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Summary

Cancer immunotherapies have significantly improved patient survival and treatment options in re-
cent years. Nonetheless, the success of immunotherapy is limited to certain cancer types and specific 
subgroups of patients, making the development of new therapeutic approaches a topic of ongoing 
research. Chimeric antigen receptor (CAR) cells are engineered immune cells that are programmed 
to specifically eliminate cancer cells. Ideally, a CAR recognizes antigens that are restricted to tumor 
cells to avoid off-target effects. NKG2D is an activating immunoreceptor and an important player in 
anti-tumor immunity due to its ability to recognize tumor cells and initiate an anti-tumor immune re-
sponse. Ligands for NKG2D are expressed on malignant or stressed cells and typically absent from 
healthy tissue, making it a promising CAR candidate. Here, we provide a summary of past and on-
going NKG2D-based CAR clinical trials and comment on potential pitfalls.

Keywords:   NKG2D, CAR T cells, immunotherapy, adoptive cell transfer

Cancer is the second leading cause of death globally, ex-
erting a tremendous financial burden on healthcare sys-
tems. Despite significant breakthroughs in diagnosis and 

treatment in recent decades, incidence and mortality rates 
continue to be high. Surgery, adjuvant chemotherapy, and 
radiotherapy remain the standard treatments to date, 

Abbreviations: AML: Acute myeloid leukemia; CAR: Chimeric antigen receptor; MDS: Myelodysplastic syndrome; NK: Natural killer; 
NKG2D: Natural-killer group 2, member D; NKG2DL: NKG2D ligand; scFV: Single-chain variable fragment; shRNA: Short-hairpin RNA; 
TIM: TCR inhibitory molecule.
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which, depending on the type of cancer often have low 
success rates. As a result, several therapeutic strategies 
are actively being developed, including chimeric antigen 
receptor (CAR)–T-cell–based immunotherapy, which is 
a promising therapeutic approach for cancer patients 
resistant to conventional therapies [1]. A CAR is a syn-
thetic receptor allowing tumor-specific antigen recogni-
tion and consists of four main parts: (i) an extracellular 
recognition domain (ligand sensing), (ii) a hinge domain, 
(iii) a transmembrane domain, and (iv) an intracellular 
signaling domain [2]. The extracellular recognition do-
main of CAR constructs can consist of light and heavy 
variable chains from the single-chain variable fragment 
(scFv) from antibodies [3] or other engineered and arti-
ficial domains with strong affinities toward various lig-
ands [4,5]. The intracellular signaling domain almost 
always consists of the CD3ζ signaling moiety. To en-
hance the downstream signaling strength of the CAR, the 
CD3 ζ signaling domain is often fused to one or more 
co-stimulatory domains [6].

NKG2D (natural-killer group 2, member D) is one 
of the best characterized activating immune receptors 
associated with tumor immunosurveillance. Both pri-
mary and metastatic cancer cells frequently upregulate 
stress-induced ligands that are closely related to MHC 
class  I molecules such as MICA, MICB, and the ULBP 
family of proteins which are then recognized by the 
NKG2D receptor present on natural killer (NK) cells 
and various T cell subsets, including CD8+ and CD4+ αβ 
T cells and γδ T cells [7]. The interaction between the 
NKG2D ligand (NKG2DL) and the NKG2D receptor 
triggers the activation, expansion, and production of pro-
inflammatory cytokines of effector immune cells, typic-
ally leading to target cell elimination [7] (Fig. 1A).

The role of NKG2D and its ligands in tumor 
immunosurveillance has been demonstrated in animal 
models, where it was shown that NKG2DLs confer an ef-
fective barrier to tumor formation and that NKG2D de-
ficiency results in a decreased ability to fight tumor cells 
[8,9]. Findings of high NKG2DL expression in human 
colorectal, cervical, and nasopharyngeal carcinomas and 
its correlation with improved disease-free survival sup-
ported the role of NKG2D in anti-tumor immunity and 
the notion of NKG2D as a potential immunotherapy 
target [10]. In contrast to current FDA-approved CAR 
T cells, which are all based on the expression of a single-
chain variable antibody fragment recognizing a tumor-
specific antigen [11], NKG2D CAR T cells express an 
immunoreceptor, including its transmembrane signaling 
adaptors, that recognizes antigens expressed on the sur-
face of tumor cells. Indeed, a number of clinical trials 
harnessing NKG2D as a CAR are currently ongoing, 

the majority of which are based on CAR T cells, with 
two trials using CAR NK cells and one trial using CAR 
γδT cells (Table 1). NK cells pose a few advantages over 
αβT cells: primarily, autologous transfer of NK cells has 
a lower degree of graft versus host disease (GvHD) and 
cytokine-release syndrome compared to αβT cells, which 
enables the possibility of engineering off-the-shelf CAR 
NK cell therapies [12]. γδT cells are tissue-resident im-
mune cells with inherent anti-tumor function that do 
not rely on the expression of tumor-specific antigens and 
therefore provide a promising target for CAR cell therapy 
[13]. CAR γδT cells have been shown to have increased 
cytotoxicity compared to normal γδT cells and maintain 
their ability to cross-present antigens to conventional T 
cells [14]. Nonetheless, there are some potential pitfalls 
of CAR γδT cells and CAR NK cells. Preclinical data 
suggests that persistence of both cell types is limited 
and reduced compared to CAR αβT cells [15,16] and 
CAR NK cells can be sensitive to thawing and long-term 
storage [17]. Despite some of the apparent advantages, 
most importantly the possibility to develop off-the-shelf 
therapy, no CAR γδT cells or CAR NK cells have been 
approved to this date and more research is needed to 
determine whether they can perform as well, or better, 
than αβT cells.

Celyad Oncology is the current frontrunner in terms 
of NKG2D-based CAR therapies. Their CAR construct, 
which is based on αβT cells, consists of extracellular, 
full-length human NKG2D (serving as both the extracel-
lular recognition domain and transmembrane domain) 
fused to the intracellular signaling domain of CD3ς, 
which is stabilized through naturally expressed DAP10 
(Fig. 1B top) [18,19]. Current versions of the NKG2D-
CAR constructs can also contain TCR Inhibitory 
Molecule (TIM), a small peptide which is capable of 
interfering with endogenous TCR signaling thought to 
contribute GvHD (Fig. 1B middle) [20], or an short-
hairpin RNA (shRNA) which targets NKG2D ligands 
MICA and MICB that can be naturally present on T 
cells, effectively preventing fratricide (Fig. 1B bottom) 
[21]. NKG2D-CAR T cells are generated in a multistep 
process. First, white blood cells are isolated from patients 
through leukapheresis and enriched for T cells. Enriched 
T cells are activated using IL-2 and αCD3, and the CAR 
construct transduced using an SFG retroviral vector [22]. 
These NKG2D-CAR T cells are then expanded in media 
containing IL-2 before being re-injected into the patients 
(Fig. 1C) [18,19].

Celyad Oncology is currently testing three dif-
ferent CAR T cells in various types of cancer. CYAD-
01 (formerly known as NKR-2) is an autologous 
NKG2D-CAR T cell, which is being tested alone or 
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Figure 1.  Overview of NKG2D-CAR T cell therapy. (A) Schematic of NKG2D on the surface of lymphocytes interacting with human 
ligands MICA and MICB. (B) Schematics of Celyad’s NKG2D-CAR constructs consisting of an extracellular and transmembrane 
NKG2D domain, a spacer and intracellular CD3 ς signaling domain. The base construct can also contain a TCR inhibitory molecule 
(TIM, middle) or shRNA targeting NKG2D ligands (bottom). (C) NKG2D-CAR T cell pipeline in the clinic. PBMCs are isolated from 
patients and enriched for T cells. Enriched T cells are expanded and transfected with the CAR, which is stabilized by endogenous 
DAP10, before being expanded and re-infused into the patient. Created using Biorender.com.

http://Biorender.com
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in combination with chemotherapy in hematological 
and solid cancers. An improved version of CYAD-
01—CYAD-02—which, in addition to the NKG2D re-
ceptor, contains the shRNA that targets and knocks 
down expression of NKG2D ligands on CAR T cells 
(Fig. 1a bottom), is being trialed in acute myeloid leu-
kemia (AML) and myelodysplastic syndrome (MDS) 
patients [18,23,24] (Table 1). In addition to the au-
tologous therapy, Celyad Oncology has developed an 
allogeneic NKG2D-CAR T cell—CYAD-101—for use 
in patients suffering from unresectable metastatic colo-
rectal cancer (Fig. 2). CYAD-01 was initially tested as 
a single infusion (NCT02203825), which resulted in 
no clinical efficacy (Fig. 2 and Table 1). Following this 
initial trial, four further trials were initiated—THINK 
(NCT03018405), a dose escalation trial; SHRINK 
(NCT03310008) a dose-escalation trial adminis-
tered concurrently with chemotherapy (FOLFOX) 
in patients with colon cancer liver metastasis; LINK 
(NCT03370198), a dose-escalation trial with hepatic 
transarterial infusion, as opposed to i.v. infusion and 
DEPLETHINK (NCT03466320) a dose-escalation 
trial with infusion following CyFlu preconditioning 
in AML and MDS patients. Following the SHRINK 
trial, the allogeneic NKG2D-CAR T cell was tested 
in the alloSHRINK trial (NCT03692429), in which 
CYAD-101 was administered following standard 
chemotherapy. Celyad Oncology recently announced a 
collaboration with Merck to test the combination of 
KEYTRUDA® (pembrolizumab, anti PD-1 antibody) 
and CYAD-101 in the KEYNOTE-B79 trial, in which 
they hope to enhance the function of CYAD-101 in the 
tumor microenvironment and induce a more durable 
anti-tumor response. Similar to tumor-infiltrating T 
cells, CAR T cells can upregulate PD-1, impairing their 
function, and PD-1 blockade might therefore improve 
CAR T cell efficacy and function [25]. The CYCLE-1 
trial (NCT04167696), which was initiated in 2019, is 
seeking out to test the safety and efficacy of CYAD-
02 following CyFlu preconditioning in AML and MDS 
patients (Fig. 2 and Table 1).

While preliminary results are promising, there are 
some potential pitfalls to be considered. For one, the 
presence of NKG2D ligands is not always associated 
with an enhanced cytolytic immune response against 
cancer. NKG2D-mediated tumor immune surveillance 
can exert considerable selection pressure on tumor 
survival [26]. Therefore, it is not surprising that some 
human tumors shed NKG2DL from their surface to 
evade the immune response and therefore produce 
high levels of a soluble version of NKG2DL. Binding 
of soluble NKG2D ligand can then result in systemic T
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desensitization of NKG2D in effector cells and impaired 
anti-tumor function [27–29]. Therefore, although the 
NKG2D receptor may represent a promising treatment 
strategy for cancer therapy, it should be considered that 
high levels of soluble NKG2DL may impair immune cell 
responsiveness by downregulating the NKG2D receptor. 
Indeed, strategies have been developed to prevent shed-
ding of NKG2DL from the surface of tumor cells [30], 
which if combined with NKG2D CAR T cell therapy 
could increase the anti-tumor activity and overcome 
tumor immune evasion. In addition to ligand shedding 
and immune evasion, another major concern is that 
NKG2DL, which is typically absent from healthy tissue, 
is constitutively expressed on healthy intestinal epithe-
lial cells [31], potentially leading to off-target effects in 
NKG2D-based immunotherapy. Further, NKG2D has 
been shown to contribute to tumorigenesis in the set-
ting of inflammation-driven cancer, such as a model of 
hepatocellular carcinoma [32] and whether NKG2D 
CAR T cells would contribute to the anti-tumor func-
tion or instead foster the tumor-promoting inflamma-
tion remains to be determined.

Outlook

The therapeutic potential of NKG2D CAR T cells is high 
due to the ubiquitous expression of NKGDL on various 
cancers and the well-studied anti-tumor function of 
NKG2D-expressing immune cells. Preliminary data from 
clinical trials testing NKG2D CAR T cells are prom-
ising and research developing improved CAR constructs 
or combination therapy are ongoing. While most trials 
utilize αβT cells, NKG2D CAR NK cells or γδ CAR T 
cells encompass a novel approach that will allow autolo-
gous cell transfer and therefore harbors the potential for 
off-the-shelf therapies.
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