Chemical markers for the authentication of unifloral Salvia officinalis L. honey

Gašić, Uroš M.; Natić, Maja M.; Mišić, Danijela M.; Lušić, Darija V.; Milojković-Opšenica, Dušanka M.; Tešić, Živoslav Lj.; Lušić, Dražen

Source / Izvornik: Journal of Food Composition and Analysis, 2015, 44, 128 - 138

Journal article, Accepted version Rad u časopisu, Završna verzija rukopisa prihvaćena za objavljivanje (postprint)

https://doi.org/10.1016/j.jfca.2015.08.008

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:184:529968

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-16

Repository / Repozitorij:

Repository of the University of Rijeka, Faculty of Medicine - FMRI Repository

Chemical markers for the authentication of unifloral Salvia officinalis L. honey

Uroš M. Gašić^a, Maja M. Natić^a, Danijela M. Mišić^b, Darija V. Lušić^{cd}, Dušanka M. Milojković-Opsenica^a, Živoslav Lj. Tešić^a, Dražen Lušić^{c*}

^aFaculty of Chemistry, University of Belgrade, P. O. Box 51, 11158 Belgrade, Serbia ^bInstitute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar

Despota Stefana 142 11060 Belgrade, Serbia

^cDepartment of Environmental Health, Faculty of Medicine, University of Rijeka,

Braće Branchetta 20, Rijeka HR-51000, Croatia

^dTeaching Institute of Public Health of Primorsko-Goranska County, Krešimirova 52A, Rijeka HR-51000, Croatia

Highlights

- ► Chemical characterization of unifloral Salvia officinalis L. honey
- ▶ Determination of polyphenolics, carbohydrates and minerals
- ► Chemical markers for the authentication of Salvia officinalis honey

Page 1 of 39

^{*} Corresponding author: Dražen Lušić, Tel: ++ 385 51 334 530, Fax ++385 51 213 948; E-address: drazen.lusic@medri.uniri.hr

1	ABSTRACT
2	The objective of the present study was to trace phytochemicals that characterize unifloral
3	Common sage (Salvia officinalis L.) honey originating from the Croatian North Adriatic
4	coast. The polyphenolic profiles and total phenolic contents (TPC), the compositions of
5	minerals, sugars and sugar alcohols, and the radical scavenging activities (RSA) of 18
6	unifloral S. officinalis honey samples were investigated. The quantitative data on the targeted
7	compounds (25 phenolic compounds, 14 carbohydrates and 25 minerals) together with the
8	TPC and RSA data served as a pool of variables for multivariate analysis, which provided
9	useful information for the accurate authentication of unifloral sage honey and its
10	discrimination from other unifloral types of honey. The proposed markers, together with
11	chemometrics, could further contribute, as a powerful tool, to the quality control of Croatian
12	unifloral S. officinalis honey and thus, possibly certify its commercial value.
13	
14	
15	
16	Keywords: Unifloral honey, Salvia officinalis L., Chemical markers, Polyphenolics, Sugars,
17	Sugar alcohols, Minerals, Food analysis, Food composition
18	

1. Introduction

7	\sim	
-	U	

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

19

Common sage (sometimes called Great sage or Dalmatian sage, Latin Salvia officinalis L.) is a circum-Mediterranean nectariferous botanical species common to the Eastern Adriatic and Ionian seas (Ricciardelli D'Albore and Galarini, 2000) with a habitat reaching south into northwest Greece (Karousou et al., 2000). This spontaneous perennial Mediterranean shrub (belonging to the family Lamiaceae), widespread in the Mediterranean part of Croatia, spontaneously grows on the hillsides of the North Croatian Littoral and Dalmatian islands as well in on the adjacent coastal belt (800–5000 m wide) and has significant beekeeping importance (Flora Croatica Database, 2012). The North-East part of the Adriatic Littoral (North Croatian Littoral) is especially characterized by an abundance of sage-dominated botanical communities. Actually, they sometimes cover areas of several square kilometers, representing practically the by far the most predominant plant of this poor, rocky terrain of the karst region (Šugar et al., 1983). Through the centennial tradition of beekeeping, this area has become well known for its famed unifloral S. officinalis honey that has seen widespread use in traditional medicine for the treatment of respiratory problems, as an antiseptic, etc. The potential health effects of this unifloral honey are usually ascribed to its phytochemical constituents, which mostly originate from S. officinalis nectar_(Kenjerić et al., 2008). The objective of the present study was to determine useful chemical markers for the authentication of unifloral S. officinalis honey, based on the analysis of the polyphenolic profiles, minerals, sugars and sugar alcohols in 18 honey samples originating from the Northnorth—East east Adriatic region of Croatia. The pPhytochemical profiles of the studied honey samples were analyzed by high resolution LC/MS techniques. Quantification of major

phenolic compounds was achieved using ultra-ultra-high-performance liquid chromatography

44	coupled with a diode array detector and a triple quadruple mass spectrometer (UHPLC DAD-
45	MS/MS). In order to trace the phytochemicals that characterize sage honeys produced in the
46	North Croatian Littoral, this work was focused on the identification of target compounds
47	using ultra_ultra_high-performance liquid chromatography coupled with hybrid mass
48	spectrometry, which combined a Linear Trap Quadrupole and OrbiTrap mass analyzer
49	(UHPLC-LTQ OrbiTrap MS). This technique has already proven itself to be reliable for the
50	unambiguous detection of phenolic acids and their derivatives, as well as of the flavonoids
51	aglycones and glycosides. The sugar content was determined using high-performance anion-
52	exchange chromatography with pulsed amperomatric detection (HPAEC/PAD). The
53	characterization of Common common sage unifloral honey was further supported by the
54	evaluation of the mineral composition using inductively coupled plasma-atomic emission
55	spectroscopy (ICP-OES) and melissopalynological analysis.

2. Experimental

2.1. Sage honey sampling and the authenticity of the samples

Representative honey sampling was performed directly at the filling facilities of the primary producer. After samplingcollection, samples were placed into a-glass jars sealed with the metal lids and kept at temperature of +4 °C to +8 °C until analyzed. In order to attain confirmation of the botanical origin of the *S. officinalis* honeys, the samples were subjected to thorough melissopalynological and sensory assessment. Melissopalynological analysis, considered as an analytical tool essential for the verification of the botanical and geographical origin of a honey, was realized according to the method described by Loveaux et al. (1978) and further elaborated by Von der Ohe et al. (2004).

68	The extent to which a honey sample corresponds to a given plant source is determined
69	from the frequencies of the pollen and honeydew elements in it. Since sage pollen is under-
70	represented, and the percentage of sage pollen in the sediment is lower than the percentage of
71	the corresponding nectar in the honey (Ricciardelli D'Albore and Galarini, 2000), the
72	melissopalynological assessment was based on the expression of the pollen representativity
73	within pollen frequency classes: "predominant pollen" (more than 45-% of the pollen grains);
74	"secondary pollen" (16-45 %); "important minor pollen" (3-15 %); minor pollen" (less than
<i>75</i>	3 %), as well as on the presence of honeydew elements_(Loveaux et al., 1978; Von der Ohe et
76	al., 2004). Sensory assessment, as an equally important analytical mechanism for the
77	determination of the unifloral character of a honey (Piana et al., 2004), comprehensive
78	distinctive organoleptic features (visual, taste, odo <u>u</u> r, tactile) of the samples were determined
79	taking into consideration the extent of their compliance with the organoleptic profile of
80	unifloral sage honey (Lušić et al., 2007).
81	
82	2.2. Reagents and standards
83	Acetonitrile and formic acid (both MS grade), methanol (HPLC grade), Folin-
84	Ciocalteu reagent, sodium carbonate, hydrogen peroxide, and hydrochloric and nitric acid
85	were purchased from Merck (Darmstadt, Germany). Trolox (6-hydroxy-2,5,7,8-
86	tetramethylchroman-2-carboxylic acid) was purchased from Sigma Aldrich (Steinheim,
87	Germany). 2,2-Diphenyl-1-picrylhydrazyl·(DPPH·) was purchased from Fluka AG (Buchs,
88	Switzerland). The Strata C18—E (500 mg/3mL) SPE cartridges used for the extraction and
89	concentration of samples were obtained from Phenomenex (ThermoFisher
90	Scientifie Torrance, CA). Ultra-pure water (Thermofisher TKA MicroPure water purification
91	system, 0.055 $\mu\text{S/cm}$) was used to prepare the standard solutions and blanks. Syringe filters
92	(13 mm, PTFE membrane 0.45 μ m) were purchased from Supelco (Bellefonte, PA, USA).

cis, trans-Abscisic acid and polyphenolic standards were purchased from Fluka AG
(Buchs, Switzerland). Sugar standards were purchased from Tokyo Chemical Industry
(ZwijndrechtTCI, Europe, Belgium) and sugar alcohol standards were obtained from Sigma
Sigma-Aldrich (Steinheim, Germany).

2.3. Preparation of standard solutions

A 1000 mg/L stock solution of a mixture of all phenolic standards and *cis, trans*abscisic acid was prepared in methanol. Dilution of the stock solution with methanol yielded
the working solutions of concentrations 0.025, 0.050, 0.100, 0.250, 0.500, 0.750, and 1.000
mg/L. <u>Calibration curves were obtained by plotting the peak areas of the standards against</u>
their concentrationCalibration curves were obtained by plotting the peak areas of the
compounds identified relative to the peak area against the concentration of the standard
solution. Calibration curves revealed good linearity, with R_T^2 values exceeding 0.99 (peak
areas vs. concentration).

The evaluation of the carbohydrate content of the honey samples was obtained from calibration curves of pure compounds. The calibration was performed with standard solutions of sugars and sugar alcohols dissolved in ultrapure water. Each individual standard was dissolved in ultrapure water. Stock solutions with concentrations of 1000 mg/L were prepared and working solutions in the concentration ranges were as follows: for glucose and fructose from 10.0 to 100.0 mg/L; for sucrose from 1.0 to 10.0 mg/L; for isomaltose from 0.5 to 5.0 mg/L, while for all the other standards, the concentration range was from 0.1 to 1.0 mg/L. Under these chromatographic conditions, the last compound was detected after approximately 25 min, and the analysis was ended at 30 min.

116	To analyze the mineral composition of honey, a multi-element plasma standard
117	solution 4, Specpure, containing 1 g dm ⁻³ of each element was utilized for reference
118	purposes.
119	
120	2.4. LC–MS/MS analysis
121	2.4.1. Preparation of sample extracts
122	The method previously described by Gasic et al. (2014) was used for extraction and
123	isolation of phenolics from the honey samples. Prior to UHPLC-DAD MS/MS and UHPLC-
124	MS/MS Orbitrap analysis, the extracts were filtered through a 0.45 45-µm PTFE membrane
125	filter.
126	
127	2.4.2. UHPLC-MS/MS Orbitrap analysis of polyphenolic compounds
128	Separation of the compounds of interest were was performed using a liquid
129	chromatography system that consisted of a quaternary Accela 600 pump and an Accela
130	Autosampler, connected to a linear ion trap-orbitrap hybrid mass spectrometer (LTQ
131	OrbiTrap XL) with a heatedelectrospray ionization probe, HESI-II (ThermoFisher
132	Scientific, Bremen, Germany).
133	A Syncronis C18 column (100 \times 2.1 mm, 1.7 μ m particle size) from Thermo Fisher
134	Scientific was used as the analytical column for separation. The mobile phase consisted of
135	(A) water + 0.1% formic acid (A) and acetonitrile + 0.1% formic acid (B) water + 0.1 %
136	formic acid and (B) acetonitrile + 0.1 % formic acid. A linear gradient program at a flow rate
137	of 0.300 mL/min was used: 0.0–1.0 min 5 % B, 1.0–9.9 min from 5 % to 95 % (B), 9.9–10
138	min from 95 % to 5 % (B), then 5 % (B) for 3 min. The injection volume was 5 $\mu L_{\underline{\mbox{\sc d}}}$ (Gasic et
139	al., 2014).

The mass spectrometer was operated in the negative ion mode. The HESI-source
parameters were given previously (Gasic et al., 2014). Xealibur software (version 2.1) was
Xcalibur software 2.1 (Thermo Fisher, Bremen, Germany) was used for instrument control,
data acquisition and data analysis. The phenolics were identified according to the
corresponding spectral characteristics: mass spectra, accurate mass, characteristic
fragmentation, and characteristic retention time. Full scan analysis was employed to detect
the monoisotopic mass of unknown compounds, while the fragmentation pathway was
obtained by MS/MS. This exact mass search method was based on high resolution MS
analysis (Orbitrap), online database search (Patiny and Borel, 2013) and prediction of
MS/MS fragmentation using Mass Frontier 6.0 software (Thermo Fisher Scientific).
2.4.3 UHPLC-DAD MS/MS analysis of polyphenolic compounds
The separation, determination, and quantification of the components in the sage honey
samples were performed using a Dionex Ultimate 3000 UHPLC system equipped with a
diode array detector (DAD) that was connected to TSQ Quantum Access Max triple-
quadrupole mass spectrometer (ThermoFisher Scientific, Basel, Switzerland). The elution
was performed at 40 °(C on a Syncronis C18 column. The mobile phase consisted of (A)
water water + 0.1 % formic acid (A) and acetonitrile (B) + 0.1 % formic acid, and (B)
acetonitrile, which were applied in the following gradient elution: 5 % B in the first 2.0 min,
2.0–12.0 min 5–95 % B, 12.0–12.2 min from 95 % to 5% B, and 5 % B until the 15 th min.
The flow rate was set to $0.4 \text{ mL min}^{-1} = 0.4 \text{ ml min}^{-1}$ and the detection wavelengths to $254 - 1.4 \text{ ml}$
and 280 nm 254 and 280 nm. The injection volume was 5 μ l \underline{L} .
A TSQ Quantum Access Max triple-quadrupole mass spectrometer equipped with an
heated electrospray ionization (HESI) source was used with the vaporizer temperature kept at
200 °C, and the ion source settings as follows: spray voltage 5000 V, sheet gas (N ₂) pressure

165	40 AU, ion sweep gas pressure 1 AU and auxiliary gas (N ₂) pressure 8 AU, capillary				
166	temperature 300 °C, and skimmer offset 0 V_{N} (Natic et al., 2015). The mass spectrometry data				
167	were acquired in the negative ion mode, in the m/z range from 100 to 1000. Multiple mass				
168	spectrometric scanning modes, including full scanning (FS), and product ion scanning (PIS),				
169	were conducted for the qualitative analysis of the targeted compounds. The collision-induced				
170	fragmentation experiments were performed using argon as the collision gas, and the collision				
171	energy was varied depending on the compound (Table S1). The time-selected reaction				
172	monitoring (tSRM) experiments for quantitative analysis were performed using two MS ²				
173	fragments for each compound that were previously defined as dominant in the PIS				
174	experiments (Table S1).				
175	Xcalibur software 2.2 (Thermo Fisher, Bremen, Germany) Xcalibur software (version				
176	2.2) was used for instrument control. The phenolics were identified by direct comparison				
177	with commercial standards. The total amounts of each compound were evaluated by				
178	calculation of the peak areas and are expressed as mg kg ⁻¹ .				
179					
180	2.5. Determination of TPC and RSA				
181	The samples were prepared according to a previously described method (Gasic et al., 2014).				
182	Each honey sample (5 g) was mixed with ultrapure water in a 50-mL volumetric flask. The				
183	solution was then filtered through 0.45-μ-lm PTFE membrane and analyzed for determination				
184	of TPC and RSA ₅ . The amount of total phenolics was determined according to the Folin—				
185	Ciocalteu method, while the radical-scavenging activity of honey extracts was measured				
186	using the DPPH· method (Gasic et al., 2014). The TPC and RSA values are expressed as				
187	milligram gallic acid equivalents (mg GAE) perequivalents (GAE) per-kilogram and				
188	micromoles of Trolox <u>equivalents (μmol TE) perequivalents (TE) per</u> _kg of honey sample,				
189	respectively.				

190	
191	
!92	2.6. HPAEC/PAD analysis of sugars and sugar alcohols
193	The honey samples were homogenized, weighed (between 0.2 and 0.3 g) and diluted
194	1000-fold with ultrapure water. The solutions were filtered and transferred to vials.
195	The sugar and sugar alcohol contents were determined by <u>HPAEC/PAD.</u> high
196	performance anion exchange chromatography with pulse amperometric detection
197	(HPAEC/PAD). The honeys were analyzed on an ICS 3000 DP liquid chromatograph
198	equipped with a quaternary gradient pump (Dionex, Sunnyvale, CA, USA). The
199	carbohydrates were separated on a CarboPac®PA10 pellicular anion-exchange column (4 ×
200	250 mm) at 30 °C. Each <u>honey sample</u> (25 μ L) was injected with an ICS AS-DV 50
201	autosampler (Dionex, Sunnyvale, CA, USA). The carbohydrates were eluted with the flow
202	rate set to 0.7 mL/min, using a gradient program constituted from 600 mM sodium hydroxide
203	(eluent A), 500 mM sodium acetate (eluent B) and ultrapure water (eluent C). The gradient
204	program was as follows: 0.0–20.0 min, 15 % A; 20.1–30.0 min, 20 % A; 0.0–5.0 min, 0 % B;
205	5.1–12.0 min, 2 % B; 12.1–20.0 min, 4 % B; 20.1–30.0 min, 20 % B, 0.0–5.0 min, 85 % C;
206	5.1–12.0 min, 83 % C; 12.1–20.0 min, 81 % C; 20.1–30.0 min, 60 % C. <u>Under these</u>
207	chromatographic conditions, the last compound was detected after approximately 25 min, and
208	the analysis was ended at 30 min. The total amounts of each sugar or sugar alcohol waswere
209	evaluated according to the method previously described in section 2.3.
210	
211	2.7. ICP-EOS analysis of minerals in honey samples
212	To analyze the mineral composition of honey, about 0.6-0.7 g of fresh honey sample
213	was-were treated with 7 mL of 65 % HNO $_3$ and 1 mL of 35 % H $_2$ O $_2$ in
214	polytetrafluoroethylene (PTFE) vessels. A microwave closed digestion system (ETHOS 1,-;

215	Milestone, Bergamo, Italy) was used for the mineralization process. The final clear solution
216	was made up to 50 mL with ultrapure water. A blank was prepared in the same way.
217	All mineral elements in the digested solutions were determined using an ICP-OES
218	(iCAP 6500 Duo ICP, Thermo Scientific, UK) instrument. The results are expressed as mg of
219	mineralmetal per kg of honey.
220	•.•
221	2.8. Statistical analysis
222	Data of all measurements performed in triplicate are expressed as the mean \pm standard
223	deviation (SD). Statistical analyses were performed using the Analysis ToolPak from the
224	Microsoft Office Excel 2007 Professional. Statistical analyses were performed with the
225	program MS Excel (Microsoft Office 2007 Professional). PCA was realized using the PLS_
226	Tool Box software package for MATLAB 7.12.0 (Eigenvector Research, Inc., Wenatchee,
227	WA, USA)MATLAB (Version 7.12.0). All data were group-scaled prior to PCA. The
228	singular value decomposition algorithm (SVD) and a 0.95 confidence level for Q and T^2
229	Hotelling limits for outliers were chosen.
230	
231	3. Results and discussion
232	
233	3.1. Verification of the sage honey samples
234	A great deal of attention was given to the authenticity of the Croatian Common sage
235	honey samples, especially to their geographical and botanical origin (Persano Oddo and
236	Bogdanov, 2004). Representative honey sampling was realized directly at primary producers'
237	filling facilities, above all taking into the consideration two important criteria: A) that the
238	honey sample extraction occurred elosely soon after the sage flowering period (May) when
239	sage flowers were the main bee source of nectar, and B) appropriate apiary locations for

sample production. That is to say, particular beehive sites were selected for collection of *S. officinalis* honey samples in line with the field observations on the abundance of sage nectar. Furthermore, cartographic data concerning the areas of predominate *Salvia officinalis* L. growth were taken from the comprehensive Vegetation wegetation maps of Croatia (Šugar et al., 1983), confirming that the production beehives involved were situated deeply inside within the sage-dominated vegetation zones.

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

As a general rule, honey is considered unifloral if it was is produced mainly from one plant species, and if the pollen of that particular species predominates. However, the pollen grains of some flowers are under-represented (or over-represented) in unifloral honeys, i.e., the percentage of pollen in the sediment is lower (or higher) than the percentage of the corresponding nectar in the honey (Persano Oddo and Bogdanov, 2004). Therefore, the pollen spectrum of other nectariferous and non-nectariferous botanical species should likewise be taken into the consideration, as well as the presence of honeydew elements (Persano Oddo and Bogdanov, 2004; Piazza and Persano Oddo, 2004). The unifloral character of all the sage honey samples in this study was confirmed by thorough melissopalynological and sensory evaluation (Table 1). When compared to the representation of other pollen sources in samples, under-representation of S. officinalis pollen grains was noted in almost all the studied honey samples, thereby confirming the natural hypopollenic features of sage (Ricciardelli D'Albore and Galarini, 2000; Flora Croatica Database, 2012). The greatest highest portion of the identified pollen in the sage unifloral honey originated from nectariferous species belonging to the families *Rhamnaceae*, *Sapindaceae* (genus *Acer*) and Fagaceae (genus Castanea). Pollen sources of non-nectariferous producing plants were mostly attributed to *Quercus* spp. (fam-ily *Fagaceae*) and species belonging to the families Graminaceae and Plantaginaceae (Plantago spp.), all sharing the flowering period of sage as well as their areal of distribution. This characteristic pollen profile and specific combination

could be considered a valuable indicator of the geographical origin of the sage unifloral honey samples.

Sensory assessment, as an equally important analytical mechanism for the determination of the unifloral character of honey (Piana et al., 2004) revealed distinctive organoleptic features (visual, taste, odour, tactility) of the samples, taking into consideration the extent of their compliance with the particular organoleptic profile of unifloral sage honey (Lušić et al., 2007). Based on the results of the melissopalynological and sensory evaluations, all the honey samples in the present study were confirmed to be sage honeys.

3.2. Phenolic profile of Croatian sage honey samples

Although the composition of honey highly depends on the floral source used to collect the nectar, some other factors, including geographic origin, seasonal and environmental factors, bee variety, as well as processing technologies, may also affect the composition of the phenolic compounds in honey (Kaskonienė and Venskutonis, 2010). On the other hand, unifloral honeys have almost never been made from 100 % monofloral nectar, since the nectar from flowers of many various plants contributes to the production of every honey (Persano Oddo and Bogdanov, 2004). Therefore, it was important to analyze a large number of sage honey samples, in order to derive more general rules, and define which compounds and/or groups of compounds mostly characterize the phenolic and sugar profiles, and thus the uniqueness of this autochthonous honey. Phenolic compounds such as flavonoids (Kenjerić et al., 2008), carbohydrates (Primorac et al., 2011), and volatile compounds (Jerković et al., 2006), were previously suggested as possible markers for the determination of Common sage unifloral honey.

As it was previously reported, sage leaf extracts contain a wide range of phenolic compounds

As it was previously reported, sage leaf extracts contain a wide range of phenolic compounds with the majority of the phenolic acids represented by caffeic acid derivatives and rosmarinic

acid being the dominant one Sage leaf extracts, as hitherto reported, contain a wide range of					
phenolic compounds. The majority of the phenolic acids were found to be caffeic acid					
derivatives, with rosmarinic acid being the dominant one. The study of According to					
Generalić et al. (2011), identified rosmarinic, syringic, gallic, p-coumaric, caffeic, and trans-					
ferulic acid as the principal phenolic acids of Common sage extracts. the principal phenolic					
acids of Common sage extracts are rosmarinie, syringie, gallie, p-coumarie, caffeie, and					
trans-ferulic acid. The relative content of rosmarinic acid in the extracts ranged from 94.54-%					
to 98.38-%, depending on the phenophase, while the contents of other acids were					
significantly lower (Generalić et al., 2011; Generalić et al., 2012). Other studies also report					
the presence of vanillic acid, salvianolic acids K and I, and methyl rosmarinate in Common					
sage (Dragovic-Uzelac et al., 2012; Dent et al., 2013). Flavonoids of S. officinalis are mostly					
present as flavones (apigenin, luteolin and their corresponding 6-hydroxylated derivatives),					
flavone glucosides (6-hydroxyluteolin-7-glucoside, luteolin-7-glucuronide, luteolin-					
glucoside, luteolin-3'-glucuronide, apigenin-7-glucuronide and apigenin-7-glucoside),					
flavonols (mostly kaempferol and quercetin methyl ethers), and flavonol glucosides					
(quercetin-4'-glucoside, rutin), as reported by several authors (Generalić et al., 2011;					
Dragovic-Uzelac et al., 2012; Generalić et al., 2012). Stilbenes (trans-resveratrol, astringin,					
piceid) and catechins ((+)-catechin, (-)-epicatechin) are also present (Generalić et al., 2011;					
Generalié et al., 2012). Salvia officinalis L. is reported to contain also phenolic diterpenes,					
including carnosol and carnosic acid (Lamien-Meda et al., 2010). Some of the phenolic					
compounds previously determined as constituents of sage leaf extracts were also found in					
unifloral S. officinalis honeys from this region (Kenjerić et al., 2008), including phenolic					
acids (caffeic, rosmarinic, gallic, p-coumaric, and ferulic acid), and flavonoids (flavones					
apigenin and luteolin, and their corresponding glycosides; flavonols quercetin and					
kaempferol and their derivatives (quercetin hexoside and rutin); stilbenes (resveratrol); and					

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

catechins (catechin and epicatechin)). It should be borne in mind that previous studies concerning the composition of the phenolics in indigenous Croatian Common sage honey (Kenjerić et al., 2008) usually concentrated on targeted metabolomic analysis that included a limited number of compounds, and that there is are a lack of literature data concerning the complete polyphenolic profiles. On the other hand, the present study gives insight into the profile of the phenolics of sage unifloral honey using the non-targeted metaboliomic approach, which resulted in the identification of a significant number of phenolic compounds (Table 2). In the absence of standards, the identification of flavonoid glycosides and other phenolics were based on the search for the [M–H] deprotonated molecule and its fragmentation using UHPLC--LTQ OrbiTrap MS/MS. The exact mass search and the study of the fragmentation pathways described in the literature enabled as much structural information as possible to be obtained. In this way, it was possible to individuate identify 61 compounds (**Table 2**). The chromatograms of the investigated Common sage honey samples showed similar profiles. A selected base peak chromatogram of a representative sage honey extract (sample No. SH2) is shown in Fig. S1. Hydroxycinnamic acids, such as caffeic, rosmarinic, ferulic, chlorogenic, and pcoumaric acid were detected in the sage honey samples analyzed in the present study. These phenolic acids constituted a significant share to-of the total phenolics content of the sage honey samples. Generally, the presence of phenolic compounds in nectar is usually connected with their protective role against microbial infestations (Heil, 2011). However, high concentrations of these compounds could lead to the nectar's toxic effect, and have a negative influence on pollinators (Adler, 2000). Of the hydroxybenzoic acids, p-hydroxybenzoic acid, vanillic, gentisic, and protocatechuic acid were previously reported in sage (Zgórka and Głowniak, 2001), and confirmed in unifloral sage honey samples. All these phenolic acids are

considered as pot	ential markers	for the authe	entication of sa	age uniflora	l honeys a	and were
therefore included	d in the subseq	uent targeted	l quantitative a	analyses of	the honey	samples.

The majority of flavonoids in S. officinalis are flavones of apigenin and luteolin, and their corresponding 6-hydroxylated derivatives (hispidulin and cirsimaritin), as well as the dihydroflavone hesperetin (Brieskorn and Biechele, 1971; Cuvelier et al., 1996; Lu and Yeap Foo, 2002; Kontogianni et al., 2013), and all of these compounds were evidenced in the analyzed sage honey samples. Of the flavone, glucosides, luteolin and apigenin glycosides are very common in analyzed sage honeys, and some of them were previously found in S. officinalis (Masterova et al., 1989; Wang et al., 1998; Lu and Yeap Foo, 2000). Interestingly, it is well known that the presence of 6-hydroxy- and 6-methoxy-flavone glycosides clearly differentiates section Salvia, which includes S. officinalis, from other sections belonging to the genus Salvia (Tomás-Barberán et al., 1988). Therefore, the presence of these compounds in honey might be one of the indicators that the honey in question is really of sage floral origin. Flavonols of sage are mostly those of kaempferol and quercetin methyl ethers (Lu and Yeap Foo, 2002), and nectar—pollen derived flavonoids, such are as quercetin, kaempferol, and hesperetin, have been identified in samples of Common sage honey. Of the flavonoids previously identified in sage, stilbene resveratrol and catechins (catechin and epicatechin) were also confirmed in the sage honey samples (Generalić et al., 2011). The following derivatives of catechin and epicatechin were also recorded in the honey samples: gallocatechin, epigallocatechin, gallocatechin gallate, and epigallocatechin gallate.

The phenolic diterpenes carnosol and carnosic acid, although present in sage (Kontogianni et al., 2013), were not previously detected in unifloral sage honeys. In the present study, these compounds were identified in the all honey samples, but in trace amounts (**Table 2**).

364

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

3.3	. C	<i>uanti</i>	ification	of	targeted	pheno	lics	in	the	honev	sami	ples
	• ~	,	,	٠.,		p.,,,,				,	~ ~ ~ ~ /	~~

Solid Solid-phase extraction (SPE) combined with ultra-high-high-performance liquid chromatography with a diode array detector (DAD) and a triple-quadrupole mass spectrometer was used to analyze the content of 25 targeted compounds in the *S. officinalis* honey samples. Three basic criteria for the selection of chemical markers from the group of phenolic compounds were applied: 1) putative sage nectar—pollen derived compounds (phenolic acids and flavonoids); 2) propolis characteristic flavonoids and 3) abscisic acid.

Among the quantified compounds in Common sage honeys, some of-phenolic acids, *i.e.*, *p*-coumaric, *p*-hydroxybenzoic, and ferulic acid, were present in the highest amounts. Interestingly, rosmarinic acid was present in relatively low amounts in the unifloral sage honeys analyzed in the present study (**Table 3**). It is well known that phenolic acids of sage are mostly based on caffeic acid building blocks (Lu and Yeap Foo, 2002), and that rosmarinic acid is the major phenolic compound in sage leaves. Possible reasons for this could be relatively low concentrations of this compound in the nectar. Gentisic acid was detected only in three samples (SH8, SH15, and SH18). Of the nectar—pollen derived flavonoids quantified herein, quercetin, kaempferol, and hesperetin were abundant and present in significant amounts. Stilbene resveratrol was detected only in four of the sage honey samples (SH2, SH5, SH16, and SH17). Catechins were abundant in the analyzed honey samples, with gallocatechin gallate and epigallocatechin gallate being quantified as the dominant compounds from this group. The contents of catechin and epicatechin were low.

Pinocembrin, pinobanksin, pinostrobin, galangin, and chrysin are characteristic flavonoids of propolis, and were determined in most of the previously analyzed European honey samples (Tomás-Barberán et al., 2001; Kenjerić et al., 2008). The portion of propolisderived compounds in the unifloral sage honeys analyzed in the present study was significant, but much less than in a previous study (Kenjerić et al., 2008), which reported a relatively

390	high portion of galangin and chrysin (51.3-%) in the total identified flavonoids. The sage
391	honey samples analyzed in the present study were characterized by the significant amounts of
392	pinobaksin (0.21-2.35 mg/kg) and chrysin (0.06-1.98 mg/kg).
393	The plant stress hormone abscisic acid $(A\underline{b}BA)$ is known to be present in floral
394	nectars of some plants, and is transferred from the nectar to honey. This phytohormone is
395	present in relatively high amounts in some European honeys (Tomás-Barberán et al., 2001;
396	Truchado et al., 2008; Bertoncelj et al., 2011), including unifloral sage honey (Kenjerić et al.,
397	2008), and was also confirmed in the present study. The presence of abscisic acid in high
398	amounts (0.26-3.99 mg/kg) is not surprising, since natural rocky habitat of sage is
399	characterized by periods of drought seasons during the summer, which results in stress-
400	induced responses in the plants_(Bertoncelj et al., 2011).
401	
402	3.4. Antioxidant activity of Common sage honeys
403	Antioxidant capacity of S. officinalis honey samples was determined by the total
404	phenolics content (TPC) and the radical scavenging activity (RSA). The results of these
405	investigations are given in Table 3 .
406	The Common sage honey samples were characterized with TPC values ranging
407	between 208.519 to and 747.549 mg of gallic acid equivalents (GAE) per kg of honey. The
408	average content of total phenolics was in a good agreement with the values given in the
409	literature for sage honeys from the same region (Piljac-Žegarac et al., 2009).
410	The results of the determination of the RSA of sage honey samples ranged from
411	351.20 to 894.8275 micromoles of Trolox equivalents TE per kg of sample. To determine the
412	relationship between the content of polyphenols and antioxidant activities of S. officinalis
413	honey samples, the correlation between the TPC and the RSA values was calculated. The
414	RSA showed a statistically significant $(r = 0.872; P-p < 0.0001)$ and positive linear

correlation with the TPC ($RSA = 68.08 + 1.10 \times TPC$). A significant and positive linear
relationship between the antioxidant activity and total phenolic content of sage honey
samples indicated that phenolic compounds could be identified as the chemicals that
predominately contributed to the antioxidant activity, which is in accordance with previous
investigations reported previously (Piljac-Žegarac et al., 2009; Gasic et al., 2014).

3.5. Determination of the sugars and sugar alcohols

Fourteen different sugars and sugar alcohols were identified and quantified in the analyzed unifloral sage honey samples using the-HPAEC/PAD-method. Quantification was performed with available standards. The reducing sugars, fructose and glucose, were found to be the major constituents of all the investigated samples (**Table 4**), which confirmed that all honey samples were genuine honeys. In all the analyzed honeys, the value of the glucose plus fructose amounts was around or higher than $60 \neq g per 100 g$, which is the value for all honey types required by the European and FAO (Codex Alimentarius) standards (FAO/WHO, 2001; The Council of the European Union, 2002). Another monosaccharide identified in the honeys in relatively low amounts was arabinose.

All the sage honey samples had a sucrose content lower than 5½ g per 100 g, which is generally taken as the limit value for honeys allowed by European Union Honey Directive (The Council of the European Union, 2002). Apart from sucrose, the other identified disaccharides were trehalose, turanose, maltose and isomaltose. The trisaccharides maltotriose and isomaltotriose were also evidenced. From the group of polyols (sugar alcohols), erythritol, sorbitol, galactytolgalactitol, and glycerol were identified.

The ratio between some carbohydrates is another indicator that may be used to ascertain honey authenticity. Thus, the ratios of fructose/glucose, maltose/isomaltose, sucrose/turanose, and maltose/turanose, maltotriose/raffinose+erlose+melezitose were used

to 2.41 (SH5).	
relatively low maltose/isomaltose (MAL/iMAL) ratio, which ranged from 0.9 (sample SH	11)
One more characteristic of the unifloral sage honeys analyzed in the present study was the	e
water_water_soluble than fructose, varied from 1.31 in sample SH1 to 4.42 in sample SH3	8 <u>7</u> .
which was recommended for the evaluation of honey granulation because glucose is less	
Kaskonienė and Venskutonis (2010). The fructose/glucose (FRU/GLU) ratio in sage hone	eys,
for the authentication of some unifloral honeys, and all these studies were reviewed by	

3.6. Determination of minerals in S. officinalis honeys

The concentrations of minerals quantified in the studied sage honey samples are presented in **Table 5**. The most abundant element in all samples was found to be potassium (content ranging from 59½+.68 to 215+.35½ mg/kg), which agrees with other studies and indicates that K is the most common element in honeys (Cantarelli et al., 2008), including unifloral sage honeys (Bilandžić et al., 2014). Phosphorus, sulfur, and calcium were the next most common elements, followed by magnesium and sodium. Among the micro-elements in decreasing amounts, B, Zn, Fe, Mn, Cu, Se, and Ni were found, while Co, Cr, Li, and V were found as trace elements. Therefore, the influence of botanical origin on the elemental composition of the unifloral sage honey was evident for both elements essential for plant growth (macronutrients), such as K, P, S, Ca, Mg and Na, and for micronutrients (trace elements), such as B, Mn, Zn, Fe, *etc*. The essential elements are present in plants in significantly higher amounts than the trace elements, and this observation was also true for the honey samples. On the other hand, the possibility that the mineral composition of honey samples also reflects the environmental and pedological conditions of the geographical locality cannot be excluded(Terrab et al., 2004). Toxic elements (Al, As, Cd, Pb, and Sb) in

the tested samples	were found in	small amount	s (allowable	concentrations),	which	excludes
the existence of en	vironmental co	ontamination of	of the honeys	S.		

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

465

464

3.7. Pearson's correlation analysis

Pearson's correlation analysis was performed to evaluate the associations between variables in 18 sage unifloral honey samples (Table S2), in order to define some general rules characteristic for unifloral sage honey. Both positive and negative Pearson's correlations were observed between the contents of the different analyzed compounds in the unifloral sage honeys. However, statistically significant correlations were observed in some cases as can be seen from the Tables given in supplementary material (Tables S2–S4). High positive correlations were found between propolis-derived compounds. Namely, correlations between CaA and PNB, PNS, CHR, PNC, GLN were in the range from 0.691 to 0.886. Likewise, correlations among PNB, PNS, CHR, PNC, and GLN were also characterized with high positive coefficients (Table S2). Statistically significant correlations between CaA and HES $(r = 0.827, P-p \le 0.0005)$, FeA and GeA $(r = 0.786, P-p \le 0.0005)$, FeA and PrA $(r = 0.652, P-p \le 0.0005)$ $p \le 0.005$), C and EC (r = 0.663, $P = p \le 0.005$), and C and EGC (r = 0.656, $P = p \le 0.005$) could be considered as important characteristics of the analyzed sage honeys. It was also observed that AbA was well correlated with FeA and GeA, with r = 0.890 ($P \ge 0.000001$) and r = 0.890 $0.887 \ (P-p \le 0.000001)$, respectively. The observed correlations between the phenolic compounds in the analyzed honey samples probably reflected the situation in the sage nectar and/or pollen, which are the main sources of phenolics in honey.

Pearson's correlation analysis was also performed between 14 targeted carbohydrates in the unifloral sage honey samples (**Table S3**), whereby the highest positive correlation was observed between maltose and isomaltose (r = 0.870, $P-p \le 0.000005$), which could be considered as a unique characteristic of unifloral sage honey. Moreover, statistically

significant correlations were found between MALt and SUC, and MALt and TURmaltotrios	se
and sucrose, and maltotriose and turanose (Table S3).	

Regarding the mineral composition of the sage honeys, among all statistically significant correlations, the highest positive ones were between Ca and Mn with r = 0.858 ($P \le 0.000005$), and between Mg and P with r = 0.849 ($P \le 0.000005$). **Table S4** shows the Pearson's correlation analysis of the minerals.

3.8. Authentication of unifloral sage honey

In order to demonstrate the applicability of the present research for the authentication of unifloral sage honey, three types of available unifloral honeys of *Lamiaceae* species were introduced into the analysis as out-groups: mint (*Mentha* spp.) honey, winter savory (*Satureja montana* L.) honey, and thyme (*Thymus* spp.) honey. The quantitative data on TPC, RSA, targeted phenolics, sugars and minerals in thyme, mint and winter savory honeys are presented as Supplementary data (**Table S5**). Principal component analysis (PCA) was employed to analyze the quantitative data for TPC, RSA, 25 targeted phenolic compounds, 14 carbohydrates and 25 minerals in order to examine their relative variations within different honeys (sage, mint, thyme and winter savory honeys).

The combination of all the variables was informative enough to clearly discriminate sage honeys from the honeys of different floral origins. The results showed that the principal factorial 2-dimensional plane captured 32.18–% of the total variability (**Fig. 1**). The first principal component accounted for 17.58–% and the second for 15.60–% of the total variance. Clear differentiation of unifloral sage honey from unifloral thyme, mint and winter savory honeys along PC 1 was observed. The variables responsible for the differentiation of unifloral sage honey from the other studied honeys were identified using the loading plots (**Fig. 1B**). Sage honey samples were distinguished from the other studied honeys based on the

significantly higher contents of mineral-boron—B. Most of the samples of sage honeys were characterized with high K contents. Higher contents of TPC, TUR—turanose and KAE kaempferol in the sage honeys compared to the thyme, mint and winter savory honeys further contributed to the separation (Fig. 1B). On the other hand, mint honey was characterized by larger contents of Mn, Ba, and ChA—chlorogenic acid, when compared to the other samples. Only two unifloral sage samples (SH2 and SH8) considerably deviated from the rest of the sage honey samples along PC2, due to higher contents of chrysin, pinocembrin, galanginCHR, PNC, GLN, and CaAcaffeic acid, which were also characteristic for the MH1 and WSH2 samples.

4. Conclusions

The study of sage (*Salvia officinalis* L.) honey samples showed somewhat-interesting results related to their peculiar characteristic phenolic, sugar and mineral contents. Several identified compounds showed significant potential for the characterization of this particular honey intrinsic fortypical of the Adriatic Littoral of Croatia, especially its northern area. The data suggest clear differentiation of unifloral sage honey from the other unifloral honeys by using groups of chemical markers (phenolic compounds, carbohydrates and minerals).

Among all studied unifloral honeys of *Lamiaceae* species, higher contents of boron and potassium, as well as turanose and kaempferol could be identified as authentication markers of unifloral sage honey. In addition, the application of multivariate statistical analysis te-for the authentication and classification was proved to be an important complementary tool for a more reliable identification and quality control method of honey.

539	
540	Acknowledgement
541	This work was performed within the framework of the Research Projects Nos. 172017
542	and 173024, supported by the Ministry of Education, Science and Technological
543	Development of the Republic of Serbia and specialized funds of the Department of
544	Environmental Health, Faculty of Medicine, University of Rijeka.
545	Acception of the second of the

546 References

- Adler, L.S., (2000). The ecological significance of toxic nectar. Oikos 91(3), 409-420.
- Bertoncelj, J., Polak, T., Kropf, U., Korošec, M., Golob, T., (2011). LC-DAD-ESI/MS
- analysis of flavonoids and abscisic acid with chemometric approach for the classification of
- 551 Slovenian honey. Food Chemistry 127(1), 296-302.
- Bilandžić, N., Gačić, M., Đokić, M., Sedak, M., Šipušić, Đ.I., Končurat, A., Gajger, I.T.,
- 553 (2014). Major and trace elements levels in multifloral and unifloral honeys in Croatia. Journal
- of Food Composition and Analysis 33(2), 132-138.
- 555 Brieskorn, C.H., Biechele, W., (1971). Flavones from Salvia officinalis. Compounds of
- 556 Salvia officinalis. Archiv der Pharmazie (Weinheim) 304, 557–561.
- 557 Cantarelli, M.A., Pellerano, R.G., Marchevsky, E.J., Camiña, J.M., (2008). Quality of honey
- 558 from Argentina: study of chemical composition and trace elements. The Journal of the
- Argentine Chemical Society 96, 33-41.
- 560 Cuvelier, M.-E., Richard, H., Berset, C., (1996). Antioxidative activity and phenolic
- 561 composition of pilot-plant and commercial extracts of sage and rosemary. Journal of the
- American Oil Chemists' Society 73(5), 645-652.
- Dent, M., Dragovic-Uzelac, V., Penić, M., Brncic, M., Tomislav, B., Levaj, B., (2013). The
- Effect of Extraction Solvents, Temperature and Time on the Composition and Mass Fraction
- of Polyphenols in Dalmatian Wild Sage (Salvia officinalis L.) Extracts. Food Technology &
- 566 Biotechnology 51(1), 84–91.
- 567 Dragovic-Uzelac, V., Elez Garofulić, I., Jukić, M., Penić, M., Dent, M., (2012). The
- Influence of Microwave-Assisted Extraction on the Isolation of Sage (Salvia officinalis L.)
- Polyphenols. Food Technology & Biotechnology 50(3), 377–383.

- 570 FAO/WHO, (2001). Codex standards for honey, in: Codex Alimentarius Commission (Ed.),
- 571 2nd revision. Food and Agricolture Organisation of the United Nations, World Health
- 572 Organisation, Rome, pp. 1-8.
- 573 Flora Croatica Database, (2012). Flora Croatica Database. Vascular Plants, Taxonomy &
- Bibliography of Croatian Flora, 2004 ed. Department of Botany, Faculty of science, FER-
- 575 ZPR, University of Zagreb.
- Gasic, U., Keckes, S., Dabic, D., Trifkovic, J., Milojkovic-Opsenica, D., Natic, M., Tesic, Z.,
- 577 (2014). Phenolic profile and antioxidant activity of Serbian polyfloral honeys. Food
- 578 Chemistry 145, 599-607.
- 679 Generalić, I., Skroza, D., Ljubenkov, I., Katalinić, A., Burčul, F., Katalinić, V., (2011).
- Influence of the phenophase on the phenolic profile and antioxidant properties of Dalmatian
- sage. Food Chemistry 127(2), 427-433.
- 582 Generalić, I., Skroza, D., Šurjak, J., Mozina, S.S., Ljubenkov, I., Katalinić, A., Simat, V.,
- Katalinić, V., (2012). Seasonal variations of phenolic compounds and biological properties in
- sage (Salvia officinalis L.). Chemistry & Biodiversity 9(2), 441-457.
- Heil, M., (2011). Nectar: generation, regulation and ecological functions. Trends in Plant
- 586 Science 16(4), 191-200.
- Jerković, I., Mastelić, J., Marijanović, Z., (2006). A Variety of Volatile Compounds as
- 588 Markers in Unifloral Honey from Dalmatian Sage (Salvia officinalis L.). Chemistry &
- 589 Biodiversity 3, 1307-1310.
- Karousou, R., Hanlidou, E., Kokkini, S., (2000). The sage plant of Greece: distribution and
- intraspecific variation, in: Kintzios, S.E. (Ed.), Sage the genus Salvia. Harwood Academic
- 592 Publishers, Amsterdam, pp. 27–46.

- 593 Kaskonienė, V., Venskutonis, P.R., (2010). Floral Markers in Honey of Various Botanical
- and Geographic Origins: A Review. Comprehensive Reviews in Food Science and Food
- 595 Safety 9(6), 620-634.
- Kenjerić, D., Mandić, M., Primorac, L., Čačić, F., (2008). Flavonoid pattern of sage (Salvia
- *officinalis* L.) unifloral honey. Food Chemistry 110, 187-192.
- 598 Kontogianni, V.G., Tomic, G., Nikolic, I., Nerantzaki, A.A., Sayyad, N., Stosic-Grujicic, S.,
- 599 Stojanovic, I., Gerothanassis, I.P., Tzakos, A.G., (2013). Phytochemical profile of
- Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and
- anti-proliferative activity. Food Chemistry 136(1), 120-129.
- Lamien-Meda, A., Nell, M., Lohwasser, U., Borner, A., Franz, C., Novak, J., (2010).
- 603 Investigation of antioxidant and rosmarinic acid variation in the sage collection of the
- genebank in Gatersleben. Journal of Agricultural and Food Chemistry 58(6), 3813-3819.
- 605 Loveaux, J., Maurizio, A., Vorwohl, G., (1978). Methods of Melissopalynology by
- International Commission for bee Botany or IUBS. Bee World 59(4), 139-157.
- 607 Lu, Y., Yeap Foo, L., (2000). Flavonoid and phenolic glycosides from Salvia officinalis.
- 608 Phytochemistry 55(3), 263-267.
- 609 Lu, Y., Yeap Foo, L., (2002). Polyphenolics of Salvia—a review. Phytochemistry 59(2), 117-
- *610* 140.
- 611 Lušić, D., Koprivnjak, O., Ćurić, D., Sabatini, A., Conte, L., (2007). Volatile Profile of
- 612 Croatian Lime Tree (Tilia sp.), Fir Honeydew (Abies alba) and Sage (Salvia officinalis)
- Honey. Food Technology & Biotechnology 45(2), 156-165.
- Masterova, I., Uhrin, D., Kettmann, V., Suchy, V., (1989). Phyto chemical study of Salvia
- officinalis. Chemical Papers 43(6), 797—803.

- Natic, M.M., Dabic, D.C., Papetti, A., Fotiric Aksic, M.M., Ognjanov, V., Ljubojevic, M.,
- 617 Tesic, Z., (2015). Analysis and characterisation of phytochemicals in mulberry (Morus alba
- 618 L.) fruits grown in Vojvodina, North Serbia. Food Chem 171, 128-136.
- Patiny, L., Borel, A., (2013). ChemCalc: A Building Block for Tomorrow's Chemical
- 620 Infrastructure. Journal of Chemical Information and Modeling 53(5), 1223-1228.
- Persano Oddo, L., Bogdanov, S., (2004). Determination of honey botanical origin: problems
- and issues. Apidologie 35, S2-S3.
- Piana, M., Persano Oddo, L., Bentabol, A., Bruneau, E., Bogdanov, S., Guyot Declerck, C.,
- 624 (2004). Sensory analysis applied to honey: state of the art. Apidologie 35(Suppl. 1), S26-S37.
- Piazza, M., Persano Oddo, L., (2004). Bibliographic review of main unifloral European
- 626 honeys. Apidologie 35, S94-S111.
- Piljac-Žegarac, J., Stipčević, T., & Belščak, A., (2009). Antioxidant properties and phenolic
- 628 content of different floral origin honeys. Journal of ApiProduct and ApiMedical Science 1(2),
- *629* 43-50.
- 630 Primorac, L., Flanjak, I., Kenjerić, D., Bubalo, D., Topolnjak, Z., (2011). Specific Rotation
- and Carbohydrate Profile of Croatian Unifloral Honeys. Czech Journal of Food Sciences
- *632* 29(5), 515-519.
- Ricciardelli D'Albore, G., Galarini, R., (2000). Mediterranean Melissopalynology. Istituto
- Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia Italy.
- 635 Šugar, I., Gaži-Baskova, V., Trinajstić, I., Horvatić-Hodak, N., Lovrić, A., Horvatić, S.,
- 636 Kutleša, L., (1983). Vegetacijska karta SR Hrvatske, in: Botanički zavod Prirodoslovno-
- 637 matematički fakultet (Ed.). Vojnogeografski institut Beograd, Zagreb.
- 638 Terrab, A., Hernanz, D., Heredia, F.J., (2004). Inductively coupled plasma optical emission
- 639 spectrometric determination of minerals in thyme honeys and their contribution to
- geographical discrimination. J Agric Food Chem 52(11), 3441-3445.

- The Council of the European Union, (2002). Council Directive 2001/110/EC of 20 December
- 642 2001 relating to honey, in: Union, T.C.o.t.E. (Ed.). Official Journal of the European
- 643 Communities, pp. 47-49.
- 644 Tomás-Barberán, F.A., Grayer-Barkmeijer, R.J., Gil, M.I., Harborne, J.B., (1988).
- Distribution of 6-hydroxy-, 6-methoxy- and 8-hydroxyflavone glycosides in the labiatae, the
- scrophulariaceae and related families. Phytochemistry 27(8), 2631-2645.
- Tomás-Barberán, F.A., Martos, I., Ferreres, F., Radovic, B.S., Anklam, E., (2001). HPLC
- 648 flavonoid profiles as markers for the botanical origin of European unifloral honeys. Journal of
- the Science of Food and Agriculture 81(5), 485-496.
- 650 Truchado, P., Ferreres, F., Bortolotti, L., Sabatini, A.G., Tomas-Barberan, F.A., (2008).
- Nectar Flavonol rhamnosides are floral markers of acacia (Robinia pseudacacia) honey.
- Journal of Agricultural and Food Chemistry 56(19), 8815-8824.
- Von der Ohe, W., Persano Oddo, L., Piana, M., Morlot, M., Martin, P., (2004). Harmonized
- methods of melissopalynology. Apidologie 35, S18-S25.
- 655 Wang, M., Li, J., Rangarajan, M., Shao, Y., LaVoie, E.J., Huang, T.-C., Ho, C.-T., (1998).
- 656 Antioxidative Phenolic Compounds from Sage (Salvia officinalis). Journal of Agricultural
- and Food Chemistry 46(12), 4869-4873.
- 658 Zgórka, G., Głowniak, K., (2001). Variation of free phenolic acids in medicinal plants
- belonging to the Lamiaceae family. Journal of Pharmaceutical and Biomedical Analysis
- *660* 26(1), 79-87.

662	Figure Captions
663	
664	Fig. 1. (A) PC scores plot of the honey samples; (B) Loadings plot of the honey samples.
665	Fig. S1. Base peak chromatogram of Common sage honey (sample No. SH2) extract. Peak
666	numbers corresponds to those in Table 3: (2) gallocatechin, (3) salvianic acid aA, (4)
667	protocatechuic acid, (7) epigallocatechin, (9) catechin, (11) chlorogenic acid, (12) p-
668	hydroxybenzoic acid, (13) feruloyl-hexoside, (14) epicatechin, (17) coumaroyl-
669	hexoside, (22) gentistic acid, (23) luteolin-rutinoside, (24) isorhamnetin-rutinoside,
670	(25) quercetin-hexoside, (27) p-coumaric acid, (28) taxifolin, (30) rosmarinic acid,
671	(35) trans, trans-abscisic acid, (37) monohydroxybenzoic acid, (42) sakuranetin, (44)
672	kaempferol, and (45) rhamnetin.
673	
674	

Table 1 Apiary locations of the sage honey sample's production. Melissopalynological and sensory assessment of unifloral sage (*Salvia officinalis* L.) honey samples deriving from the North Croatian Littoral.

			Melissopalynological	Sensory	Compliance to
Sample	Location	Year	assessment of honey	assessment of	sage honey
			samples	honey samples	uniflorality
SH1	Croatia, Cres	2013	D	Fair	Complies
SH2	Croatia, Eastern Istria	2013	В	Good	Complies
SH3	Croatia, Cres	2013	С	Fair	Complies
SH4	Croatia, Rab	2012	C	Fair	Complies
SH5	Croatia, Cres	2012	С	Good	Complies
SH6	Croatia, Krk	2011	В	Good	Complies
SH7	Croatia, Klenovica	2011	C	Good	Complies
SH8	Croatia, Krk	2011	В	Fair	Complies
SH9	Croatia, Cres	2010	C	Good	Complies
SH10	Croatia, Krk	2010	В	Good	Complies
SH11	Croatia,Cres	2010	D	Good	Complies
SH12	Croatia, Krk	2010	С	Fair	Complies
SH13	Croatia, Krk	2009	С	Good	Complies
SH14	Croatia, Cres	2009	C	Fair	Complies
SH15	Croatia, Kraljevica	2012	В	Good	Complies
SH16	Croatia, Cres	2010	C	Fair	Complies
SH17	Croatia, Cres	2012	C	Fair	Complies
SH18	Croatia, Krk	2012	В	Good	Complies

Pollen frequency classes:

A - "Predominant pollen" (more than 45 % of the pollen grains);

680 B - "Secondary pollen" (16–45 %);

681 C - "Important minor pollen" (3–15 %);

682 D - "Minor pollen" (less than 3 %).

683

675

676

Table 2 Presence of polyphenolics in the sage (*Salvia officinalis* L.) honeys; number of identified compound, target compounds, mean expected retention times, exact mass, calculated mass, mean mass accuracy (ppm), and MS/MS fragments.

684

685

Peak	Comme	$t_{ m R},$	Exact mass,	Calculated	A	Memer	
No	Compounds	min	[M–H] ⁻	mass [M–H]	Δ pm	MS/MS fragments	
1	Gallic acid ^a	2.55	169.01392	169.01425	1.95	125	
2	Gallocatechin ^a	3.96	305.06583	305.06668	2.79	219, 261	
3	Salvianic acid A	3.97	197.04520	197.04555	1.78	179, 153, 123	
4	Protocatechuic acid ^a	4.34	153.01903	153.01933	1.96	109	
5	Chlorogenic acid isomer 1	4.48	353.08716	353.08781	1.84	191, 179, 146	
6	Caffeoyl-hexoside	4.52	341.08716	341.08781	1.91	179	
7	Epigallocatechin ^a	4.65	305.06589	305.06668	2.59	219, 261	
8	Dimethoxybenzoic acid	4.75	181.05025	181.05063	2.10	151, 137	
9	Catechin ^a	4.92	289.07095	289.07176	2.80	159, 123	
10	Eriodictyol-rutinoside	5.01	595.16644	595.16684	0.67	449, 287	
11	Chlorogenic acid ^a	5.04	353.08682	353.08781	2.80	191, 179, 146	
12	p-Hydroxybenzoic acid ^a	5.09	137.02425	137.02442	1.24	93	
13	Feruloyl-hexoside isomer 1	5.30	355.10229	355.10346	3.29	193	
14	Epicatechin ^a	5.32	289.07114	289.07176	2.14	159, 123	
15	Gallocatechin gallate ^a	5.34	457.07703	457.07763	1.31	305	
16	Chlorogenic acid isomer 2	5.37	353.08710	353.08781	2.01	191, 179, 146	
17	Coumaroyl-hexoside	5.39	325.09213	325.09289	2.34	163	
18	Epigallocatechin gallate ^a	5.46	457.0769	457.07763	1.60	305	
19	Caffeic acid ^a	5.48	179.03476	179.03498	1.23	135, 161	
20	Feruloyl-hexoside isomer 2	5.61	355.10260	355.10346	2.42	193	
21	Rutin ^a	5.94	609.14490	609.14611	1.99	463, 301	
22	Gentistic acid ^a	5.96	153.01900	153.01933	2.16	109	
23	Luteolin-rutinoside	5.97	593.15045	593.15119	1.25	447, 285	
24	Isorhamnetin-rutinoside	6.03	623.16040	623.16176	2.18	461, 315	
25	Quercetin-hexoside	6.07	463.08691	463.08820	2.79	301	
26	Ellagic acid ^a	6.16	300.99847	300.99899	1.73	283, 200, 175	
27	p-Coumaric acid ^a	6.25	163.03984	163.04007	1.41	119	

28	Taxifolin	6.47	303.05023	303.05103	2.64	285, 269, 255,217
29	Ferulic acid ^a	6.70	193.05014	193.05063	2.54	175, 139
30	Rosmarinic acid ^a	6.79	359.07635	359.07724	2.48	197, 179, 161
31	Apigenin-rutinoside isomer	6.83	577.15521	577.15628	1.85	431, 269
32	Apigenin-hexoside isomer 1	6.92	431.09775	431.09837	1.44	269
33	Luteolin-hexoside	6.93	447.09274	447.09329	1.23	285
34	Eriodictyol	7.14	287.05551	287.05611	2.09	125
35	trans, trans-Abscisic acid	7.44	263.12814	263.12888	2.81	191, 179
36	Apigenin-hexoside isomer 2	7.52	431.09778	431.09837	1.37	269
37	Monohydroxybenzoic acid	7.70	137.02423	137.02442	1.39	93
38	cis, trans-Abscisic acid ^a	7.73	263.12833	263.12888	2.09	191, 179
39	Luteolin ^a	7.75	285.03989	285.04046	2.00	213, 151
40	Quercetin ^a	7.80	301.03445	301.03538	3.09	151, 179, 121
41	Resveratrol ^a	7.85	227.07056	227.07137	3.57	209
42	Sakuranetin	8.06	285.07623	285.07685	2.17	133
43	Apigenin ^a	8.44	269.04477	269.04555	2.90	149, 151, 173, 183
44	Kaempferol ^a	8.57	285.03970	285.04046	2.67	199, 161, 151, 135
45	Rhamnetin	8.57	315.04996	315.05103	3.40	300, 165, 121
46	Hispidulin	8.66	299.05527	299.05611	2.81	284
47	Pinobanksin ^a	8.67	271.06067	271.06120	1.96	253, 243, 165, 151, 107
48	Isorhamnetin	8.73	315.05057	315.05103	1.46	300, 151, 107
49	Hesperetin ^a	8.77	301.07101	301.07176	2.49	271, 161
50	Quercetin dimethyl ether 1	8.98	329.06656	329.06668	0.36	315, 165
51	Quercetin dimethyl ether 2	9.64	329.06586	329.06668	2.49	315, 166
52	Pinostrobin ^a	9.83	269.08121	269.08193	2.68	151, 179
53	Prenyl caffeate	9.85	247.09703	247.09758	2.23	135, 179
54	Chrysin ^a	10.07	253.05009	253.05063	2.13	101, 151, 181, 209, 143
55	Pinocembrin ^a	10.09	255.06563	255.06628	2.55	213, 211, 151
56	Acacetin	10.14	283.06094	283.06120	0.92	268, 133, 151, 107
57	Caffeic acid phenethyl ester	10.15	283.09714	283.09758	1.55	135, 179
51	(CAPE)	10.13	200.07/17	200.07700	1.55	, . , ,
58	Galangin ^a	10.25	269.04489	269.04555	2.45	151, 183
59	Genkwanin	10.62	283.06042	283.06120	2.76	268, 239, 211

60	Carnosol ^a	11.72	329.17487	329.17583	2.92	311, 296
61	Carnosic acid ^a	12.81	331.19061	331.19148	2.63	287, 269

687 Confirmed using available standards.

688

689

Table 3 Quantification of individual polyphenolics (mg/kg), radical scavenging activity

(RSA) and total phenolic content (TPC) in the sage (Salvia officinalis L.) honeys.

	CITA	SH	CHIA	SH	SH	CIIC	SH											
	SH1	2	SH3	4	5	SH6	7	8	9	10	11	12	13	14	15	16	17	18
Ga		0.1	0.12	0.1	0.1	0.10	0.1	0.1		0.1		0.1		0.1	0.1	0.1	0.1	
A	-	5	0.13	2	2	0.18	6	9	-	3	-	2	-	7	3	5	2	-
G.G.		0.4	0.15	0.1	0.1	0.16			0.1	0.2	0.1	0.1				0.2	0.2	0.3
GC	-	9	0.15	9	6	0.16	-	-	6	2	6	5				0	6	7
Pr	0.24	0.7	0.74	0.5	0.2	0.24	0.3	0.6	0.6	0.4	0.4	0.1	0.3	0.4	0.3	0.3	0.4	0.6
A	0.34	0	0.74	4	5	0.34	1	8	2	8	9	4	1	2	3	9	4	8
EG	0.12	_	0.46	0.1	0.0	0.12	0.0	0.1	0.1	0.1	0.0	0.0	0.1	0.0	0.0		0.2	0.1
C	0.12	-	0.46	0	8	0.12	8	0	4	4	9	7	6	8	8	-	4	6
Ge								0.1							0.0			0.0
A	-	-	-	-	-	-	-	3				-	-	-	1	-	-	2
НВ	1.89	1.9	1.61	1.2	1.8	1.45	3.2	2.1	1.3	1.8	1.2	0.8	1.3	1.5	2.0	1.7	1.6	2.3
A	1.09	3	1.01	5	2	1.43	8	8	6	2	0	1	4	5	6	3	6	6
Ch	=	0.0	0.01	0.1	0.2		0.0	0.0	0.2	0.0	0.0	0.0	0.0			0.1	0.0	
A	_	4	0.01	0	2		2	5	6	9	4	3	7			0	3	_
C	0.12	0.0	0.15	0.0	_			_	0.0	0.0	0.0	_	0.0	_	_	0.0	0.0	_
Č	0.12	3	0.15	9					5	1	4		5			1	6	
Ca	0.48	1.8	0.56	0.3	0.4	0.59	0.5	0.9	0.5	0.6	0.6	0.6	0.3	0.3	0.4	0.7	0.5	0.2
A	0.10	9	0.50	7	8	0.53	7	2	4	4	1	2	7	8	7	0	5	6
GC	0.82	0.7	0.75	-		_	1.1	1.0	0.7	0.7	0.7	0.6	0.8	0.6	0.7	0.6	0.7	1.0
G	0.02	4	0.70				5	5	2	0	2	9	1	9	1	9	3	3
EC	0.10	_	0.03	0.0	_	_	_	_	_	_	_	_	_	_	_	0.0	0.0	_
				6												5	7	
Co	2.73	3.1	3.45	1.8	2.0	1.36	3.6	2.7	2.8	1.3	1.8	2.5	1.0	0.7	0.9	1.6	2.6	1.1
A		1		9	1	1.36	2	8	1	9	2	1	3	7	2	2	8	0
Fe	0.64	1.5	3.09	0.9	0.4	0.50	1.0	4.3	1.3	0.3	0.5	0.7	0.6	0.1	0.8	0.5	0.6	1.4
A		4		7	4		1	9	1	4	1	7	0	6	3	3	7	0
Ro	-	0.2	0.01	0.2	0.3	0.30	0.3	0.0	0.1	0.0	0.1	0.2	0.1	0.2	0.2	0.1	0.2	0.2
A		1	01	1	7		3	5	8	9	5	3	4	7	5	4	6	9
EG	0.94	1.2	0.97	0.8	0.7	1.11	1.0	0.9	0.8	-	0.9	1.2	0.9	0.5	1.0	1.2	1.1	1.6

CG		5		5	9		0	6	0		6	6	5	8	7	8	4	1
Ab	0.35	1.0	1.89	0.5	0.7	1.09	0.7	3.9	0.6	0.2	0.4	0.8	0.3	0.6	1.6	0.6	0.4	1.5
A	0.55	6	1.69	4	4	1.09	3	9	1	6	8	6	9	4	4	9	6	9
RE		0.1			0.2											0.0	0.4	_
S	_	1	-	-	2	-	-	-	-	-	-	-	-	-	-	8	6	-
KA	0.14	0.1	0.24	0.7	0.4	0.16	0.2	0.2	0.5	0.3	0.6	0.0	0.3	0.1	0.2	0.5	0.5	0.2
E	0.14	8	0.24	8	6	0.10	0	1	1	8	5	3	8	8	6	4	5	8
PN		2.3	0.35	0.3	0.6	1.57	1.0	1.8	0.8	1.3	1.0	2.2	0.4	0.5	1.1	1.1	0.2	0.2
В	-	5	0.55	3	3	1.57	0	2	2	0	0	6	4	8	0	4	4	1
QU	0.07	0.3	0.14	0.5	0.2	0.12	0.1	0.3	0.3	1.0	0.3	0.1	0.3	0.3	0.1	0.5	0.4	0.3
E	0.07	8	0.14	8	3	0.12	7	3	6	5	6	1	2	6	4	9	5	0
СН	0.06	1.9	0.41	0.2	0.2	0.87	0.4	0.9	0.4	0.8	0.7	1.5	0.4	0.4	0.9	0.9	0.2	0.0
R	0.00	8	0.41	7	3	0.67	8	5	7	1	3	0	2	7	0	2	5	9
PN		0.3		_	_	0.07	0.0	0.1	0.0	0.0	0.0	0.1			0.0	0.0		_
S	_	4	-	-	-	0.07	4	9	1	7	3	9		-	5	4	-	-
PN		0.8	0.09	0.0	0.1	0.51	0.2	0.4	0.2	0.4	0.3	0.7	0.1	0.1	0.4	0.4		_
C	_	0	0.09	5	5	0.51	2	6	8	5	5	2	5	7	6	3	_	_
HE		0.8	0.10	0.0	0.2	0.37	0.1	0.3	0.2	0.3	0.2	0.5	0.0	0.0	0.3	0.3		
S	_	4	0.19	6	0	0.57	1	8	7	3	0	2	4	9	6	6	-	_
GL		0.3	0.01	_	0.0	0.11	0.0	0.2	0.0	0.1	0.0	0.2	0.0	_	0.0	0.0	_	_
N		9	0.01		1	0.11	7	3	4	2	7	2	1		9	9		
ТР	553.	485	424.	591	522	484.	471	509	538	56	747	417	525	444	379	545	585	208
C	98	.86	92	.08	.33	91	.03		.51	0.7	.49	.73	.39	.97	.54	.40	.28	.51
Ü				.,,			.,,,	,		2			,	.,,			.20	
RS	819.	627	526.	770	548	571.	541	627	610	58	894	474	641	675	416	626	770	351
Α	75	.44	81	.65	.55	41	.69	.79	.38	6.0	.87	.17	.38	.23	.81	.20	.11	.20
										4								

GaA – Gallic acid; GC – Gallocatechin; PrA – Protocatechuic acid; EGC – Epigallocatechin; GeA – Gentisic acid; HBA – p-Hydroxybenzoic acid; ChA – Chlorogenic acid; C – Catechin; CaA – Caffeic acid; GCG - Gallocatechin gallate; EC – Epicatechin; CoA – p-Coumaric acid; FeA – Ferulic acid; RoA – Rosmarinic acid; EGCG - Epigallocatechin gallate; AbA – cis, trans-Abscisic acid; RES – Resveratrol; KAE – Kaempferol; PNB – Pinobanksin; QUE – Quercetin; CHR – Chrysin; PNS – Pinostrobin; PNC – Pinocembrin; HES – Hesperetin; GLN – Galangin; TPC – Total phenolic content (mg GEA/kg); RSA – Radical scavenging activity (μmol TE/kg).

698 **Table 4** Quantification of the sugars and sugar alcohols in the sage (Salvia officinalis L.) honeys (g/kg).

	SH1	SH2	SH3	SH4	SHS	9HS	SH7	SH8	6НS	SH10	SH11	SH12	SH13	SH14	SH15	SH16	SH17	SH18
ERY	0.04	0.07	0.05	0.05	0.02	0.07	90.0	0.07	0.05	0.07	60.0	69.0	90.0	0.07	0.18	0.12	0.11	0.09
SOR	0.04	0.13	0.03	90.0	60.0	80.0	0.30	0.33	0.20	90.0	90.0	0.03	0.04	0.02	0.18	0.05	0.05	0.02
TRE	1.23	5.70	2.71	2.07	5.34	0.21	5.07	2.76	1.45	5.08	1.82	0.75	1.31	2.39	1.41	0.14	0.63	1.02
ARA	0.04	0.15	0.05	0.10	0.10	0.37	0.12	0.07	90.0	0.07	0.10	0.05	60.0	0.05	0.05	90.0	80.0	0.03
CFU	305.03	272.07	280.3	253.24	212.95	206.81	108.89	245.39	200.35	263.82	227.38	240.15	244.46	252.72	271.21	262.22	277.59	263.08
FRU	399.41	464.01	440.3	420.83	393.63	475.99	480.76	437.51	442.23	462.32	464.06	489.06	461.97	455.68	461.76	464.87	447.35	471.03
SUC	30.41	28.78	11.02	15.69	14.17	14.27	20.71	14.03	11.87	16.54	21.4	27.08	25.64	19.01	11.21	18.59	16.34	16.16
TUR	1.34	0.12	0.32	89.0	9.0	0.83	1.13	92.0	0.88	0.65	0.87	0.82	0.82	06.0	0.11	0.77	1.16	1.06
GLY	1.51	0.11	0.16	60.0	0.12	0.17	0.12	0.16	0.03	0.19	0.10	0.05	0.08	0.07	0.17	0.12	0.12	0.13
GAL	90.0	90.0	0.04	60.0	0.46	0.33	0.20	0.36	0.02	0.07	80.0	0.03	0.02	0.03	0.2	90.0	0.07	0.03
iMAL	4.45	3.11	5.31	14.6	3.63	7.13	7.68	5.40	3.95	12.61	12.34	3.52	7.44	8.51	8.28	10.22	11.62	86.6
iMALt	1.44	2.88	0.73	4.66	2.55	2.76	1.24	1.48	1.11	3.79	5.66	1.11	0.33	0.36	0.31	2.41	3.91	2.44
MAL	90.9	3.74	5.92	16.85	8.76	9.32	11.91	7.32	7.38	11.77	11.09	7.40	86.8	10.06	8.33	11.49	12.31	9.91
MALt	0.11	90.0	0.01	0.02	0.02	0.05	90.0	0.08	90.0	0.04	0.07	80.0	0.09	0.07	0.02	60.0	0.08	0.08
SUM	751.16	780.99	746.95	729.03	642.44	718.39	638.25	715.72	669.64	777.08	745.12	770.82	751.33	749.94	763.42	771.21	771.42	775.06
FRU/GLU	1.31	1.71	1.57	1.66	1.85	2.30	4.42	1.78	2.21	1.75	2.04	2.04	1.89	1.80	1.70	1.77	1.61	1.79

	<i>MAL/iMAL</i> 1.36 1.20 1.11 1.15 2.41 1.31	1.36	1.20	1.11	1.15	2.41	1.31	1.55	1.55 1.35 1.87	1.87	0.93	0.90	0.90 2.10 1.21 1.18 1.01 1.13 1.06 0.99	1.21	1.18	1.01	1.13	1.06)
_ 669	ERY – Erythritol; SOR – Sorbitol; TRE – Trehalose; ARA – Arab	ritol; SC	OR – Sor	bitol; TR	$\overline{\mathbf{E}-\mathrm{Treh}arepsilon}$	ılose; AR	$\overline{\mathbf{A} - \text{Arab}}$	inose; G	$\overline{\mathrm{LU}-\mathrm{Gh}}$	ucose; FI	3U – Fru	ctose; SU	ibinose; GLU – Glucose; FRU – Fructose; SUC – Sucrose; TUR – Turanose; GLY – Glycerol; GAL –	ose; TUI	3 – Turar	iose; GL	Y – Glyc	erol; GA	L
200	Galactitol; iMAL – Isomaltose; iMALt – Isomaltotriose; MAL	[AL - I]	somaltos	e; iMALt	: – Isomal	totriose; l	MAL – N	1altose; I	MALt –]	Maltotrio	se; SUM	[– Summ	laltose; MALt – Maltotriose; SUM – Summary of quantified sugars and sugar alcohols; FRU/GLU-	antified s	ugars and	l sugar al	lcohols; I	FRU/GL	-D

Galactitol; iMAL – Isomaltose; iMALt – Isomaltotriose; MAL – Maltose; MALt – Maltotriose; SUM – Summary of quantified sugars and sugar alcohols; FRU/GLU –

Fructose/Glucose ratio; MAL/iMAL – Maltose/Isomaltose ratio. 701

Table 5 Quantification of the minerals in the sage (Salvia officinalis L.) honeys (mg/kg).

	SH	SH	SH	SH	SH	SH	SH	SH	SH	SH	SH	SH	SH	SH	SH	SH	SH	SH
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
A	0.0	0.4	0.4	0.4	0.1	0.0	< <u>L</u>	0.2	0.5	0.2	0.3	< <u>L</u>	0.3	0.8	0.0	0.2	0.1	0.1
1	95	33	31	19	45	23	OQ	61	05	66	87	OQ	06	83	59	63	49	11
A	0.0	<l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th>0.0</th><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th>0.0</th><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th>0.0</th><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th>0.0</th><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th>0.0</th><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th>0.0</th><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th><l< th=""><th>0.0</th><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th>0.0</th><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th>0.0</th><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th>0.0</th><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th>0.0</th><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th>0.0</th><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	0.0	<l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th>0.0</th><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th>0.0</th><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th>0.0</th><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th>0.0</th><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th><l< th=""><th>0.0</th><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th>0.0</th><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<>	<l< th=""><th>0.0</th><th><l< th=""><th><l< th=""></l<></th></l<></th></l<>	0.0	<l< th=""><th><l< th=""></l<></th></l<>	<l< th=""></l<>
s	03	OQ	О Q	OQ	OQ	OQ	OQ	06	OQ	OQ	OQ	OQ	OQ	OQ	OQ	13	OQ	OQ
В	1.2	2.3	1.1	1.2	1.8	2.7	2.1	2.5	1.9	1.3	2.0	2.2	2.1	1.7	3.0	2.1	1.4	1.6
Б	70	76	34	90	76	60	13	99	07	88	86	01	74	74	29	40	55	81
В	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
a	51	94	84	68	76	66	59	76	67	64	72	76	64	71	71	60	69	62
C	23.	49.	50.	50.	36.	23.	31.	47.	34.	32.	39.	20.	35.	22.	36.	30.	30.	20.
a	823	894	42	471	787	591	557	122	375	747	980	409	098	978	471	205	493	885
	020	0,	7	.,,	707	0,1	007	122	5,6				0,0	,,,	.,,	200	.,,,	002
C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
d	03	04	03	04	03	03	03	04	03	03	03	03	03	04	04	03	03	03
C	<l< th=""><th><l< th=""><th><l< th=""><th>0.0</th><th><l< th=""><th><l< th=""><th><l< th=""><th><<u>L</u></th><th><l< th=""><th><<i>L</i></th><th><<i>L</i></th><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th>0.0</th><th><l< th=""><th><l< th=""><th><l< th=""><th><<u>L</u></th><th><l< th=""><th><<i>L</i></th><th><<i>L</i></th><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th>0.0</th><th><l< th=""><th><l< th=""><th><l< th=""><th><<u>L</u></th><th><l< th=""><th><<i>L</i></th><th><<i>L</i></th><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	0.0	<l< th=""><th><l< th=""><th><l< th=""><th><<u>L</u></th><th><l< th=""><th><<i>L</i></th><th><<i>L</i></th><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th><<u>L</u></th><th><l< th=""><th><<i>L</i></th><th><<i>L</i></th><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><<u>L</u></th><th><l< th=""><th><<i>L</i></th><th><<i>L</i></th><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	< <u>L</u>	<l< th=""><th><<i>L</i></th><th><<i>L</i></th><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	< <i>L</i>	< <i>L</i>	<l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th><l< th=""><th><l< th=""></l<></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th><l< th=""></l<></th></l<></th></l<>	<l< th=""><th><l< th=""></l<></th></l<>	<l< th=""></l<>
0	0Q	OQ.	0	12	OQ.	0Q	0Q	o _Q	OQ.	0Q	OQ.	0Q	0Q	0Q	OQ.	OQ.	0Q	OQ.
	~	~	Q		~	~	X		~	~	~	~	~	~	~	~	~	~
C	0.0	0.0	0.0	<l< th=""><th><l< th=""><th><l< th=""><th><<u>L</u></th><th>0.0</th><th>0.0</th><th>0.0</th><th>0.0</th><th><l< th=""><th>0.0</th><th>0.0</th><th><l< th=""><th><<u>L</u></th><th><l< th=""><th>0.0</th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th><<u>L</u></th><th>0.0</th><th>0.0</th><th>0.0</th><th>0.0</th><th><l< th=""><th>0.0</th><th>0.0</th><th><l< th=""><th><<u>L</u></th><th><l< th=""><th>0.0</th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><<u>L</u></th><th>0.0</th><th>0.0</th><th>0.0</th><th>0.0</th><th><l< th=""><th>0.0</th><th>0.0</th><th><l< th=""><th><<u>L</u></th><th><l< th=""><th>0.0</th></l<></th></l<></th></l<></th></l<>	< <u>L</u>	0.0	0.0	0.0	0.0	<l< th=""><th>0.0</th><th>0.0</th><th><l< th=""><th><<u>L</u></th><th><l< th=""><th>0.0</th></l<></th></l<></th></l<>	0.0	0.0	<l< th=""><th><<u>L</u></th><th><l< th=""><th>0.0</th></l<></th></l<>	< <u>L</u>	<l< th=""><th>0.0</th></l<>	0.0
r	04	05	04	OQ	OQ	OQ	OQ	15	06	10	07	OQ	13	09	OQ	OQ	OQ	03
C	0.1	0.2	0.1	0.1	0.2	0.1	0.2	0.1	0.2	0.1	0.2	0.2	0.1	0.1	0.3	0.1	0.1	0.1
u	01	99	87	26	20	98	83	73	33	55	19	21	66	87	13	52	24	09
F	0.2	0.9	0.5	0.5	0.4	0.4	0.2	0.8	0.3	0.4	2.2	0.4	2.4	0.8	0.1	0.3	0.2	0.4
e	47	28	27	33	57	42	74	53	71	79	78	00	94	06	95	82	48	96
K	2.1	1.2	1.8	2.0	1.3	0.8	0.9	0.9	1.0	1.1	1.8	0.5	1.3	0.7	1.2	1.1	2.1	0.6
а	51	81	38	37	13	44	09	82	26	16	73	92	00	30	13	45	07	75
L	< <i>L</i>	<l< th=""><th><<u>L</u></th><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><<i>L</i></th><th><<i>L</i></th><th><<i>L</i></th><th><<i>L</i></th><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><<i>L</i></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	< <u>L</u>	<l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><<i>L</i></th><th><<i>L</i></th><th><<i>L</i></th><th><<i>L</i></th><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><<i>L</i></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th><l< th=""><th><<i>L</i></th><th><<i>L</i></th><th><<i>L</i></th><th><<i>L</i></th><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><<i>L</i></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th><<i>L</i></th><th><<i>L</i></th><th><<i>L</i></th><th><<i>L</i></th><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><<i>L</i></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><<i>L</i></th><th><<i>L</i></th><th><<i>L</i></th><th><<i>L</i></th><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><<i>L</i></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	< <i>L</i>	< <i>L</i>	< <i>L</i>	< <i>L</i>	<l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><<i>L</i></th></l<></th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><<i>L</i></th></l<></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th><l< th=""><th><l< th=""><th><<i>L</i></th></l<></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th><l< th=""><th><<i>L</i></th></l<></th></l<></th></l<>	<l< th=""><th><l< th=""><th><<i>L</i></th></l<></th></l<>	<l< th=""><th><<i>L</i></th></l<>	< <i>L</i>
i	0Q	OQ	0	OQ.	OQ.	OQ.	OQ.	OQ.	OQ.	OQ.	0Q	OQ.	OQ.	OQ.	OQ.	OQ.	OQ.	OQ
		-	Q	_	_								_		_			-
M	5.0	26.	11.	10.	7.9	7.9	8.9	25.	8.0	11.	8.7	5.9	7.1	9.9	10.	7.1	5.7	10.