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Summary
Natural killer (NK) cells are important in the host resistance to viral infections. They are among the
first cells to sense the release of proinflammatory cytokines, as well as the downregulation of surface
MHC class I molecules and molecules induced by viral invasion of cells. Various viral functions
have evolved to counter NK cell responses illustrating the evolutionary struggles between viruses
and NK cells. Ligands for NK cell receptors are primary targets for viral immunoevasion. In order
to counteract NK cell activation via the “missing self”-axis, viruses encode proteins which serve as
ligands for inhibitory NK cell receptors. Viruses also downmodulate the ligands for the activating
NK cell receptors and encode soluble ligands which block these receptors. In addition to viral
immunoregulatory proteins, regulatory RNAs can also inhibit the expression of ligands for NK cell
receptors. Improving our understanding of viral regulation of NK cell function could be essential for
designing more efficient measures in the prophylaxis and treatment of virus-induced pathology.

Introduction
Natural killer (NK) cells control viral replication during the time preceding the induction of
the adaptive immune response. They are activated through soluble mediators and by direct cell-
to-cell contact. Also, by interacting with dendritic cells (DCs), NK cells are involved in
regulation of the adaptive immunity [1,2]. NK cells control the infection by cytolysis and
secreting proinflammatory cytokines [3]. The activation of NK cells is regulated through the
integration of signals from a number of inhibitory and activating receptors [4], many of which
employ MHC class I or class I-like proteins as their ligands. Furthermore, in order to become
fully functional during ontogenesis, individual NK cells must engage self-reactive inhibitory
receptors specific for appropriate MHC class I molecules [5,6]. NK cell receptors, which utilize
MHC class I as their ligands, include the human killer cell Ig-like receptor (KIR) family, the
mouse Ly49 family, human and mouse CD94/NKG2 heterodimers and leukocyte Ig-like
receptors (LIR) [7]. Other activating NK cell receptors include natural cytotoxicity receptors
(NCRs) and NKG2D, among others [8]. While normal cellular ligands for NCRs remain
unknown, the NKG2D receptor recognizes several different ligands induced by cellular stress
and infection [9].

Viruses have acquired numerous mechanisms aimed at subverting or evading the NK cell
immune surveillance. Apart from interfering with NK cell receptors and their ligands, viruses
affect NK cell responses by regulating apoptosis, modulating cytokines and chemokines, and
by compromising DC functions [10,11]. Here we review the unique relationship between NK
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cells and viruses, with a focus on viral strategies for interfering with the expression of ligands
for NK cell receptors (Table 1).

Viral avoidance of NK cells activation via “missing self” axis
Viruses downregulate surface MHC class I molecules in order to avoid recognition by CD8+

T cells [12]. However, the loss of MHC class I molecules renders the cells susceptible to NK
cells as described by the “missing-self” hypothesis [13]. To avoid NK cell-mediated control,
viruses encode surrogate ligands for inhibitory NK cell receptors and/or are able to
differentially regulate MHC class I molecules by downmodulating those that present viral
peptides to CD8+ T cells, while sparing those that serve as ligands for inhibitory NK cell
receptors [14].

The human cytomegalovirus (HCMV) MHC class I homolog, UL18, was originally described
as a decoy ligand for the inhibitory NK cell receptor [15]. The fact that its receptor, LIR-1, was
found only on a minor subset of NK cells makes this finding controversial [16]. Later on, it
was reported that UL18 could both activate and inhibit NK cell response [16,17]. Its inhibitory
function is dependent on the interaction with the LIR-1 molecule [18*]. The mode of activation
by UL18 still remains unknown, although it is LIR-1 independent [19*]. Of note, the UL18
sequence and its affinity for LIR-1 vary among clinical HCMV isolates [20,21]. The cellular
receptor for mouse cytomegalovirus (MCMV) MHC class I homolog, m144, remains
unknown, although mutant viruses lacking this gene show enhanced NK cell sensitivity in
vivo [22]. However, in our recent study the virus lacking m144 acted more like the wild type
(wt) MCMV strain [23]. The basis for this discrepancy is unclear, but it could be attributed to
the use of different viral strains.

Although the “missing self” hypothesis assumes that NK cells can sense the altered expression
of MHC class I molecules [13], recent studies showed that the “missing self” axis can also be
activated via non-classical MHC molecules [24]. The Nkrp1b and d receptors mediate
inhibition via the recognition of Ocil/Clr molecules [25,26]. It has been postulated that the
Nkrp1-Ocil/Clr receptor-ligand recognition system may represent an alternative mechanism
for discriminating between normal and damaged cells [24]. Recently, it has been shown that
cellular Ocil/Clr-b are subject to downmodulation by rat CMV (RCMV) [27*]. This should
make the RCMV-infected cells susceptible to the control by NK cell killing due to the lack of
inhibition. To avoid this, RCMV encodes its own homolog of Ocil/Clr-b, RCMV C-type lectin-
like (RCTL), which serves as a viral ligand for Nkrp1b [27*]. While downmodulation of MHC
class I molecules is aimed at protecting the infected host cells against CD8+ T cells, the rationale
for cells undergoing RCMV infection to selectively downmodulate the ligand for the inhibitory
receptor that could sensitize them to NK cell killing, remains elusive. Since NK cells possess
no stimulatory receptors for Ocil/Clr-b, the selective pressure for the virus to downmodulate
the ligand is unlikely [25,26]. The explanation for the loss of Ocil/Clr-b could be a default
reaction of cells to stress induced by infection.

Differential modulation of MHC class I expression by viruses
HLA-E and mouse Qa-1 are MHC class Ib molecules that are loaded with a peptide derived
from a conserved signal sequence of MHC class Ia molecules and are recognized by CD94/
NKG2 receptors. Only cells that synthesize MHC class Ia molecules generate a functional
ligand for the CD94/NKG2 receptors. While KIRs and Ly49 NK receptors directly survey
surface MHC class Ia, the HLA-E-CD94/NKG2A ligand-receptor interaction is therefore an
indirect monitoring system for the MHC class Ia expression. Thus, viral functions that spare
the expression of HLA-E/Qa-1 should be an optimal strategy to evade both NK and CD8+ T
cells.
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The HCMV UL40 derived peptide, identical to nonameric HLA-C leader sequence, binds to
HLA-E and upregulates its surface expression [28,29]. Although the published data on the
efficacy of HCMV US2 and US11 in downmodulation of individual HLA class I molecules
are not consistent, it is well established that these proteins spare the inhibitory receptor ligand
HLA-E, while targeting HLA-A for degradation [30]. A similar function was attributed to the
HIV Nef, causing internalization and lysosomal degradation of HLA-A and HLA-B, but having
little or no effect on HLA-C and HLA-E [31]. Similar selectivity was described for Kaposi’s
sarcoma herpes virus (KSHV) K5 protein [32].

The functional effect on HLA-E expression has some caveats, however. Although the ability
of viruses to preserve HLA-E seems to be an attractive mechanism to avoid NK cells via the
inhibitory CD94/NKG2A receptor, its functional impact is questionable since the activating
receptor CD94/NKG2C also binds HLA-E [33]. In HCMV-infected humans, either healthy or
aviremic HIV-1 infected, a substantial increase of CD94/NKG2C+ over CD94/NKG2A+ cells
was observed [34,35]. Furthermore, co-cultivation of peripheral blood mononuclear cells from
HCMV-positive donors with virus-infected fibroblasts resulted in the expansion of CD94/
NKG2C+ cells [36*]. This function was independent of HCMV UL16, UL18 and UL40, but
could be impaired if the virus is lacking MHC class I inhibitors, suggesting that the engagement
of inhibitory receptors via MHC class I prevail over activation via CD94/NKG2C.

Viral interference with NK cell activation via NKG2D
The ligand engagement by some activating NK cell receptors, such as NKG2D, can cause
activation of NK cells even if target cells express normal levels of MHC class I. NKG2D serves
as an activating and co-stimulatory receptor on NK cells and CD8+ T lymphocytes, respectively
[9]. NKG2D ligands are usually not constitutively expressed on normal cells but can be induced
upon infection or stress [9,37].

NKG2D serves as a target for viral subversion. ULBP-1 and -2, as well as MICB, members of
NKG2D-ligand family in humans, can bind to HCMV protein UL16 [38,39] resulting in the
retention and sequestration of these ligands [40,41] (Figure 1b). MICA is not exempt from
regulation by HCMV [42]. However, only expression of full-length MICA is affected, whereas
the truncated form is resistant. The truncated allele is the most common allele in human
population, suggesting that polymorphism in the MICA represent an advantage in the ability
of the host to control virus infection [43]. Subsequent studies demonstrated that the product of
the HCMV UL142 gene downregulates full-length MICA [44*]. Of note is that the laboratory
strain AD169, which lacks the UL/b’ region, containing 14 genes among which is UL142, also
downregulates MICA [42]. Therefore, it seems that HCMV developed two independent
mechanisms affecting MICA whereas HIV Nef downmodulates cell surface expression of
MICA, ULBP-1 and ULBP-2 [45].

The significance of viral immunoevasins for NKG2D has been also extensively studied in mice
whose ligands for the NKG2D receptor, RAE-1 family, H60 and MULT-1, are subject for
downregulation by several MCMV proteins (Table 1). Regarding susceptibility to MCMV,
most laboratory mouse strains are MCMV-sensitive, characterized by the inability to mount a
NK cell response against MCMV [11]. Why these mouse strains fail to generate an efficient
virus control via NKG2D and other activating receptors, had been an enigma for a long time,
especially keeping in mind that the cellular ligands for NKG2D are inducible by infection
[9]. We hypothesized that the virus actively compromises NK cells by downmodulating
NKG2D ligands. By using a systemic approach, we characterized the first MCMV gene
involved in the downmodulation of NKG2D ligands [46]. Unlike cells infected with wt
MCMV, cells infected with the mutant virus lacking the m152 gene expressed NKG2D ligands.
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The deletion of m152 converted the virus from NK cell-resistant to NK cell-sensitive in vivo
(Figure 1a).

Others expanded our data showing that m152/gp40 is involved in the regulation of the members
of RAE-1 family [47]. Later on, we and others characterized additional ORFs encoding proteins
responsible for the downmodulation of NKG2D ligands [23,48–50]. It turned out that MCMV
possesses not only efficient but also redundant mechanisms to avoid expression of NKG2D
ligands, suggesting strong selective pressure enforced by NK cells. The product of m145 gene
is involved in downmodulation of MULT-1, whereas the m155 protein is responsible for the
regulation of H60. The deletion of either of these two MCMV genes resulted in the
reconstitution of the corresponding NKG2D ligand on the surface of infected cells and
increased virus sensitivity to NK cell control in vivo (Figure 1a).

The molecular mechanisms by which three MCMV immunoevasins interfere with the NKG2D
ligands are so far poorly understood. However, some mechanisms have been elucidated from
previous studies. For example, the m152 protein has originally been identified for its ability
to retain MHC class I complexes in the endoplasmic reticulum-Golgi intermediate
compartment (ERGIC)/cis Golgi compartment [51]. Our unpublished results suggest that m152
might also cause the downmodulation of RAE-1 molecules by the same mechanism (SJ,
unpublished). However, from our data it seems that RAE-1 isoforms express differential
susceptibility to m152. With respect to H60, Lodoen et al. have reported that it is degraded in
MCMV-infected cells in proteasome-dependent pathway via m155 [50]. We have shown that
the acquisition of endo-b-N-acetylglucosaminodase H resistance and the half-life of H60 is not
affected in the presence of m155, suggesting that m155 affects H60 after it exits the ERGIC/
cis Golgi compartment [48]. This discrepancy should be clarified by further studies. However,
H60 is not only regulated by m155, but also by m138 [49**], an originally described MCMV
receptor for Fc portion of IgG [52]. We have previously shown that the virus lacking m138 is
attenuated in vivo in normal as well as in immunoglobulin deficient mice, suggesting an
additional immunoevasive function of the m138 protein [53]. We tested the ability of the virus
lacking the m138 to downregulate ligands for the activating NK receptors and reported that
two NKG2D ligands, MULT-1 and H60, are subject to downmodulation by m138 [49**].
Recently, others have demonstrated that this viral immunoevasin is able to target the
costimulatory molecule B7-1 [54]. m138 interferes with the recycling pathway of surface
MULT-1 and leads to its degradation in lysosomes [49**]. The ability of inhibitors of clathrin-
dependent endocytosis to rescue the expression of MULT-1 in MCMV-infected cells suggests
that m138 interferes with this endocytic pathway although the modes of interaction and the
synergistic effect with m145 remain unanswered. Interestingly, although both MULT-1 and
H60 are regulated by m138, it appears that distinct N-terminal domains within the fcr-1
ectodomain are involved in downregulation of these ligands.

Immunoevasion of NKG2D by regulatory RNA
Upon entering target cells, DNA viruses transcribe their DNA not only into protein encoding
messenger RNA (mRNA), but also into noncoding regulatory RNA, such as microRNA
(miRNA). Although noncoding RNAs were known to be involved in the regulation of gene
expression, the potential significance of this mechanism in the regulation of immune response
was unknown until recently. Stern-Ginossar et al. provided evidence that virus can use miRNA
to thwart NK cells [55**]. They used an algorithm to predict miRNA targets and showed that
HCMV-derived miRNA (miR-UL112) displays sequence complementarity to the 3′-UTR of
mRNA encoding a human ligand for the NKG2D receptor, MICB (Figure 1c). When expressed
in recombinant lentivirus vector this miRNA protects infected cells from NKG2D-dependent
lysis by preventing translation of MICB mRNA. Similar observations were observed during
authentic virus infection. The fact that MICB protein is also downmodulated by HCMV UL16
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again indicates a strong selective pressure on the virus for the development of redundant
immunoevasion mechanisms against NKG2D. As compared to the immunoevasion by viral
proteins, regulatory RNA may have some advantages due to its mechanism of action involving
only a small amount of nucleic acid of poor immunogenicity. This could play a role in latently
infected cells undergoing reactivation in fully immunocompetent host.

Evasion of NK cells by virally encoded soluble ligands for NKG2D receptors
Unlike CMVs, zoonotic orthopoxviruses secrete a protein, distantly related to class I molecules,
that serves as a competitive antagonist of the NKG2D receptor [56**] (Figure 1d). Having in
mind the dual function of NKG2D for NK and T cells, one could speculate that the strategy
adopted by the zoonotic orthopoxviruses is less selective as compared to the downmodulation
of cellular ligands by CMVs. By downmodulating NKG2D ligands only on infected cells, the
CMVs are limiting its immunomodulatory potential to infected target cells; in the case of
orthopoxviruses, a secreted soluble competitive inhibitor is likely to attenuate the response to
any pathogen otherwise controlled via NKG2D. Similarly, some tumors evade NK cell
activation by releasing soluble MICA, which results in downmodulation and inactivation of
the NKG2D receptor [57]. Thus, perhaps these different strategies have broader implications
for viral immunoevasion of NKG2D.

MCMV interference with activating Ly49 NK cell receptors
Some NK cell receptors are specific for viral proteins. The first described one was the
Cmv1r locus, which encodes Ly49H, an activating NK cell receptor [58–60]. Unlike most of
other Ly49 receptors the ligand for Ly49H is not an MHC class I molecule but a product of
the MCMV m157 gene [61,62]. However, as predicted, m157 adopts MHC class I-like protein
fold and its intra- and intermolecular interactions within and between domains enable this
protein to be even more compact than classical MHC class I [63**]. Recently, additional
genetic loci have also been implicated in the NK cell-dependent resistance. Vidal and
colleagues have shown that the genetic resistance in Cmv3+ mice maps to Ly49P in MCMV-
resistant MA/My mice, and that NK cell-mediated resistance to infection in these mice involves
epistatic recognition of a viral protein in the context of the MHC H-2k molecule [64]. Although
the molecular nature of target recognition remains unknown, it is likely that the recognition of
H-2Dk molecules depends on the viral peptide. These conclusions are corroborated by Brown
and colleagues [65]. Altogether, by its specificity for MHC class I allele and viral protein,
Ly49P represents another highly specific mechanism of NK cell-mediated control. An
additional locus, Cmv4, is also suggested to encode an NK cell activating receptor and mediate
MCMV resistance in PWK mice [66].

On the first glance, it makes no sense that viruses encode ligands for an activating NK cell
receptor. Indeed, m157 is also a ligand for the inhibitory NK cell receptor Ly49I [62], which
was perhaps its primary function. Two independent studies have shown that m157 is subject
for mutation under selective pressure of Ly49H+ NK cells [67,68]. Therefore, for Ly49P it
could be speculated that the virus would not “tolerate” the genes encoding its viral ligand, and
that Ly49P must have an inhibitory counterpart with specificity for H-2Dk and a so far
undefined viral peptide.

NCRs as putative targets for viral immunoevasins
NCRs are represented by activating receptors NKp30, NKp44 and NKp46 (mice express only
NKp46) [69,70]. Unlike other NK cell receptor families, which include inhibitory and
activating isoforms, NCRs share no such heterogeneity. While cellular ligands for NCRs
remain unknown, it has been reported that viral hemaglutinin can bind NKp46 and NKp44
[71,72]. Mice lacking the NKp46 activating receptor are much more sensitive to influenza virus
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infection [73**]. It remains to be tested whether NKp46 receptor or its cellular ligands are
subjects for viral immunoevasion. Since most mouse strains fail to mount a NK cell response
to MCMV, it is possible that, similarly to NKG2D, there may be an MCMV mechanism to
prevent NK cell activation via NCRs. Consistent with this speculation, it has been shown that
pp65, a tegument protein of HCMV, can antagonize NKp30 activation by causing its
dissociation from the adaptor molecule CD3ζ [74]. Moreover, the downmodulation of NKp30
and NKp46 ligands, but not of NKp44, on T-cell blasts, is reported in patients infected with
HIV [75].

More question than answers
It is generally believed that the major function of viral NK cell immunoevasion is to enable
the virus to replicate and spread before the onset of the specific immune response. However,
in the case of herpesviruses such as MCMV, the most explored viral model in NK cell research,
one can challenge this simplified view. In spite of a plethora of immunoregulatory functions,
MCMV does not cause significant disease in immunocompetent hosts. Although data published
so far indicate an important role of NK cells in shaping the CD8+ T cell response, the lessons
obtained in so-called MCMV-sensitive mice, indicate that inefficient early NK cell response
cannot be a decisive factor for the generation of the adaptive immunity. Namely, Ly49H− mice,
such as BALB/c, can control the infection and establish latency. Does this suggest that NK
cells are not essential for surveillance of the primary CMV infection? However, based on the
attenuation of mutant viruses lacking NK cell immunoevasins, we can conclude that they are
nevertheless important in virus control. A better understanding of the linkage between NK cell
functions and viral immunoevasins might require additional considerations. Two major
parameters are at the present in use for the assessment of the role of immunoevasins in vivo:
(a) NK cell-dependent virus control in tissues after primary infection and (b) survival after
challenge infection. Are the results obtained by these approaches really sufficient for reaching
conclusions about the significance of viral immunoevasins for the pathogenesis of MCMV
infection in natural conditions? We think they are not. The right question may be why it is so
important to limit NK cell response and is this good for the virus or for the host, or for both.
Our knowledge about the natural virus spread and the putative significance of the viral
immunoregulatory mechanisms is still limited. Are these viral genes developed during the
evolution to assist herpesviruses in horizontal and vertical spread? Another important role of
these immunoevasins could be to allow sufficient antigenic load and optimal priming and
shaping of specific immune response required for maintenance of viral latency. Altogether,
new experimental approaches are needed to answer questions about the importance of viral
immunoevasins for balancing the immune response, the function that is equally important for
the virus and its host. Of equal importance is also the question about the putative role of
immunoevasins in the prevention of immunopathology, particularly in the case of chronic
infections. Although the deletion of individual viral immunoevasion genes usually results in
altered sensitivity to NK cells in vivo, it is questionable whether we would be able to get the
full picture by using the individual mutants. Do we need the viruses lacking sets of these
immunoevasins to assess their function in the context of primary and chronic infection? We
also need to understand the meaning of redundancy of viral immunoevasins. Bearing in mind
that numerous NK cell receptors are also expressed on T cells and some other cells, we need
to focus our efforts on the role of immunoevasins in these cells as well.

Thanks to new high-throughput technologies, we are constantly learning about new viral genes
involved in the regulation of immune response, but their role in natural infection and viral
pathogenesis will remain without complete answers without more sensitive and more specific
approaches for monitoring immune surveillance in vivo.
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Figure 1. A schematic overview of viral intereference with NK cell activation via NKG2D
(a)MCMV downmodulates ligands for the NKG2D receptor. m145, m152, m155 affect cell
surface expression of MULT-1, RAE-1 family and H60, respectively. m138 is the first
described MCMV protein with a dual function on NKG2D ligands, affecting both MULT-1
and H60. The figure shows that the deletion of either of these viral proteins results in the
reconstitution of the surface expression of the respective ligands and the conversion of the virus
from being NK cell-resistant to become NK cell-sensitive. (b) HCMV acts in a similar manner
as MCMV, also exploiting different mechanisms. HCMV UL16 downmodulates ULBP-1 and
-2, and also MICB whereas UL142 downmodulates full-length MICA. The truncated form of
MICA shows resistance to downmodulation by HCMV. (c) After virus enters the cell, its
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genome is transcribed into mRNA but also noncoding RNA molecules. By using the cellular
machinery, HCMV expresses its own miRNAs, including miR-UL112, which forms the RISC
complex and binds the 3′ UTR region of MICB. In this way, miR-UL112 inhibits the translation
of MICB mRNA, thus preventing it in reaching the cell surface and signaling. (d)
Orthopoxviruses utilize a previously undescribed mode of interference with NKG2D signaling.
They secrete a soluble protein, named OMCP, which competitively binds to NKG2D and
antagonizes the function of cellularly expressed ligands.
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Table 1
Common viral interference with NK cell receptor ligands.

Virus Viral immunoevasin Mode of function References

Interference with “missing self” axis

HCMV UL18 Binding to NK cell inhibitory receptor LIR-1 [15]

MCMV m144 Unknown [22]

MCMV m157 Binding to Ly49I [62]

RCMV r144 Unknown [76]

RCMV RCTL Binding to inhibitory receptor Nkrp1b [27*]

Differential regulation of MHC class I

HCMV US2, US11 Downmodulate HLA-A but spare HLA-E; act differentially on
other HLA molecules

[77–79]

HCMV UL40 UL40 leader peptide loads HLA-E and provides inhibitory
signal to NK cells

[28,29]

MCMV m04/gp34 Binds MHC class I and rescues its expression on the cell
surface, possible NK cell decoy

[80,81]

KSHV K5 Downmodulates HLA-A and HLA-B and weakly HLA-C, but
shows no effect on HLA-E

[82]

HIV Nef Downmodulates HLA-A and -B [31]

Interference with ligands for activating NK cell receptors

HCMV UL16 Downmodulates ULBP-1, -2 and MICB [38,39]

HCMV UL141 Downmodulates CD155 [83]

HCMV UL142 Downmodulates full length MICA [44*]

HCMV miR-UL112 Prevents translation of MICB mRNA [55**]

HCMV UL83/pp65 Abolishes activation via NKp30 by dissociating adaptor
molecule CD3ζ

[74]

MCMV m138 Viral FcγR, downmodulates MULT-1 and H60, interferes with
clathrin-dependent endocytosis

[49**]

MCMV m145 Downmodulates MULT-1 [23]

MCMV m152/gp40 Downmodulates RAE-1 family members [47]

MCMV m155 Downmodulates H60 [48,50]

KSHV K5 Induces endocytosis of CD86 and CD54 [32]

Zoonotic orthopoxvirus OMCP Competitively binds to NKG2D [56**]

Other

MCMV m157 Binds to Ly49H and activates NK cells [61,62]

MCMV unknown Activates Ly49P in context of H-2Dk [64]

influenza virus HA Binds to NKp46 [72]

HCV E2 Binds to CD81 [84]

HTLV p12I Downmodulates ICAM-1 and -2 and reduces NK cell
adherence to HTLV-infected CD4+ T cells

[85]
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