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DATA RESOURCES

Intracranial hemorrhage is a potentially life-threatening 
problem that has many direct and indirect causes. Accura-

cy in diagnosing the presence and type of intracranial hem-
orrhage is a critical part of effective treatment. Diagnosis is 
often an urgent procedure requiring review of medical imag-
es by highly trained specialists and sometimes necessitating 
confirmation through clinical history, vital signs, and labora-
tory examinations. The process is complicated and requires 
immediate identification for optimal treatment.

Intracranial hemorrhage is a relatively common condition 
that has many causes, including trauma, stroke, aneurysm, 
vascular malformation, high blood pressure, illicit drugs, 
and blood clotting disorders (1). Neurologic consequences 
can vary extensively from headache to death depending 
upon the size, type, and location of the hemorrhage. The 
role of the radiologist is to detect the hemorrhage, character-
ize the type and cause of the hemorrhage, and to determine 
if the hemorrhage could be jeopardizing critical areas of the 
brain that might require immediate surgery.

While all acute hemorrhages appear attenuated on CT 
images, the primary imaging features that help radiolo-
gists determine the cause of hemorrhage are the location, 
shape, and proximity to other structures. Intraparenchy-
mal hemorrhage is blood that is located completely within 
the brain itself. Intraventricular or subarachnoid hemor-
rhage is blood that has leaked into the spaces of the brain 
that normally contain cerebrospinal fluid (the ventricles 
or subarachnoid cisterns, respectively). Extra-axial hem-
orrhage is blood that collects in the tissue coverings that 
surround the brain (eg, subdural or epidural subtypes). It 
is important to note that patients may exhibit more than 
one type of cerebral hemorrhage, which may appear on the 

same image or imaging study. Although small hemorrhages 
are typically less morbid than large hemorrhages, even a 
small hemorrhage can lead to death if it is in a critical lo-
cation. Small hemorrhages also may herald future hemor-
rhages that could be fatal (eg, ruptured cerebral aneurysm). 
The presence or absence of hemorrhage may guide specific 
treatments (eg, stroke).

Detection of cerebral hemorrhage with brain CT is a 
popular clinical use case for machine learning (2–5). Many 
of these early successful investigations were based upon 
relatively small datasets (hundreds of examinations) from 
single institutions. Chilamkurthy et al created a diverse 
brain CT dataset that was selected from 20 geographically 
distinct centers in India (more than 21 000 unique exami-
nations). This was used to create smaller randomly selected 
subsets for validation and testing on common acute brain 
abnormalities (6). The ability for machine learning algo-
rithms to generalize to “real-world” clinical imaging data 
from disparate institutions is paramount to successful use 
in the clinical environment.

The intent for this challenge was to provide a large multi-
institutional and multinational dataset to help develop ma-
chine learning algorithms that can assist in the detection and 
characterization of intracranial hemorrhage with brain CT. 
The following is a summary of how the dataset was collected, 
prepared, pooled, curated, and annotated.

Materials and Methods
Creation of the dataset for the 2019 Radiological So-
ciety of North America (RSNA) Machine Learning 
Challenge was inherently more complex than the prior 
two challenges for several reasons. First, the image da-
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process. All of these processes had to be staged, deployed, and 
completed in a relatively short time frame (Figs 1, 2).

The CT brain dataset was compiled from the clinical picture 
archiving and communication system archives from three institu-
tions: Stanford University (Palo Alto, Calif), Universidade Federal 
de São Paulo (São Paulo, Brazil) and Thomas Jefferson University 
Hospital (Philadelphia, Pa). Each contributing institution secured 
approval of its institutional review board and institutional compli-
ance officers. Methods for examination identification, extraction, 
and anonymization were unique to each contributing institution: 
Universidade Federal de São Paulo provided all brain CT exami-
nations performed during a 1-year period, Stanford University 
preselected examinations based upon a normal versus abnormal 
assessment of radiology reports to provide a 50/50 sample of posi-
tive (for any abnormality) to negative examinations, and Thomas 
Jefferson University Hospital extracted cases using simple natu-
ral language processing on radiology reports mentioning specific 
hemorrhage subtypes. The image data collection process from 
each of the contributing institutions is outlined in Figure 1. As the 
methodology for discovery differed from each contributing site, 
there was a relative imbalance of feature types among datasets that 
needed to be reconciled and balanced during the curation and data 
pooling process. Original Digital Imaging and Communications 
in Medicine data were provided following local Health Insurance 
Portability and Accountability Act–compliant de-identification. 
In aggregate, 27 861 unique CT brain examinations (1 074 271 
unique images) were submitted for the dataset. The entire process 
from data solicitation to collation of the final dataset is summa-
rized in the workflow diagram in Figure 2.

Data Annotation
Annotation was performed using a commercial browser-based 
annotation platform (MD.ai, New York, NY), for which two 
of the authors (G.S. and A.S.) served as consultants. The an-
notation system allowed adjustment of the brightness, contrast, 

taset and annotations were created from scratch, whereas the 
prior two challenges were built around existing datasets (eg, 
pediatric hand radiographs in 2017 and the National Insti-
tutes of Health ChestNet-14 chest radiograph collection in 
2018) (7,8). Second, this was the first RSNA competition to 
employ volumetric data (CT image series) rather than single 
images. This added complexity in data curation, label adju-
dication, and pooling of data from multiple sources, as well 
as an extra dimension of complexity reconciling image- and 
examination-based annotations. Moreover, the size and com-
plexity of the dataset and use of image series required assem-
bling, coordinating, training, and monitoring a large group 
of expert annotators to complete the project in the required 
time frame. Training, monitoring, and coordination of a large 
cadre of annotators added another factor of complexity to the 

Abbreviations
ASNR = American Society of Neuroradiology, RSNA = Radiologi-
cal Society of North America

Summary
This dataset is composed of annotations of the five hemorrhage 
subtypes (subarachnoid, intraventricular, subdural, epidural, and 
intraparenchymal hemorrhage) typically encountered at brain CT.

Key Points
	n This 874 035-image, multi-institutional, and multinational brain 

hemorrhage CT dataset is the largest public collection of its kind 
that includes expert annotations from a large cohort of volunteer 
neuroradiologists for classifying intracranial hemorrhages.

	n This dataset was used for the Radiological Society of North 
America (RSNA) 2019 Machine Learning Challenge.

	n The curation of this dataset was a collaboration between the 
RSNA and the American Society of Neuroradiology and is made 
freely available to the machine learning research community for 
noncommercial use to create high-quality machine learning algo-
rithms to help diagnose intracranial hemorrhage.

Figure 1:  Workflow diagram for image data query, extraction, curation, anonymization, and exportation by the three contributing institutions. DICOM = Digital Imaging 
and Communications in Medicine, ID = identification, MIRC-CTP = Medical Image Resource Center-Clinical Trials Processor, PACS = picture archiving and communication 
system, RSNA = Radiological Society of North America.

http://radiology-ai.rsna.org
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Figure 2:  Workflow process diagram illustrates the steps to creation of the final brain CT hemorrhage dataset starting from solicitation from respective institutions to 
creation of the final collated and balanced datasets. ASNR = American Society of Neuroradiology, DICOM = Digital Imaging and Communications in Medicine, UIDs = 
unique identifiers.

representation. The top 15 annotators who successfully applied 
labels to 500 or more examinations were added as authors to this 
article. There was a broad spectrum of neuroradiologist volun-
teers with multinational representation (Table 1).

Recruited annotators were onboarded in groups of 10. Train-
ing materials and log-on credentials to the annotation tool were 
provided to each volunteer. Training cases were used for readers 
to become familiar with the annotation tool and the annotation 
process. Twenty-four training examinations were made available 
to each volunteer which they labeled using the annotation tool. 
Examination- and image-based annotations were recorded for 
each rater. Individual practice results were compared with the 
consensus labels and adjudicated results by senior neuroradiolo-
gists on the planning committee (L.M.P. and A.E.F., with 10 
and 30 years of experience, respectively). As both image-based 
and examination-based labels were available to the annotators, 
particular attention was paid to not invoke conflicting labels in 
the image series as no algorithmic logic was present to prevent 
conflicting selections (eg, selection of an examination label of 
“normal” in addition to several hemorrhage image labels). Image 
hemorrhage subtype labels were to be invoked for any image with 
hemorrhage(s), or if no hemorrhage was identified, then one of 
the examination-based labels was to be chosen. Contradictory 
examination and hemorrhage image labels were either corrected 
through adjudication or removed as part of the curation process 
of the annotations. The most common user error observed was 
under-labeling, or inadvertent designation of a single image label 
to reflect the entire examination (eg, using a single hemorrhage 
image label regardless of the number of the images where hem-
orrhage was actually visible). The second most common error 

and magnification of the images (Fig 3). Readers used personal 
computers to view and annotate the images using the annota-
tion platform; diagnostic picture archiving and communication 
system was not used. Readers were blinded to the other read-
ers’ annotations. Adjudicators were able to see all annotations 
on an examination. Users were instructed to scroll through the 
provided series of axial images for each brain CT examination 
and select one or more of five hemorrhage subtype image labels: 
(a) subarachnoid, (b) intraventricular, (c) subdural, (d) epidural, 
or (e) intraparenchymal hemorrhage for each image. Users also 
were given the option to label the first and last slice of a specific 
hemorrhage occurrence and allow the user interface to interpo-
late the labels in between. When more than one hemorrhage 
subtype was identified, multiple appropriate labels were attached 
to the images in which the feature was annotated as present. If 
the entire examination exhibited no hemorrhagic features, the 
annotator could invoke one of two examination labels: (a) nor-
mal or (b) abnormal/not hemorrhage (eg, stroke, atrophy, white 
matter disease, hydrocephalus, tumor). An additional examina-
tion-based flag was available to the annotator to indicate an ex-
amination that might be incomplete or have an incorrect body 
part. This flag was used as part of the curation process to remove 
a particular examination from the final dataset.

The process of annotation of the dataset was undertaken as 
a collaborative effort between RSNA and the American Society 
of Neuroradiology (ASNR). With the approval and support of 
ASNR leadership, an open call was made for ASNR member 
volunteers to serve as expert annotators. Sixty individuals were 
selected from an initial cohort of 114, which consisted of both 
junior and senior members of the ASNR, including international 

http://radiology-ai.rsna.org
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annotation tools demonstrated that, on average, an examination 
could be accurately reviewed and labeled in a minute or less. 
On the basis of these estimates, it was projected that the 60 an-
notators could potentially evaluate and effectively label 36 000 
examinations at a rate of one per minute for a maximum of 10 
hours of effort. This provided a buffer of 11 000 potential anno-
tations, recognizing that efficiency was subject to variation and 
that the validation and test sets required multiple evaluations.

Assumptions
Because the annotation process took place in a nonclinical set-
ting and in the absence of medical history, information regard-
ing acuity of symptoms and findings, age of the patient, and 

was over-labeling by applying hemorrhage labels to images that 
extended beyond the visible feature. Misclassification of hemor-
rhage subtype was the third most common error identified. Re-
mediation focused principally on correcting the under-labeling 
error because this would have the largest potential impact on 
the training and testing data. Over-labeling and subtype misclas-
sification were treated as vagaries of the individual readers, and 
no attempts were made to re-educate prior to assessment of the 
actual dataset. Both over-labeling and subtype misclassification 
were addressed for scoring the validation and test sets.

The incorporation of image markup through bounding boxes, 
arrows, or regions of interest was considered but was abandoned 
due to the inherent practical limitation to circumscribe some 
of the more poorly defined features and overlapping features. 
Moreover, the process of circumscribing the image-based fea-
tures, even with the use of a semiautomated segmentation tool, 
was determined to be far too time-consuming, inaccurate, and 
not reproducible. The addition of an image-based coordinate 
also added another dimension of complexity for assessment in 
these three-dimensional datasets for the purpose of scoring the 
challenge. It was reasoned that even in the absence of markings 
to localize the abnormalities, a model could “learn” the abnormal 
feature (ie, hemorrhage subtype) through inference from an im-
age label alone and techniques such as saliency maps could be 
used for localization.

To adhere to the tight schedule for the 2019 RSNA Chal-
lenge, 3 months were allocated to perform annotations. An-
notators were assigned batches of 100 examinations to review. 
Institutional data sources were rotated in each batch. A work 
commitment from our volunteer force was set at no more than 
10 hours of aggregate effort per annotator, recognizing that 
there would be a wide range in performance per individual. Ef-
ficiency estimates using a variety of examination types and the 

Figure 3:  A complex multicompartmental cerebral hemorrhage on a single axial CT image displayed using the annotation tool in a single 
portal window. Hemorrhage labels (left column) relevant to the image display on the bottom of the image once selected. ASNR = American 
Society of Neuroradiology, RSNA =Radiological Society of North America.

Table 1: Geographic Representation of the Top 15  
Neuroradiologist Annotators

The University of Alabama at Birmingham
University of Western Australia

Clínica DAPI–Diagnóstico Avançado por Imagem, Curitiba, 
PR, Brazil

University of Washington Medical Center
Baylor College of Medicine
University of Ottawa
Yale School of Medicine
Gold Coast University Hospital, Southport, Queensland, 

Australia
University of Utah
UVA Health
UT Southwestern Medical Center
Albert Einstein Healthcare Network
SUNY Downstate Medical Center
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local data discovery and extraction. To address 
this imbalance, the distribution of the labels for 
each contributing site was employed to normalize 
distribution of examinations in the pooled data 
for the test and validation sets. Data from each 
institution were divided into sets of 500 examina-
tions, and the last 100 examinations in each seg-
ment were selected for the test and validation sets, 
which were reviewed independently by an addi-
tional two neuroradiologists. The training, test, 
and validation sets were disjoint at the patient 
level. Institutional representation was equally bal-
anced, and hemorrhage subtypes were appropri-
ately represented in the validation and test sets. 
The goal was to utilize 15% of the triple-reviewed 
examinations for the final test set with the re-
mainder (5%) used for validation.

Data curation also included removal of errone-
ous data that were deemed incorrect, incomplete, 

or inappropriate. Some examinations were incorrectly labeled as 
brain CT but actually contained another body part and had to 
be eliminated from the dataset. Some of the data extracts con-
tained multiple series using different reconstruction algorithms 
or slice thicknesses. In this event, an annotator could flag the 
inappropriate series for removal and apply labels to the most ap-
propriate series. If more than one series was inadvertently labeled 
and were otherwise equivalent, the series with the most labels 
was retained. The remaining series were removed from the final 
datasets. The series in the final dataset(s) had between 20 and 60 
axial images that were 3–5-mm thick. Disagreements between 
global (examination-based) labels and image labels were adjudi-
cated by a senior reviewer. The curation process resulted in a final 
dataset size of 25 312 examinations, with 21 784 for training/
validation and 3528 for test. The labels for normal and “not nor-
mal/no hyperdense hemorrhage” were combined into one “No 
Bleed” category. Additionally, all images without labels on series 
with hemorrhage were labeled as “No Bleed” in the final dataset. 
The distribution of labels in the training and test datasets is pro-
vided in Table 2 and in Figures 4 and 5.

Limitations and Future Directions
The amount of volunteer labor required to compile, curate, 
and annotate a large complex dataset of this type was substan-
tial. Even though the use case was limited to hemorrhage labels 
alone, it took thousands of radiologist-hours to produce a fi-
nal working dataset in the stipulated time period. To optimally 
mitigate against misclassification in the training data, the train-
ing, validation, and test datasets should have employed mul-
tiple reviewers. The size of the final dataset and the narrow time 
frame to deliver it prohibited multiple evaluations for all of 
the available examinations. The auditing mechanism employed 
for training new annotators showed that the most common 
error produced was under-labeling of data, namely tagging an 
entire examination with a single image label. Raising awareness 
of this error early in the process before the annotators began 
working on the actual data helped to reduce the frequency of 
this error and improve consistency of the single evaluations. 

prior imaging was lacking. Without knowledge of patient age 
or sex, it was impossible to assess for some conditions (eg, age-
appropriate volume loss or white matter disease) that would 
have aided in designating an examination as “no hemorrhage/
not normal.” The training dataset contained serial imaging on 
abnormal examinations, and the temporal sequence of the evo-
lution of the abnormalities was not needed for labeling. How-
ever, in some instances, the hemorrhagic feature may have been 
related to an intervention (eg, postthrombolytic intraparenchy-
mal hemorrhage or postoperative extra-axial hemorrhage). An-
notators also encountered difficulty in classifying a postopera-
tive hemorrhage especially after a craniotomy or craniectomy 
had been performed. Reconciling the finding against whether 
the feature was expected after surgery (eg, postoperative extra-
axial hemorrhage after craniectomy) created some disparity for 
annotators. In addition, hemorrhage outside of the brain from 
scalp hematoma or facial and/or orbital injury when present, 
while important from a clinical reporting standpoint, was not 
a task required for this challenge.

Adjudication
Because of the large size of the combined dataset (25 312 distinct 
examinations), the limited time allotted to create expert labels 
(3 months), and the expected variation in productivity with our 
volunteer force of neuroradiology annotators, it was decided that 
the training examinations would be labeled by a single expert an-
notator. A total of 3528 examinations were read by three neuro-
radiologists in a blinded fashion. A majority vote (two of three) 
served as consensus for image- and examination-level labels for the 
triple-read examinations. A total of 525 examinations were adju-
dicated by one of two senior neuroradiologists if there was lack of 
consensus for an image label subtype category or a contradictory 
examination label (eg, normal or no finding vs hemorrhage).

Resulting Datasets
Although the three contributing institutions provided a simi-
lar number of unique CT examinations, the distribution of 
labels among sites differed due to site sampling bias during 

Table 2: Distribution of Hemorrhage Label Subtypes by Examina-
tion and Images for Both the Training and Test Sets

Subtype
Training Set 
Images

Test Set 
Images

Training Set 
Examinations

Test Set  
Examinations

Any hemorrhage 
type

107 933 15 902 8889 1243

Epidural 3145 208 354 23
Intraparenchymal 36 118 5468 5324 758
Intraventricular 26 205 4546 3692 616
Subarachnoid 35 675 4908 3936 528
Subdural 47 166 6555 3814 503
None 644 870 105 330 12 895 2285
Total 752 803 121 232 21 784 3528

Note.—The number of labels exceeds the actual number of examinations and 
images because more than one label may have been applied.

http://radiology-ai.rsna.org


6� radiology-ai.rsna.org  n  Radiology: Artificial Intelligence Volume 2: Number 3—2020

Construction through Collaboration

Random auditing of the annotations in the 
training, validation, and test partitions showed 
that variations in hemorrhage subtype classes 
still occurred among observers, as did a vari-
ability in extent of hemorrhage (reflected in 
the number of hemorrhage subtype labels in 
a given series). This reflects the general varia-
tion in perceptual skills among observers and 
is not easily corrected through further training. 
Although hemorrhage subtype was the primary 
objective for this challenge, there was a large 
variety of cerebral disease states represented 
in the data that were never specifically classi-
fied. The deliberate exclusion of coordinates or 
regions of interest for any of the hemorrhage 
subtypes is also a limitation in the final dataset. 
These limitations notwithstanding, the resul-
tant dataset achieved the stated objectives of 
complexity and heterogeneity.

The process of assembling a single dataset 
derived from multiple disparate institutions 
helped to identify several key opportunities for 
improvement in the data procurement process. 
Broadly, these can be divided into refinements 
for data discovery, curation, and anonymization. 
The data imbalance problem was principally re-
lated to variations in data discovery methods 
employed at the contributing sites. Each con-
tributing site devised a different method for 
data extraction from their respective archives; 
the proportions of hemorrhage subclasses var-
ied considerably by site. Deployment of a single 
query/retrieval solution at each contributing site 
potentially may have produced similar propor-
tions of subclasses from each site thereby requir-
ing less curation when assembling the final data-
sets. Automated methods to curate data prior to 
leaving the institutions would also have dimin-
ished the need to perform quality control tasks 
by the annotators and adjudicators. Finally, each 
contributing site employed different de-identi-
fication and anonymization solutions prior to 
the data leaving each respective site. This pro-
duced site-specific anonymization “signatures” 
that could be used to discriminate one site from 
another, hence creating another intrinsic bias 
in the data. This required another round of anonymization and 
synthetic unique identifier generation to normalize the examina-
tion metadata. Deployment of a single solution at each contrib-
uting site for de-identification and anonymization would have 
eliminated these additional steps.

As this is a public dataset, it is available for further en-
hancement and use including the possibility of adding mul-
tiple readers for all studies, performance of detailed segmen-
tations, performance of federated learning on the separate 
datasets, and evaluation of the examinations for disease enti-
ties beyond hemorrhage.

Summary
The RSNA Brain Hemorrhage CT Dataset (https://www.kaggle.
com/c/rsna-intracranial-hemorrhage-detection) is the largest pub-
lic dataset of its kind containing a very large and heterogeneous 
collection of brain CT studies from multiple scanner manufac-
turers, institutions, and countries. It is also a “real-world” da-
taset containing complex examples of cerebral hemorrhage in 
both the inpatient and emergency setting. The dataset, released 
under a noncommercial license, has representation of a large 
variety of cerebral pathologic states for use in future machine 
learning applications. The objective of engaging with a subspe-

Figure 4:  Distribution of examination labels in the final training (blue) and test (orange) datasets. The 
“any hemorrhage” designation represents when one or more of the hemorrhage subclasses were present 
in the entire examination.

Figure 5:  Distribution of image-based labels in the final training (blue) and test (orange) datasets. 
The “any hemorrhage” designation represents when one or more of the hemorrhage subclasses were 
present on an image.

http://radiology-ai.rsna.org
https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection
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cialty society to leverage their unique expertise in developing 
a clinical use case and high-quality dataset is an effective and 
useful model to follow for future collaborations.
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