membranes,
used as barrier membranes in the alveolus preservation process. Results of this study could
contribute to the development of an ecological–bacterial approach in the struggle against
biofilm infections.

2. Results
2.1. Mixed Biofilm
2.1.1. Total Number of Bacteria

In order to compare non-salivarius and salivarius mixed biofilms, the total number
of bacteria was measured during biofilm formation. To see the difference, the number
of bacteria in the stable biofilm 72 h after the addition of A. actinomycetemcomitans to the
initial 24-h streptococcal biofilm is shown (Table 1). The total number of bacteria on d-PTFE
membranes showed an increasing trend in the salivarius mixed biofilm, with a significant
difference on the Permamem membrane. However, on dentin and hydroxyapatite, the
number of bacteria in the salivarius mixed biofilm was significantly lower compared to the
non-salivarius mixed biofilm.
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Table 1. Comparison of the total number of bacteria (log CFU/mL) in a 72-h mixed biofilm.

72 h

p *Non-Salivarius Mixed Biofilm Salivarius Mixed Biofilm

Median (95% CI for Median)

d-PTFE-Permamem 6.70 (6.12–6.94) 7.09 (6.95–7.15) 0.005
d-PTFE-Cytoplast 6.19 (5.73–7.13) 6.45 (6.29–6.53) 0.27

Dentin 6.89 (6.48–8.16) 5.75 (5.47–6.01) <0.001
Hydroxyapatite 7.29 (5.39–7.83) 6.39 (5.95–6.77) 0.04

95% CI—95% Confidence interval: * Mann–Whitney U test; Bold denotes significant, (n = 9).

2.1.2. Number of Individual Bacterial Species

In order to investigate the difference between non-salivarius and salivarius mixed
biofilms, the accompanying growth of certain bacterial species during biofilm formation
was determined. The results are shown in Table S1 and Figure 1. The following observa-
tions can be drawn: (a) In the 24-h mixed salivarius streptococcal biofilm, S. mutans was
represented in a significantly lower number than in the non-salivarius mixed biofilm. (b) In
the 72-h mixed biofilm, the representation of S. mutans differed depending on the material
on which the biofilm was formed. Lower values of CFU/mL were present in the salivarius
mixed biofilm created on dentin and hydroxyapatite. In contrast, on d-PTFE membranes,
lower values of CFU/mL were present in the mixed biofilm without S. salivarius. (c) In
the 72-h biofilm, on all materials, the number of A. actinomycetemcomitans was significantly
lower in the salivarius mixed biofilm.

2.1.3. The Proportion of Individual Bacterial Species

To better understand the differences between non-salivarius and salivarius mixed
biofilms, the proportion of individual species within the 24 and 72-h biofilms was calculated.
The results are presented graphically. The initial streptococcal mixed biofilm created in
the presence of S. salivarius K12 already showed a reduced proportion of S. mutans species
after 24 h. The difference, although not equal, was observed in all materials (Figure 2). In
the 72-h mixed biofilm, the most pronounced difference was observed in the proportion of
A. actinomycetemcomitans in the biofilm with or without S. salivarius. The difference was
determined on all materials. The proportion of non-salivarius biofilm ranged from 65%
on Permamem d-PTFE membrane to 94% on dentin. A lower proportion of this bacterial
species was recorded in the salivarius mixed biofilm, ranging from 5% on Permamem
d-PTFE membrane to 63% on dentin (Figure 3).

2.1.4. SEM Analysis of Mixed Biofilm

After examining the SEM micrographs, representative images were selected to show
the difference in the structure of the 72-h mixed biofilm with and without the presence
of S. salivarius K12 (Figures 4 and 5). Figures 4a,b and 5a,b show the salivarius mixed
biofilm on Cytoplast d-PTFE and hydroxyapatite, respectively, structured as a disjointed
organization of cells covered by a thin slime of Extracellular polymeric substances (EPS).
In the non-salivarius mixed biofilm (Figure 4c,d and Figure 5c,d), a thicker biofilm layer
was immediately observed. Biofilm has a complex three-dimensional structure consisting
of microcolonies filled with EPS. EPS bridging between microcolonies (indicated by a
red arrow) is also visible, leading to the formation of aggregates between microcolonies
connected by channels (indicated by a yellow arrow) and the development of a complex
biofilm. Similar results were obtained on the Permamem d-PTFE membrane and dentin.
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Figure 2. Distribution (%) of individual bacterial species in initial streptococcal biofilm (n = 9);  
(a) non-salivarius streptococcal mixed biofilm; (b) salivarius streptococcal mixed biofilm.

Figure 3. Distribution (%) of individual bacterial species on Permamem and Cytoplast d-PTFE mem-
brane, dentin and hydroxyapatite (n = 9); (a) 72-h non-salivarius mixed biofilm; (b) salivarius mixed 
biofilm.

Figure 4. Representative SEM micrographs of a 72-h biofilm on Cytoplast d-PTFE. Different magni-
fications of salivarius mixed biofilm are presented in (a,b), while different magnifications of non-
salivarius mixed biofilm are presented in (c,d); Red arrow—EPS bridging between microcolonies; 
Yellow arrow - aggregates between microcolonies connected by channels; Magnification of 2000× 
and 5000×. 
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Figure 4. Representative SEM micrographs of a 72-h biofilm on Cytoplast d-PTFE. Different mag-
nifications of salivarius mixed biofilm are presented in (a,b), while different magnifications of
non-salivarius mixed biofilm are presented in (c,d); Red arrow—EPS bridging between microcolonies;
Yellow arrow—aggregates between microcolonies connected by channels; Magnification of 2000×
and 5000×.
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Figure 5. Representative SEM micrographs of a 72-h biofilm on hydroxyapatite. Different magnifica-
tions of salivarius mixed biofilm are presented in (a,b), while different magnifications of non-salivarius
mixed biofilm are presented in (c,d); Magnification of 2000× and 5000×.

2.1.5. CLSM Analysis
Viability of Bacteria in Mixed Biofilm

Cell viability was assessed by examining the 72-h mixed biofilm after LIVE/DEAD
staining. More bacterial biomass was observed in the non-salivarius mixed biofilm. How-
ever, biofilms were formed with predominantly living cells in the biofilm with and without
S. salivarius K12 (Figure 6).

Cells and Biofilm Matrix in Mixed Biofilm

By staining cells and EPS within the 72-h mixed biofilm, we confirmed the results
obtained by SEM analysis. The presence of S. salivarius K12 increased the biofilm’s biomass
due to the creation of an EPS-rich matrix and the development of a complex biofilm
structure (Figure 7). The average fluorescence intensity of the different experimental
groups (for both the dead and live bacterial cells group and the EPS and live bacterial
group) can be found in Figure 8.
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(a) SYTO-9 stain in salivarius mixed biofilm; (b) SYPRO Ruby Biofilm Matrix Stain in salivarius mixed
biofilm; (c) SYTO-9 stain in non-salivarius mixed biofilm; (d) SYPRO Ruby Biofilm Matrix Stain in
non-salivarius mixed biofilm; Magnification 20×.
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3. Discussion

The literature points out that the most important step in controlling and preventing
periodontal diseases is the inhibition of opportunistic pathogens in dental biofilm. The
main role could be commensal bacteria, which antagonistically affect potential periodontal
pathogens [4,33,34]. This study aimed to analyze whether the presence of S. salivarius
K12 species in a mixed streptococci biofilm affects the colonization and growth of the
periodontopathogenic species A. actinomycetemcomitans. Numerous studies confirm that
this strain produces bacteriocins, salivaricin A2 and salivaricin B, which inhibit the growth
of S. pyogenes [23,35,36]. In addition, it is an antagonist of bacterial species that cause
halitosis [37–39]. The antagonistic effect of S. salivarius K12 on periodontopathogenic
bacteria has been proven in a previous study (or studies). However, these tests were
conducted in bacterial suspensions [40]. Since the action of pathogens causes periodontal
diseases within a dysbiotically displaced biofilm, we wanted to examine the interactions
within the biofilm in this study. Previously, the anti-adhesive and antibiofilm activity of
another strain of S. salivarius, TOVE-R, was documented [41–43].

In this study, a mixed biofilm model with or without S. salivarius K12 was used to
evaluate the antagonistic effect and to compare the number (CFU/mL) and the proportion
(%) of individual bacterial species within the 72-h mixed biofilm. It was found that there
was a difference that was observed in all tested materials. In the biofilm with the presence
of S. salivarius K12, a different total number of bacteria was determined, depending on the
material on which the biofilm was created. On dentin and hydroxyapatite, the total number
of bacteria was lower in the presence of S. salivarius, while on d-PTFE membranes, the
number increased (Table 1). It was also observed that in the 24-h salivarius–streptococcal
mixed biofilm on the aforementioned membranes, there was a significantly higher pro-
portion of S. mutans species (40–90%) compared to dentin and hydroxyapatite (10% and
lower) (Figure 2). We believe that the physicochemical characteristics of the material’s
surface and the surface of the bacterial cell itself influenced the degree of adhesion. D-PTFE
membranes are hydrophobic polymers, dentin is a combined inorganic-organic material,
and hydroxyapatite is a pure inorganic material. Due to their highly different chemical
structures and compositions, they have different surface free energy (SFE) and surface
roughness. The SFE surface is one of the main factors on which bacterial adhesion depends.
Our previously published research determined the SFE of the tested bacterial species, and
we proved that the difference between the SFE of bacteria and the surface they colonize
affected adhesion [44–48]. Our results showed that in the presence of S. salivarius, in the
initial 24-h streptococcal mixed biofilm, S. mutans was represented in smaller numbers
and was a smaller proportion of the total number of bacteria. Events in this early phase of
biofilm formation can influence population development over time and shift the balance
from a non-virulent to a virulent degree.

S. mutans uses glucosyltransferase (Gtfs) to synthesize glucans from sucrose, contribut-
ing to bacterial attachment and subsequent colonization. The presence of Gtfs in the early
stages of biofilm formation promotes the formation of a matrix rich in exopolysaccharides
(EPS), which provides structural support for constructing three-dimensional structures of
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microcolonies in the biofilm [49–51]. The gtfB and gtfC genes that encode the production
of Gtfs can be induced by autoinducers of other oral species in a mixed biofilm [52,53].
Furthermore, sucrose fermentation acidifies the matrix, favoring growth of acid-tolerant
microorganisms [52]. The presence of 1% sucrose, as in the medium used in this study,
increases biomass and the development of a three-dimensional structure mediated by
S. mutans. Within these structures, niches with low pH favor the growth of acidogenic and
aciduric pathogens protected by EPS [54]. This is consistent with our results. A thicker
and more complex biofilm was observed in SEM micrographs showing non-salivarius
mixed biofilm. The bacteria aggregated into microcolonies covered with EPS that filled
the spaces between them, thus forming a 3D biofilm architecture. On the other hand, in
the mixed biofilm with the presence of S. salivarius, the structural organization of accu-
mulated cells covered by a thin layer of EPS was visible (Figures 4 and 5). These results
were confirmed by fluorescence microscopy. In the non-salivarius mixed biofilm, more
bacterial biomass interwoven with a richer EPS matrix was observed (Figures 6 and 7).
S. salivarius shifted the balance by reducing the proportion of S. mutans already at the initial
stage of biofilm development and inhibiting the formation of EPS-entangled microcolonies.
In addition, weaker colonization of the periodontopathogenic species A. actinomycetem-
comitans was observed in the salivarius mixed biofilm, resulting in a significantly lower
number and proportion of these species in the 72-h biofilm (Table 1, Figure 3). It was
previously confirmed that S. salivarius isolated from the oral cavity inhibits the growth
of A. actinomycetemcomitans [55]. A. actinomycetemcomitans is a slow-growing species com-
peting with fast-growing streptococci for the carbon substrate. This species prefers an
alternative substrate, lactate, which allows it to survive in a competitive community [56,57].
However, it does not tolerate low pH levels. S. salivarius has a urease system and can lower
pH by creating an alkaline microenvironment [58,59]. In addition, the EPS matrix created
by S. mutans in non-salivarius mixed biofilm contains “pockets” within the microcolonies
in which acids accumulate, resulting in spatially heterogeneous pH microenvironments
and, ultimately, the heterogeneity of the microbial population within the biofilm [54,60].
Furthermore, S. salivarius produces bacteriocins that have an antagonistic effect on many,
primarily Gram-positive bacteria [37,61,62]. The outer membrane of Gram-negative bac-
teria, such as A. actinomycetemcomitans, is impermeable to antibiotics [63]. However, the
lactic acid in the biofilm can increase membrane permeability and sensitivity to antibi-
otics [64,65]. The results of this study show that S. salivarius K12 interacts with other species
to have an antagonistic effect on the growth and dominance of opportunistic pathogens in
dental biofilm.

4. Materials and Methods
4.1. Tested Materials

Materials independently evaluated in this study are d-PTFE membranes from different
manufacturers, Permamem (Botiss biomaterials, Zossen, Germany) and Cytoplast (Os-
teogenics Biomedical, Lubbock, TX, USA), dentin (Immunodiagnostic Systems Holdings
Ltd., Boldon, UK) and hydroxyapatite discs (Clarkson Chromatography Products Inc.,
South Williamsport, PA, USA). The membranes were aseptically cut to 5 × 5 mm, and t
discs were 5 mm in diameter.

4.2. Bacterial Strains and Cultivation Conditions

Reference strains Streptococcus mutans ATCC 25175, Streptococcus oralis ATCC 6249,
Streptococcus salivarius K12 ATCC BAA-1024, and Aggregatibacter actinomycetemcomitans
ATCC 29522 (Microbiologics, St Cloud, MN, USA) were used. Bacteria were grown on
blood agar plates (Biolife, Milan, Italy) supplemented with 5% sheep blood (Biognost,
Zagreb, Croatia) in anaerobic conditions at 37 ◦C for 24–48 h.
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4.3. Biofilm Development

An in vitro biofilm model with several bacterial species was developed. Pure bacterial
cultures were grown to early stationary growth phase anaerobically in a modified protein-
rich BHI liquid medium (Brain Heart Infusion, Becton, Dickinson and Company; Sparks,
MD, USA) supplemented with 2.5 g/L mucin (Oxoid, Basingstoke, UK), 1.0 g/L yeast
extract (Oxoid, Basingstoke, UK), 0.1 g/L cysteine (Sigma-Aldrich, Burlington, MA, USA),
2.0 g/L sodium bicarbonate (Merck, Darmstad, Germany), 5.0 mg/mL hemin (Sigma-
Aldrich, Burlington, MA, USA), 1.0 mg/mL menadione (Merck, Darmstad, Germany) [26].
By measuring the optical density (OD 600), bacterial suspensions of selected streptococci
with a concentration of 107 CFU/mL were prepared and mixed in equal proportions.
A suspension was prepared to form a mixed biofilm without the presence of S. salivar-
ius—“non-salivarius mixed biofilm” with Streptococcus mutans and S. oralis and with the
presence of S. salivarius—“salivarius mixed biofilm” (with Streptococcus mutans, S. oralis
and S. salivarius).

Sterile materials, d-PTFE membranes, dentin discs and HA discs were placed in 96-
well microtiter plate wells and conditioned for four hours at 30 ◦C, with 50% artificial saliva
whose composition was described earlier [66].

Saliva was removed, and 200 µL of prepared mixed bacterial suspensions were added
to all materials. The microtiter plates were incubated for 24 h at 37 ◦C under anaerobic
conditions. After incubation, supernatant with planktonic bacteria was removed, and pure
A. actinomycetemcomitans suspension was added to previously formed mixed streptococci
biofilm on different materials. Microtiter plates with mixed biofilm formed on different
materials were cultured for 72 h, with medium change every 24 h. The plates used to assess
the sterility of the culture medium were used as controls.

4.4. Biofilm Quantification

In order to establish the development of individual species present in the mixed
biofilm, the 24-h streptococcal biofilm (0 h) and the final mixed biofilm after 24 and 72 h
were analyzed.

Bacteria in the mixed biofilm were detached by treatment in an ultrasonic bath (Bac-
tosonic, Bandelin, Germany) at 40 kHz for 1 min. To quantify the bacteria, tenfold dilutions
were plated on blood agar plates and CFU/mL was determined. For differentiation of
individual species, dilutions were plated on Difco Mitis Salivarius agar with the addition
of BBL Chapman Tellurite solution (Becton, Dickinson and Company; Sparks, MD, USA).
All measurements were performed three times in triplicate.

4.5. Emission Scanning Electron Microscope (SEM) Analysis

The analysis of mixed bacterial biofilms on various materials was performed using a
field emission scanning electron microscope—SEM (Jeol JSM-7800F), with a beam acceler-
ation voltage of 7 kV and a working distance of 10 mm. Prior to SEM analyses, 72-h-old
biofilms were washed in sterile PBS and air-dried in a sterile high-current chamber. They
were then fixed with 4% glutaraldehyde and 0.5% paraformaldehyde (Sigma-Aldrich)
prepared at 4 ◦C in 0.1 M phosphate buffer (Sigma-Aldrich) (pH 7.2) and then dehydrated
by immersion in a series of increasing ethanol concentrations (50, 70, 80, 90, and 100%,
Sigma-Aldrich). The samples under study were attached to a sample holder with conduc-
tive carbon tape. To prevent surface charging during electron beam irradiation, the samples
were coated with a 5 nm thin layer of Au-Pd using the precision etching and coating system
PECS II (Gatan Inc., Pleasanton, CA, USA).

4.6. Confocal Laser Scanning Microscope (CLSM) Analysis
4.6.1. Testing the Viability of Bacteria in Biofilm

The viability of bacteria in the 72-h biofilm was tested using the LIVE/DEAD staining
technique. LIVE/DEAD BacLight Bacterial Viability Kit L—7012 (Thermo Fisher Scientific,
Waltham, MA, USA) was used in the staining procedure. Biofilms were grown as described



Int. J. Mol. Sci. 2023, 24, 7249 11 of 14

in Section 4.3. on d-PTFE membranes. Biofilms were gently washed and covered with
5 µL of Propidium iodide and 5 µL of SYTO 9 in 990 µL of sterile distilled water. This
was followed by incubation for 15 min at RT in the dark. After washing out the dye, an
epifluorescence microscope with GFP/FITC (ex: 480 nm and em: 500 nm) and rhodamine
(ex: 490 nm and em: 635 nm) filters were used for observation. All preparations were
prepared in triplicate, and five visual fields of the prepared preparations were examined.

4.6.2. Simultaneous Staining of Cells and Biofilm Matrix

FilmTracer SYPRO Ruby Biofilm Matrix Stain and SYTO 9 (Thermo Fisher Scientific,
Waltham, MA, USA) were used to stain cells and biofilm matrix simultaneously. Biofilms
were grown as described in Section 4.3. on d-PTFE membranes. Biofilms were gently
washed and covered with 200 µL of SYPRO Ruby Biofilm Matrix Stain solution for matrix
staining. The sample was incubated for 30 min at room temperature and protected from
light. After gentle washing with sterile distilled water, bacterial cells were stained with di-
luted SYTO 9 dye for 3 min, followed by washing and observation using an epifluorescence
microscope with GFP/FITC (ex: 480 nm and em: 500 nm) and rhodamine (ex: 580 nm and
em: 700 nm) filters.

4.7. Statistical Analysis

The normality of the distribution of continuous variables was tested by the Shapiro-
Wilk test. Continuous data were described by the median and 95% confidence interval for
the median (95% CI). The Mann–Whitney U test was used to compare the median between
two groups. All P values were two-sided. The level of significance was set at Alpha of
0.05. The statistical analysis was performed using MedCalc® Statistical Software version
20.218 (MedCalc Software Ltd., Ostend, Belgium; https://www.medcalc.org (accessed on
1 April 2023).

5. Conclusions

The presence of S. salivarius K12 at the initial stage of streptococcal mixed biofilm
formation inhibited the development of an EPS-rich matrix and three-dimensional biofilm
structure mediated by S. mutans. There is less colonization by A. actimomycetemcomitans in
the salivarius mixed streptococcal biofilm. It is present in significantly smaller numbers in
its more mature phase than in the biofilm without S. salivarius K12.

Our results suggest that S. salivarius K 12 can maintain the biofilm’s physiological
balance and reduce the growth of periodontal pathogens such as A. actinomycetemcomi-
tans. In addition, our results could improve the preventive approach in the fight against
biofilm infections.
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