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Repeated intragastric inoculation of Listeria monocytogenes into BALB/c mice resulted in prolonged bacteraemia and severe hep-
atic infection. Bacteria could also be isolated from the brain tissue of all experimental mice. During the inflammatory process,
chemokine concentrations typically increased at the local site in comparison to the systemic level. The liver-to-serum ratio was
more pronounced in the case of macrophage inflammatory protein 1α (MIP-1α ), suggesting its role in the inflammatory response
in the liver. The ratio of brain-to-serum concentration of monocyte chemoattractant protein 1 (MCP-1) remained the same as in
the control animals, while it was lower in the infected mice, both in the case MIP-1α and in the case of regulated on activation,
normal T cell expressed and secreted (RANTES). This is in correlation with slight inflammatory infiltrates found in the brain tissue
early in infection.

Copyright © 2006 Marina Bubonja et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

INTRODUCTION

Listeria monocytogenes infection via the digestive system af-
ter cosumption of contaminated food is currently thought
to be the main source of human listeriosis. Ingestion of
L monocytogenes is a very common occurrence, since it is
widely distributed in the environment and in many food
products [1]. The bacterium is resistant to various envi-
ronmental conditions such as high salt or acidity, low oxy-
gen conditions, and refrigeration temperatures. Even when
L monocytogenes is initally present at a low level in contam-
inated food, the microorganism can multiply during stor-
age. However, the actual infectous dose of L monocytogenes
for human infection continues to be a matter of debate. In
healthy adults, listeriosis usually remains a mild or subclin-
ical illness, although febrile gastroenteritis may also occur
[2–4]. However, in pregnant women and their foetuses, the
elderly, and persons with a weakened immune system, lis-
teriosis is often a fatal infection with sepsis and meningi-
tis/menigoencephalitis being the predominant clinical man-
ifestations.

The murine model of listeriosis has yielded a consider-
able insight into bacterial virulence factors, pathogenesis of
disease, and host-parasite interactions [5]. As a facultative

intracellular pathogen, L monocytogenes evokes a strong T-
cell-mediated immune response in infected animals [6, 7]
and elicits a production of various solubile mediators, among
them cytokines and chemokines [8, 9]. Chemoattractant cy-
tokines or chemokines are a growing group of small, low-
weight molecules that are believed to control the nature and
magnitude of inflammatory cell infiltration. Because of their
vast biological functions they are linked to the pathogenesis
of many seemingly unrelated diseases like cancer, atheroscle-
rosis, autoimmune diseases, various microbial infections and
so forth [10, 11]. However, the precise role of chemokines
is still not fully recognised. It has been reported recently
that some of the chemokines, like macrophage inflamma-
tory protein alpha/beta (MIP-1α/β) and regulated on ac-
tivation, normal T cell expressed and secreted (RANTES)
act together with IFN-γ as type 1 cytokines, [12] while
monocyte chemoattractant protein 1 (MCP-1) is a crucial
factor for the development of adaptive Th2 responses [13,
14].

In an attempt to obtain a model resembling natural lis-
teriosis, in the present study we explored the course of infec-
tion in BALB/c mice following intragastric (ig) inoculation
of L monocytogenes. In order to evaluate the contribution of
CCchemokines in vivo, the levels of MIP-1α, MCP-1, and
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RANTES were determined by enzyme-linked immunosor-
bent assay (ELISA) in murine organ homogenates and com-
pared to chemokine levels in the sera drawn from the same
animals.

MATERIALS AND METHODS

Bacterial strain

The haemolytic EGD strain (serovar1/2a) of L monocytogenes
was grown in brain heart infusion (BHI) broth (Difco Labo-
ratories, Detroit, Mich, USA) at 37◦ C for 24 hours. The cul-
ture broth was centrifuged at 3000× g for 5 minutes, and the
pelleted bacteria were resuspended in bicarbonate buffered
saline (BBS), pH 6.9. The optical density of the bacterial sus-
pension was estimated using a spectrophotometer at 550 nm,
and the numbers of colony-forming units (CFU) of L mono-
cytogenes were extrapolated from a standard growth curve.
The actual number of CFU in the inoculum was verified by
plating on blood agar.

Animals and assay of infection

BALB/c (H2-d haplotype) male mice aged 6–8 weeks were
obtained from the breeding colony at the Medical Faculty,
University of Rijeka. They were kept in plastic cages and
given standard laboratory food and water ad libitum. The ex-
periments were conducted according to the guidelines con-
tained in the International Guiding Principles for Biomed-
ical Research Involving Animals. The Ethical Committee at
the University of Rijeka approved all the animal experiments
described here.

After overnight fasting, mice (20 animals per group) were
challenged with a single dose of 3 × 105, 3 × 107, 3 × 108,
3× 1010, or 3× 1011 viable L monocytogenes in a total volume
of 0.3 mL BBS, by gastric intubation through a thin vinyl tube
connected to a gauge needle. The sixth group was inoculated
in the same way with 3× 107 bacteria but the procedure was
repeated during three consecutive days. The control group
received only BBS via the same route and in the same man-
ner. Extreme care was taken not to injure the animals during
ig inoculation; no animals were used in which there was sus-
picion of injury or inhalation of the inoculum.

Bacterial counts in organs

At various time intervals, mice were euthanised by CO2 in-
halation, and their livers, spleens, kidneys, and brains (5 mice
per group) were dissected and homogenised in 5 mL of sterile
phosphate-buffered saline (PBS, pH 7.4). Serial ten-fold di-
lutions of the organ homogenates were plated on blood agar
plates, incubated at 37◦ C for 24 hours, after which CFU were
counted. Bacterial titres are expressed as log10 of CFU per or-
gan.

Histopathological examination

For histopathology, the organs were dissected, fixed in 10%
formaldehyde, and embedded in paraffin. Sections (6 μm

thick) were stained with haematoxylin and eosin (H&E). For
immunohistochemistry, the paraffine sections were treated
using an indirect immunoperoxidase protocol with poly-
clonal rabbit anti–L monocytogenes antiserum (Difco Labo-
ratories, Detroit, Mich, USA) as primary and goat anti-rabbit
IgG F(ab′)2 fragments as secondary antibodies. Coloured
slides were analysed using a light microscope at 100- and
1000-fold magnification.

Measurement of aminotransferase and chemokine levels

At different time points after bacterial inoculation, the ani-
mals (5 mice per group) were anaesthetised with ketamine
hydrochloride and blood samples were obtained from the
retroorbital plexus. The tubes were centrifuged and the sera
were stored at −20◦ C until analysed. Serum samples were
diluted 1 : 5 with distilled water and aspartat aminotrans-
ferase (AST) and alanine aminotransferase (ALT) activities
were determined using the Clinical Chemistry System Olym-
pus AU 800.

The livers, spleens, kidneys, and brains were aseptically
removed, weighed, and frozen in liquid nitrogen and stored
at −80◦ C. Frozen tissue samples were thawed on ice and
homogenised in ice-cold PBS (5 mL PBS per 1 g of tissue)
with a hand-held tissue homogeniser, and centrifuged at
13 000×g for 10 minutes at 4◦ C to precipitate debris as a pel-
let. Concentrations of MIP-1α, MCP-1, and RANTES were
determined in sera and organ supernatants by using Quan-
tikine M immunoassay kits purchased from R&D Systems
(Wiesbaden, Germany). Assays were performed according
to the manufacturer’s instructions and results reported as
picogram (pg) of chemokine per mL of tissue homogenate
or serum. The detection limit for MIP-1α was 1.5 pg mL−1

and for MCP-1 and RANTES it was 2 pg mL−1, respectively.
All tests were performed in duplicate.

Statistical analysis

The data for bacterial load, aminotransferase, and chemo-
kine levels are expressed as median values ± interquartile
range (IQR). The results obtained from control and experi-
mental groups were compared using the Mann-Whitney test.
A statistically significant difference was defined at a P value
< .05.

RESULTS

Determination of the optimal dose for ig infection

BALB/c mice were inoculated intragastrically with different
doses of L monocytogenes. As seen in Figure 1 all animals in-
fected with the highest dose of bacteria (3× 1011 CFU) died
within two days of infection. Low survival rate and death
of 75% of infected animals was seen in the group receiving
3×1010 CFU. After inoculation of 3×108 CFU, 50% of the an-
imals succumbed (LD50 for ig route of application), while the
majority of mice infected with the lower doses (3×107, 3×105

CFU) survived the infection. None of the models seemed
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Figure 1: Survival of mice ig infected with different doses of L
monocytogenes. Mice (20 per group) were infected with single doses
of 3×1011(�), 3×1010(�), 3×108(Δ), 3×107(�), and 3×105 (•)
CFU of bacteria. Dose of 3 × 107 (◦) was administered repeatedly
during three consecutive days.

to be suitable for following the course of ig listeriosis, be-
cause animals challenged with high single doses quickly suc-
cumbed as a result of the infection, while the tissue changes
in mice challenged with lower doses varied widely (data not
shown).

In subsequent experiments we applied 3 × 107 CFU for
three consecutive days in an attempt to obtain, approxi-
mately, the effect of LD50. However, the cumulative dose re-
sulted in a prolonged survival of animals (Figure 1) when
compared with the group infected with the single LD50 dose.
The infection was highly reproducible.

Course of L monocytogenes infection after
repeated ig administration

The course of infection was followed for 10 days after admin-
istration of the third dose. Infected mice manifested a diar-
rhoea and visible signs of disease from the first day after re-
ceiving the last dose of bacteria. Histopathological examina-
tion of the gastric tissue did not reveal inflammatory lesions
but changes were seen in the intestinal mucosa. In the villi of
the jejunum (Figure 2(a)), as well as in the cecum, prominent
oedema of the lamina propria with rare infiltrated plasma
cells and macrophages was detected. The duration of these
findings was limited and they gradually disappeared from
day 3 postinfection (pi). However, in all animals the systemic
infection was confirmed by positive blood cultures and iso-
lation of L monocytogenes from different organs. Bacteraemia
persisted from 2 to 5 days, respectively. To avoid the possibil-
ity that CFU recovered from the organ homogenates, espe-
cially from the brain tissue, was from the bloodstream rather
than from the parenchyma per se, mice were perfused with
saline before the organs were removed. Hepatic and spleenic
infection aggravated during the first days of infection. Max-
imal CFU per liver and spleen was reached on day 2 or 3

pi, decreasing thereafter (Figure 3). The high bacterial load
in the liver corresponded to the histopathological changes.
Even on day 7 pi, multiple inflammatory foci, sometimes
including central necrosis (Figure 2(b)), could be found in
the liver. In antilisteria immunostained sections of the liver
tissue, short rods of L monocytogenes were easily detected
(Figure 2(c)). They usually appeared in clusters, having a ten-
dency to spread towards the healthy surrounding. Elevated
levels of AST and ALT in the serum (Figure 4) confirmed
severe metabolic liver dysfunction. Congestion and inflam-
mation foci were the main histopathological findings in the
spleens of infected mice. Despite of the relatively high num-
ber of bacteria isolated from the infected kidneys (Figure 3),
we could not find any major tissue damage in the paraffin
sections. Surprisingly, L monocytogenes was isolated from the
brain of all infected animals. Although the bacterial titres did
not exceed 103 per mL tissue homogenates, it seemed that
bacteria had a tendency to increase in number towards the
end of the experimental period (Figure 3). This is in con-
cordance with the lack of histological signs of inflammation
in the brain tissue during the early phase of infection. How-
ever, from day 7 pi, changes appeared mostly as focal infiltra-
tion of monocytes in the brain tissue of some infected mice
(Figure 2(d)).

Systemic and local concentrations of chemokines

The impact of L monocytogenes infection on the CC
chemokines milieu in the liver, spleen, and brain tissue was
studied and compared with the chemokine pattern in the
same organs of noninfected mice. Additionally, the gradient
between a local (organ) compartment and the intravascular
space was quantified by determining the ratio between the
organ and serum levels of MIP-1α, MCP-1, and RANTES.

In the organs as well as in the sera of noninfected animals,
low physiological levels of all measured chemokines were de-
tectable (Figure 5). Baseline levels for all three chemokines
were the highest in the spleen and lowest in the brain tis-
sue. In the noninfected brain tissue the most pronounced
chemokine was found to be MCP-1, while in the other or-
gans and in the serum, it was RANTES.

In the sera (Figure 5) of infected mice MCP-1 was found
to have much higher titres in comparison to RANTES, while
MIP-1α was nearly at the detection level. When compared
with the control serum titres, the most pronounced increase
was noticed in the case of MCP-1.

During the inflammatory process, a more profound in-
crease in the concentration of chemokines was detected at
the local site of inflammation in comparison to the systemic
level. In the infected liver (Figure 5) high concentrations of
MCP-1 and RANTES were detected, while the MIP-1α levels
were much lower. In the same manner as in the noninfected
animals, the highest levels of the measured chemokines in L
monocytogenes-infected mice were detected in their spleens
(Figure 5). MIP-1α and MCP-1 levels were significantly in-
creased in comparison to the control, which has not been
noticed in the case of RANTES. Infection with L monocyto-
genes resulted in increased concentrations of all the measured



4 Mediators of Inflammation

(a) (b)

(c) (d)

Figure 2: Photomicrographs of different tissues of mice ig infected during three consecutive days with dose of 3×107 CFU L monocytogenes.
(a) Jejunum; oedema in the lamina propria with infiltrated plasma cells and macrophages at day 2 pi; magnification×400, H&E staining. (b)
Liver tissue; arrows indicate numerous foci of inflammation with central necrosis at day 7 pi; magnification × 100, H&E staining. (c) Liver
tissue; arrows point to sporadic rods as well as cluster of L monocytogenes present in the infiltrates at day 3 pi magnification × 1000, anti-L
monocytogenes immunostaining. (d) Brain tissue; focal infiltration of monocytes (arrows) at day 7 pi; magnification× 400, H&E staining.

chemokines in the brain tissue. However, only the increase in
the titre of MCP-1 was significant in comparison with the
noninfected mice.

The chemokine concentration gradient between the tis-
sue and blood regulates the recruitment of inflammatory
cells to the site of inflammation, modulating the host re-
sponse to infection. Wishing to contribute to the under-
standing of this mechanism, we determined the liver-,
spleen-, and brain-to-serum ratios of the tested chemokines
(Table 1). In L monocytogenes-infected mice the calculated
liver-to-serum ratio was increased, particularly in the case
of MIP-1α, suggesting its possible role in the necroinflam-
matory response in the liver. The ratio of spleen-to-serum
MIP-1α was about four-fold and MCP-1 about three-fold
higher in comparison to the gradient in noninfected spleen
tissue. Surprisingly, in the brain tissue of infected animals,
the ratio of organ-to-serum concentrations of MCP-1 re-
mained the same as in the control animals, while the ratio
was lower in the infected animals, both in the case of MIP-1α
and RANTES.

DISCUSSION

Listeriosis is a serious disease acquired by consumption
of contaminated foods. Ingested L monocytogenes traverses
from the intestinal wall [15] resulting in systemic infection
with meningitis being the predominant clinical manifesta-
tion. How the microorganisms get access to the brain tissue
is controversial. Some investigators have shown that L mono-
cytogenes can invade neurons and that intra-axonal trans-
port is possible [16]. Ruminants may get infected through
the trigeminal nerve after infection of the oral mucosa [17].
Haematogenous dissemination is also possible since L mono-
cytogenes is known to be able to invade endothelial cells [18]
and could hence be able to invade through the brain mi-
crovasculature. It has been published that central nervous
system (CNS) invasion is highly dependent on the level and
duration of bacteraemia [19].

In our experimental model it was clearly seen that in-
tragastric administration of L monocytogenes led to develop-
ment of systemic infection. However, high challenge doses
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Figure 3: Kinetics of bacterial clearance in the organs of mice ig
infected during three consecutive days with dose of 3 × 107 CFU
L monocytogenes. Bacterial titers in liver (•), spleen (�), kidney
(�), and brain (◦) were determined at various time points postin-
fection. Data represent median log10 CFU per organ ±IQR derived
from five mice per time point.

resulted in severe illness and a lethal outcome within 2–
5 days pi. Obviously, in this short period there was not
enough time for meningitis development and the animals
die in overwhelming sepsis. Low inoculation doses also re-
sulted in systemic infection, documented by bacteria isolated
from different organs, but the results varied widely. However,
when lower doses were applied repeatedly for three consec-
utive days, a prolonged low-level bacteraemia occurred and
L monocytogenes was isolated from the liver, spleen, and kid-
neys, as well as, from the brain tissue of all infected mice.
These data provide support for the hypothesis that not only
a high single dose, but also prolonged daily consumption of
a low number of L monocytogenes can be hazardous. This is
in accordance with the publication of Maijala et al who re-
cently described an outbreak of human listeriosis caused by a
prolonged daily consumption of contaminated butter during
hospitalization [20].

When BALB/c mice received repeated ig doses of L mono-
cytogenes, the gastroenteric symptoms were manifested as di-
arrhoea and enteritis was histologically confirmed. Addition-
ally, an acute hepatitis developed with severe histopatholog-
ical changes and elevated levels of serum aminotransferases.
Despite the recovery of substantial numbers of bacteria from
the brain homogenates of all infected mice, histological anal-
ysis revealed only discrete inflammatory lesions, which ap-
peared in some mice from day 7 pi. Since the number of bac-
teria in the brain tissue increased towards the end of the ex-
perimental period, more severe changes could be expected
later in the course of infection. Mounting evidences sup-
port the notion that chemokines play an important role in
innate immunity to bacteria. Even more, most infectious
diseases are characterised by a particular chemokines pat-
tern. Chemokines are synthesised in response to bacterial
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Figure 4: Levels of serum aminotransferases of mice ig infected
with L monocytogenes. Data represent median values ±IQR. ∗P <
.05 compared to control.

products and cytokines secreted by a wide variety of immune
and inflammatory cells, as well as, epithelial and endothelial
cells. Knowledge concerning chemokines production during
the course of L monocytogenes infection is limited. We in-
vestigated the production of three CC-chemokines: MIP-1α,
MCP-1, and RANTES, which are included in the subfamily
of inflammatory chemokines. These chemokines are consti-
tutively produced in different murine tissues and sera un-
der physiologic conditions. Upon infection with L monocy-
togenes, the concentration of these chemokines increased in
the circulation, but the increase was more pronounced in
the infected organs. Chemokines, like most cytokines, act
locally rather than systemically, so these results were not
unexpected. Elevated systemic chemokine levels may be re-
quired to recruit leucocytes from the circulation. However,
once in the extravascular space, leucocyte migration depends
on the chemical gradient of chemotactic factors generated
within the inflamed tissue. In this sense, the ratio of local-
to-systemic chemokine concentration, rather than the abso-
lute tissue or serum values, regulates the biological response.
The major target organ of systemic L monocytogenes infec-
tion is the liver, where leucocytes are rapidly recruited. Dur-
ing the course of infection, all the analysed CC chemokines
were released in the liver. However, the calculated liver-to-
serum ratio was significantly increased only in the case of
MIP-1α, suggesting its key role on the influx of inflamma-
tory cells during L monocytogenes infection. In a similar man-
ner, the spleen-to-serum ratio was most pronounced in the
case of MIP-1α, followed to a less extent by MCP-1, while
RANTES failed to create a significantly high chemotactic gra-
dient. The role of chemokines in the CNS infections is not
well understood. Chemokines have been implicated in a va-
riety of normal CNS functions, although more evidence sup-
ports their role in CNS disease and injury [21]. High levels
of MIP-1α, MCP-1, and RANTES were found in the cere-
brospinal fluid (CSF) of patients with herpes simplex en-
cephalitis [22]. The same chemokines are shown to be in-
volved in the infiltration of leucocytes into the murine brain
after parasitic invasion [23]. Furthermore, significantly el-
evated concentrations of MCP-1 and MIP-1α, but not of
RANTES, were found in the CSF of patients with acute
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Figure 5: Chemokine concentrations in the liver, spleen, brain, and serum. Chemokines were measured by ELISA at day three postinfection
in organ homogenates and sera of mice ig infected with L monocytogenes. Data represent median values±IQR and are plotted on logarithmic
scales. ∗P < .05 compared to control.

Table 1: Local-to-systemic ratio of chemokine levels in control and L monocytogenes-infected mice. Chemokines were measured by ELISA
at day three postinfection in organ homogenates and sera of mice ig infected with L monocytogenes. Data represent the median values and
the ranges of chemokine levels. Organ-to-serum ratios were calculated using the median chemokine values for individual organ and serum
data.

Median concentration (range) in pg mL−1 Ratio (organ : serum)

Chemokine Control Infected Control Infected

Liver

MIP-1α 72.3 (60.5–82) 2660 (380–8105) 72 719∗

MCP-1 190 (145–230) 7180 (1025–26970) 6 11

RANTES 1400 (1199–1605) 7295 (3390–30525) 30 32

Spleen

MIP-1α 567 (490–645) 10097 (6270–61 800) 567 2729∗

MCP-1 200 (149–252) 13690 (8030–70900) 7 20∗

RANTES 47368 (35330–59650) 257650 (57000–439900) 1032 1120

Brain

MIP-1α 37 (29–47) 123 (26–406) 37 33

MCP-1 140 (134–146) 3400 (157–17 500) 5 5

RANTES 91 (82–100) 209 (47–575) 2 < 1

Serum

MIP-1α 1 (0.1–6) 3.7 (0.8–6.7)

MCP-1 30 (26.5–39) 683 (220–1218)

RANTES 45.9 (27–66.3) 230 (145–323)
∗P < .05 compared to control.
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bacterial meningitis [24]. In our experimental model, slight
increase in concentrations of all measured chemokines was
detected in the brain tissue homogenates of L monocytogenes-
infected mice, but only MCP-1 concentration increased
significantly. However, the brain to serum MCP-1 ratio did
not differ in comparison to the noninfected animals. In the
case of MIP-1α and RANTES the brain-to-serum ratio was
found to be even lower in the infected than in the control
mice. This lack of significant chemokines gradient was par-
alleled with the lack of visible brain tissue changes in early
stages of experimental infection. Possible explanations for
this absence of MIP-1α and RANTES brain-to-serum gradi-
ents may be their high systemic levels and the lack of infil-
trated cells in the brain tissue, sources of these chemokines.
It has been shown that MIP-1α and RANTES were produced
in the brain tissue by infiltrating leucocytes, whereas MCP-
1 was produced by resident glial cells [25, 26]. So, among
these analysed CC chemokines, MCP-1, perhaps with the
other chemotactic factors, may contribute to the recruitment
of monocytes noticed one week pi in the brain tissue of in-
fected mice. In the light of production of MCP-1 in other
acute brain diseases [27, 28], this chemokine seems to play a
fundamental role in the host response to brain injury.

Many of these findings are in agreement with the re-
sults of other authors and do support their hypotheses con-
cerning the possible mechanisms involved in the pathogen-
esis of L monocytogenes infection. However, some results
open new and unanswered questions concerning the role of
chemokines and inflammatory cells that they recruit during
this complex systemic infection. Finally, we can also con-
clude that the used experimental model has shown to be very
promising in the study of this important food-borne disease.
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