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Simple Summary: Bladder cancer is a common cancer of the urinary tract, characterized by high
metastatic potential and recurrence. The research applies a transfer learning approach on CT images
(frontal, axial, and saggital axes) for the purpose of semantic segmentation of areas affected by bladder
cancer. A system consisting of AlexNet network for plane recognition, using transfer learning-based
U-net networks for the segmentation task. Achieved results show that the proposed system has a
high performance, suggesting possible use in clinical practice.

Abstract: Urinary bladder cancer is one of the most common cancers of the urinary tract. This cancer
is characterized by its high metastatic potential and recurrence rate. Due to the high metastatic
potential and recurrence rate, correct and timely diagnosis is crucial for successful treatment and
care. With the aim of increasing diagnosis accuracy, artificial intelligence algorithms are introduced
to clinical decision making and diagnostics. One of the standard procedures for bladder cancer
diagnosis is computer tomography (CT) scanning. In this research, a transfer learning approach to the
semantic segmentation of urinary bladder cancer masses from CT images is presented. The initial data
set is divided into three sub-sets according to image planes: frontal (4413 images), axial (4993 images),
and sagittal (996 images). First, AlexNet is utilized for the design of a plane recognition system,
and it achieved high classification and generalization performances with an AUCmicro of 0.9999
and σ(AUCmicro) of 0.0006. Furthermore, by applying the transfer learning approach, significant
improvements in both semantic segmentation and generalization performances were achieved. For
the case of the frontal plane, the highest performances were achieved if pre-trained ResNet101
architecture was used as a backbone for U-net with DSC up to 0.9587 and σ(DSC) of 0.0059. When
U-net was used for the semantic segmentation of urinary bladder cancer masses from images in the
axial plane, the best results were achieved if pre-trained ResNet50 was used as a backbone, with
a DSC up to 0.9372 and σ(DSC) of 0.0147. Finally, in the case of images in the sagittal plane, the
highest results were achieved with VGG-16 as a backbone. In this case, DSC values up to 0.9660
with a σ(DSC) of 0.0486 were achieved. From the listed results, the proposed semantic segmentation
system worked with high performance both from the semantic segmentation and generalization
standpoints. The presented results indicate that there is the possibility for the utilization of the
semantic segmentation system in clinical practice.

Keywords: artificial intelligence; computer tomography; machine learning; semantic segmentation;
urinary bladder cancer
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1. Introduction

Urinary bladder cancer is one of the ten most common cancers worldwide. It is
characterized by an cancerous alteration and uncontrollable growth of bladder tissue,
typically urothelial cells, which develop into a tumor and can spread into other organs.
Patients who suffer from bladder cancer may exhibit various symptoms, such as painful
and frequent urination, blood in the urine, and lower back pain. Research indicates that
tobacco smoking largely increases the risk of developing bladder cancer [1]. Other external
factors that may increase the risk of bladder cancer are a previous exposure to radiation,
frequent bladder infections, obesity, and exposure to certain chemicals, such as aromatic
amines [2,3].

Multiple different pathohistological subtypes of bladder cancer exist, including urothe-
lial carcinoma (transitional cell carcinoma)—the most common type of bladder cancer [4];
squamous cell carcinoma—which is rare and associated with chronic irritation of the
bladder commonly due to infections or prolonged catheterization [5]; adenocarcinoma—a
very rare subtype of cancer, arising in other, neighboring organs as well [6]; small cell
carcinoma—a highly aggressive type of cancer with a high metastatic potential, commonly
diagnosed at advanced stages [7]; and sarcoma—an extremely rare and aggressive type of
bladder cancer [8].

Diagnosis of bladder cancer is commonly performed using cystoscopy, a procedure
in which a fiber-optic instrument is passed through the urethra into the bladder and an
optical evaluation is performed by a specialist in vivo [9]. The process is significantly
less invasive than a biopsy but also has a lower success rate in certain cases—such as
distinguishing carcinoma in-situ from scarring or inflammatory changes [10]. As this
procedure utilizes a digital camera, previous work [11,12] has shown the ability to improve
the results of the procedure through the application of Artificial Intelligence (AI) machine
learning (ML) algorithms. This indicates that AI methods could be applied in connected,
similar diagnostic problems.

Computed tomography (CT) scans are a commonly used medical diagnostic imaging
method in which multiple X-ray measurements are taken to produce tomographic images
of a patient’s body, allowing the examination of patient’s organs without the need for a
more invasive procedure [13]. Today, multi-detector CT scanners, with 64 to 320 rows of
detectors, are used combined with helical image acquisition techniques, as they minimize
the exposure to the radiation and can generate sagittal, axial, and frontal images of the
body during a single breath-hold [14]. CT urography and CT of the abdomen and pelvis
are contrast-enhanced imaging methods for the detection and staging of bladder cancer
that are able to differentiate healthy from cancer-affected regions of the bladder [15,16].

Non-ionic monomer iodinated contrast agents are administered intravenously for
arterial opacification and parenchymal enhancement, which helps with better delineation of
soft tissue [17]. Acquired images are regularly inspected and interpreted by the radiologist,
who provides detailed descriptions of the urinary bladder [18]. In post-processing, the
radiologist can mark and measure the suspected tumor or create a 3D recreation of a
urinary system. Detection of urinary bladder cancer by using CT urography has shown
high performance, and it can be concluded that CT urography can be used alongside
cystoscopy for detecting urinary bladder cancer [19].

Varghese et al. (2018) [20] demonstrated the application of semi-supervised learning
through denoising autoencoders to detect and segment brain lesions. A limited number of
patients was used (20, 40, and 65), but despite this, the method displayed good performance
on low-grade glaucoma (LGG) segmentation. Ouyang et al. (2020) [21] demonstrated a
self-supervised approach to medical image segmentation. The researchers applied a novel
few-shot semantic segmentation (FSS) framework for general applicability that achieved
good performance in three different tasks: abdominal organ segmentation on images
collected through both CT and MRI procedures and cardiac segmentation for MRI images.

Renard et al. (2020) [22] showed the importance of segmentation using deep learning
algorithms and proposed three recommendations for addressing possible issues, which
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are an adequate description of the utilized framework, a suitable analysis of various
sources, and an efficient evaluation system for the results achieved with the deep learning
segmentation algorithm. Zhang et al. (2020) [23] discussed the applications of deep-
stacked data—an application of multiple stacked image transformations and their influence
on the segmentation performance with tests performed on multiple three-dimensional
segmentation tasks—the prostate gland, left atrial, and left ventricle.

Zhang et al. (2020) [24] integrated an Inception-ResNet module and U-Net architecture
through a dense-inception block for feature extraction. The proposed model was used for
the segmentation of blood vessels from retina images, lung segmentation of CT data, and
an MRI scan of the brain for tumor segmentation, on all of which, it achieved extremely
high dice scores.

Liu et al. (2020) [25] demonstrated the application of segmentation for the diagnosis
of breast cancer, focusing on the application of Laplacian and Gaussian filters on mammog-
raphy images available in the MIAS database. The performance was compared to different
filters, such as Prewitt, LoG, and Canny, with the tested solutions providing comparable or
better performance. Wang et al. (2020) [26] also demonstrated the application of image seg-
mentation on breast cancer nuclei. The researchers applied the U-Net++ architecture, with
Inception-ResNet-V2 used as a backbone, allowing for increased performance compared to
previous research.

Hongtao et al. (2020) [27] demonstrated the application of segmentation and mod-
eling of lung cancer using 3D renderings created from CT images. The segmentation
performed using MIMICS17.0 software and demonstrated high precision; however, due
to software limitations, the exact coordinates of tumor location cannot yet be exported.
Yin et al. (2020) [28] demonstrated the application of a novel medical image segmentation
algorithm—balanced iterative reducing and clustering using hierarchies (BIRCH). The
method was applied to brain cancer imagery with the experimental results demonstrating
that segmentation accuracy and speed can be applied through the BIRCH application.

Qin et al. (2020) [29] proposed a novel Match Feature U-Net, a symmetric encoder. The
method is compared to U-Net, U-net++, and CE-Net showing improvements in multiple
image segmentation tasks: nuclei segmentation in microscopy images, breast cancer cell
segmentation, gland segmentation in colon histology images, and disc/cup segmentation.
Li et al. (2020) [30] demonstrated edge detection through image segmentation algorithms
on the three dimensional image reconstruction. The proposed method achieved accuracy
above 0.95 when applied with a deep learning algorithm.

Kaushal et al. (2020) [31] showed the application of an algorithm based on the so-
called Firefly optimization, with the application on breast cancer images. The proposed
method was capable of segmenting images despite their type and modality with effective-
ness comparable to or exceeding other state-of-the-art techniques. Alom et al. (2020) [32]
displayed the application of improved deep convolutional networks (DCNN) on skin
cancer segmentation and classification. The authors proposed NABLA-N, a novel network
architecture that achieved an accuracy of 0.87 on the ISIC2018 dermoscopic skin cancer
data set.

Li et al. (2020) [33] demonstrated the application of a nested attention-aware U-Net
on CT images for the goal of liver segmentation. The authors concluded that the proposed
novel method achieved competitive performances on the MICCAI 2017 Liver Tumor
Segmentation (LiTS) Challenge Dataset. Tiwari et al. (2020) [34] displayed the application
of the fuzzy inference system. The authors applied a pipeline consisting of preprocessing,
image segmentation, feature extraction, and the application of fuzzy inference rules, which
are capable of identifying lung cancer cells with high accuracy.

Monteiro et al. (2020) [35] demonstrated the use of CNNs for multiclass semantic
segmentation and the quantification of traumatic brain injury lesions on head CT images.
The patient data was collected in the period between 2014 and 2017, on which the CNN
was trained for the task of voxel-level multiclass segmentation/classification. The authors
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found that such an approach demonstrated a high quality volumetric lesion estimate and
may potentially be applied for personalized treatment strategies and clinical research.

Anthimopoulos et al. (2018) [36] demonstrated the use of Dilated Fully Convolutional
Networks for the task of semantic segmentation on pathological lung tissue. The authors
used 172 sparsely annotated CT scans within a cross-validation training scheme with
training done in a semi-supervised mode using labeled and unlabeled image regions.
The results showed that the proposed methodology achieved significant performance
improvement in comparison to previous research in the field.

Another study regarding segmentation on lung CTs was performed by Meraj et al.
(2021) [37] with the goal of performing lung nodule detection. The authors used a publicly
available dataset, the Lung Image Database Consortium, upon which filtering and noise
removal were applied. The authors used adaptive thresholding and semantic segmentation
for unhealthy lung nodule detection, with feature extraction performed via principal
component extraction. Such an approach showed results of 99.23% accuracy when the logit
boost classifier was applied.

Koitka et al. (2021) proposed an automatic manner of body composition analysis,
with the goal of application during routine CT scanning. The authors utilized 3D semantic
segmentation CNNs, applying them on a dataset consisting of 50 CTs annotated on every
fifth axial slice split into an 80:20 ratio. The authors achieved high results with the average
dice scores reaching 0.9553, indicating a successful application of CNNs for the purpose of
body composition determination.

To increase the performances of algorithms for the semantic segmentation, we intro-
duce a process of transfer learning. It is important to notice that alongside the performance
from the semantic segmentation standpoint, the performance from the generalization
standpoint must be evaluated as well. For these reasons, the following questions can
be asked:

• Is it possible to design a semantic segmentation system separately for each plane?
• Is there a possibility to design an automated system for plane recognition?
• How does the transfer learning paradigm affect the semantic segmentation and gener-

alization performance of designed U-nets?
• Which pre-trained architectures achieve the highest performances if used as a back-

bone for U-net?

To summarize the novelty of the article, the idea is to utilized multi-objective criteria
to evaluate the performances of a transfer learning-based system for the semantic segmen-
tation of urinary bladder cancer masses from CT images. The images are captured in three
planes: frontal, axial, and sagittal, and the aim of the research is to maximize semantic
segmentation performances by dividing data set according to planes and to introduce the
system for automatic plane recognition.

At the beginning of the paper, a brief description of the diagnostic procedure is
provided together with the problem description. After the problem description, the used
data set is presented, followed by a description of the used algorithms. After algorithm
description, a mathematical approach to the transfer learning paradigm is presented
together with used backbone architectures. In the end, the research methodology is
presented followed by the results and discussion.

2. Problem Description

With aim of developing an automated system that could be used in the diagnosis and
decision making regarding urinary bladder cancer, a system for the semantic segmentation
of urinary bladder cancer from CT images is proposed. The proposed approach is based
on the utilization of CNN models that are executed on an HPC workstation. The idea
behind the utilization of CNN-based semantic segmentation is to use a data set of images
with known annotation to train CNN that will later be used to automatically annotate and
evaluate new images. As input data to the semantic segmentation system, images of lower
abdomen collected with CT are used.
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An input image, captured in three planes. First, the classification is performed, in order
to determine the plane in which the image was captured. After the plane is determined,
the image is used as an input to U-net architecture for that particular plane. Trained U-net
architecture is used to create the output mask. The output mask represents the region of
an image where urinary bladder cancer is present. Such an output enables automated
evaluation of urinary bladder that results in an annotated image that is used to determine
the urinary bladder cancer spread. A graphical overview of such a process is presented in
Figure 1.

Figure 1. Dataflow diagram of the process of semantic segmentation of urinary bladder cancer from
CT images.

The dataset used in this research was created by using CT images collected in the
Clinical Hospital Center of Rijeka, and it consists of CT images of the lower abdomen in
three planes:

• Frontal plane.
• Sagittal plane.
• Axial plane.

All images contained in the data set are images where a form of bladder cancer is
confirmed. The CT images with confirmed bladder cancer are presented in Figure 2, where
Figure 2a represents a CT image in the frontal plane, Figure 2b represents a CT image in
the sagittal plane, and Figure 2c represents a CT image in axial plane.

The distribution of the training, validation, and the testing data sets is presented for
all three planes in Table 1.

Table 1. Original data set distribution.

Plane Number of Images

Frontal 4413
Axial 4993

Sagittal 996
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(a) (b)

(c)

Figure 2. Examples of images contained in the dataset: (a) frontal plane; (b) sagittal plane; and (c)
axial plane.

When the numbers of images in each plane are compared, it can be seen that a
significantly lower number of images were captured for the case of the sagittal plane, in
comparison with the frontal and axial plane. Such an imbalance is a consequence of the fact
that the CT urography procedures are, in the case of this research, dominantly performed
in the frontal and axial planes only. Furthermore, images captured in the sagittal plane are
captured with lower density, resulting in a lower number of images per patient.

The use of this particular data set was approved by Clinical Hospital Center Rijeka,
Ethics Board (Kresimirova 42, 51000 Rijeka); under the number 2170-29-01/1-19-2, on 14
March 2019. In order of creating output data for CNN training, image annotation was
performed. Such an approach was utilized for creating output masks that represent the
bladder region where a malignant mass is present. The annotation was performed by a
specialist urologist according to the obtained medical findings.

It is important to emphasize that all images and corresponding medical findings used
during this research are validated with additional medical procedures, such as cystoscopy.
Medical findings are evaluated by three independent raters—urologists with the experience
in the field of radiography, including CT. As a observer agreement measure, Fless’ kappa
(κ) coefficient is used [38]. For the case of this study, κ of 0.83 was achieved. This results
suggests the conclusion that the agreement of observers is, in this case, of a high degree.

An example of an image annotation procedure is presented in Figure 3, where
Figure 3a, Figure 3a,b represent the frontal, sagittal, and axial plane, respectively.
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(a) (b)

(c)

Figure 3. Examples of annotated images used for the creation of output masks: (a) frontal plane;
(b) sagittal plane; and (c) axial plane.

The red areas presented in Figure 3 are used in the creation of output annotation maps
that are used during U-net model development [39].

3. Algorithm Description

Malignant masses visible from CT images of a urinary bladder can be detected by
using a semantic segmentation approach. Cancer detection using a semantic segmentation
approach is used to differentiate malignant masses from the remaining part of the urinary
bladder and other organs of the lower abdomen. Semantic segmentation is based on the
utilization of U-net. Such an approach represents a standard approach in medical image
segmentation tasks [40,41], and it is based on generating output masks that represent the
area where malignant mass is present [42].

U-net is characterized by its fully convolutional architecture. Such an architecture, in
difference with standard CNN architecture, consists only of convolutional layers that are
distributed into a contractive and expansive part. The contractive part of U-net is a stan-
dard down-sampling procedure similar to every CNN architecture with its convolutional
and pooling layers [43]. On the other hand, during the expansive part, an up-sampling
procedure is performed [44].

An up-sampled feature map was concatenated with the cropped part of the feature
map from the contractive part [45]. The cropping procedure is performed due to the loss of
border pixels in contractive of U-net. This procedure is repeated in the order of constructing
a segmentation map on the U-net output. The aforementioned semantic segmentation map
represents the area of an image where a malignant mass is present and it is, in fact, an
output of a semantic segmentation algorithm. The described approach is presented with a
block scheme in Figure 4.
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Figure 4. A block scheme of the proposed U-net architecture.

The CT procedure of urinary bladder evaluation consists of examination in three
planes. Due to this fact, the algorithm that consists of three parallel U-net algorithms
is proposed. Each of the aforementioned U-nets is utilized in order to detect malignant
mass from a CT image that represents a projection of the urinary bladder in one plane. A
schematic representation of the proposed procedure is presented in Figure 5.

Frontal plane

Horizontal plane

Sagittal plane

U-net for frontal plane 
evaluation

U-net for horizontal plane 
evaluation

U-net for sagittal plane 
evaluation

Urinary bladder 
evaluation

Figure 5. A block scheme of the proposed parallel U-net algorithm.

4. Transfer Learning Approach

The process of transfer learning can be mathematically defined by using a framework
that consists of domain, task, and marginal probabilities definitions. If domain D is defined
as a tuple of two elements [46]:

• feature space X , and
• marginal probability P(X),

where X represents a sample data point. From the presented rules, a domain can be
defined as:

D = {X , P(X)}, (1)

where X is defined as:
X = {x1, x2, · · · , xn}, (2)
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where:
xi ∈ X . (3)

Furthermore, a task T can also be defined as a tuple that consists of the label space γ
and objective function O. The presented objective function can be defined as:

O = P(γ|X). (4)

If it is stated that source domain Ds corresponds with source task Ts and target domain
Dt corresponds with target task Tt, it can be stated that the objective of transfer learning
process is to enable learning target conditional probability distribution P(Yt|Xt) in Dt by
using knowledge gained from Ds and Ts where it is defined that:

Ds 6= Dt, (5)

and
Ts 6= Ds. (6)

For the purposes of this research, a transfer learning process can be described as
utilization of pre-defined and pre-trained CNN architecture as a backbone to U-net. The
aforementioned CNNs are pre-trained using one of the standard computer vision data sets.

For the purpose of this research, backbone CNNs were pre-trained using the ImageNet
data set. Backbone CNNs represent the contractive part of a U-net, while the expansive
part is added. As a contractive part of the U-net architecture, only the upper layers of
the aforementioned pre-trained CNN architectures are used. On the other hand, the
lower, fully connected layers of these CNN architectures are removed from the network in
order to achieve the fully convolutional configuration required for achieving the semantic
segmentation. During the training of the U-net, the layers in the contractive part of the
network are frozen, and there is no change in their parameters.

Such a process is presented in Figure 6.

Figure 6. A block scheme of the proposed dataflow.

5. Used CNN Architectures

In this section, a brief overview of utilized CNN architectures will be provided. The
first described CNN architecture, AlexNet, will be used only for plane recognition, while
the other CNN architectures will be used only to design U-nets with pre-trained backbones.
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5.1. Alexnet

In order to automatize the process of data set division according to planes, a CNN-
based classification approach is proposed. For this purpose, AlexNet CNN architecture
will be used. AlexNet represents one of the standard CNN architectures. It was developed
by Alex Krizhevsky et al. and used to win the ImageNet competition [47]. AlexNet
represents a deeper architecture that has started the trend of designing much deeper CNN
architectures in recent years. For the purposes of this research, AlexNet is used only for
plane recognition. The plane recognition problem represents a standard classification
problem that can be solved by using less complex CNN architectures, such as AlexNet.
AlexNet architecture has shown high classification performances when used for similar
classification tasks in the biomedical field [12,48]. For these reasons, this architecture was
chosen for the task of automatic CT image plane recognition.

A detailed description of the presented AlexNet CNN and all its layers is provided in
Table 2.

Table 2. Description of AlexNet architecture (C—convolutional layer, P—Max pooling, and
FC—fully connected).

Layer Type Feature Size Kernel Stride Activation
Map Size Function

Input Image 1 227× 227× 1 - - -
1 C 96 55× 55× 96 11× 11 4 ReLU

P 96 27× 27× 96 3× 3 2 -
2 C 256 27× 27× 256 5× 5 1 ReLU

P 256 13× 13× 256 3× 3 2 -
3 C 384 13× 13× 384 3× 3 1 ReLU
4 C 384 13× 13× 384 3× 3 1 ReLU
5 C 256 13× 13× 256 3× 3 1 ReLU

P 256 6× 6× 256 3× 3 2 -
6 FC - 9216 - - ReLU
7 FC - 4096 - - ReLU
8 FC - 4096 - - ReLU

Output FC - 4 - - Softmax

5.2. Vgg-16

Another standard CNN architecture that will be used in this research is VGG-16. This
architecture is also characterized with a deep architecture, even deeper than AlexNet. This
architecture was developed in 2014 as an improvement of the AlexNet architecture [49].
It consists of a 16-layer architecture, from which the name VGG-16 was derived. Its main
difference from the AlexNet architecture is smaller kernels in convolutional layers [50]. A
difference with the AlexNet architecture is that this architecture will be used as a backbone
of the U-net-based algorithm for the semantic segmentation. A detailed overview of the
VGG-16 architecture is presented in Table 3.
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Table 3. Description of VGG-16 architecture (C—convolutional layer, P—Max pooling, and
FC—fully connected).

Layer Type Activation Function

Input Image -
1 2 X C ReLU

P -
3 2 X C ReLU

P -
5 3 X C ReLU

P -
8 3 X C ReLU

P -
11 3 X C ReLU

P -
14 FC ReLU
15 FC ReLU
16 FC ReLU

Output FC Softmax

5.3. Inception

Alongside more simple CNN architectures, for the design of pre-trained U-net back-
bones, more advanced CNN architectures are used as well. One of these architectures is
Inception. The main difference between Inception and standard deep CNNs lays in the
parallel configuration of an Inception block. Such an architecture is characterized by the
parallel implementation of multiple convolution procedures with kernels of different sizes.
All convolutions are performed on the same input feature map.

All outputs are concatenated and used as input for the next Inception layer. In this
research, three different types of Inception modules will be used for the design of an Incep-
tion network. The first module used is based on dimension reduction, where larger kernels
are replaced with successive convolution with smaller ones. A schematic representation of
this Inception module is presented in Figure 7a. Furthermore, convolutions of size n× n
can be replaced with equivalent consecutive combination of convolutions 1× n and n× 1.
Following the presented logic, it can be noticed that, for example, convolution 3× 3 can be
replaced with consecutive 1× 3 and 3× 1 convolutions. An illustration of the presented
module is given in Figure 7b. The last inception block used to construct the Inception CNN
used in this research is the configuration with parallel modules. A block scheme of such a
configuration is presented in Figure 7c.

By using above presented Inception modules, the architecture presented in Table 4 is
constructed, and this is used to construct the pre-trained backbone for the U-net semantic
segmentation architecture.
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(a) (b)

(c)

Figure 7. Block schemes of Inception modules (a) Inception-a; (b) Inception-b; and (c) Inception-c.

Table 4. Layer configuration of an InceptionV3 architecture.

Layer Type Patch Size/Stride/Remark Input Size

Convolutional 3 × 3 /2 299 × 299 × 3
Convolutional 3 × 3 /1 149 × 149 × 32

Convolutional + Padding 3 × 3 /1 147 × 147 × 32
Pooling 3 × 3 /2 147 × 147 × 64

Convolutional 3 × 3 /1 73 × 73 × 64
Convolutional 3 × 3 /2 71 × 71 × 80
Convolutional 3 × 3 /1 35 × 35 × 288
3 × Inception-a As in Figure 7a 35 × 35 × 288
5 × Inception-b As in Figure 7b 17 × 17 × 768
2 × Inception-c As in Figure 7c 8 × 8 × 1280

Pooling 8 × 8 8 × 8 × 2048
Linear Logits 1 × 1 × 2048

Softmax Classification 1 × 1 × 1000

5.4. Resnet

ResNet represents a more advanced CNN architecture that is based on the utilization
of residual blocks. Residual block is constructed by using parallel Identity blocks in order
to bypass convolutional layers. Such an approach is used in order to minimize the effect of
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vanishing gradients and to enable the construction of deeper CNN architectures [51]. A
schematic representation of a residual block is presented in Figure 8.

Figure 8. A block scheme of a residual block.

For the purposes of this research, three different residual block-based CNN architec-
tures are designed:

• ResNet50 [52],
• ResNet101 [53], and
• ResNet152 [54].

5.5. Inception-Resnet

The last pre-defined CNN architecture used in this research is Inception-ResNet.
Such an architecture represents a combination between Inception architecture and the
approach of residual block utilization [55]. The presented approach is achieved by using
Inception-residual blocks. A block scheme of such a block is presented in Figure 9.
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Figure 9. A block scheme of an Inception-residual block.

6. Research Methodology

In order of determining the parallel U-net configuration with the highest segmen-
tation performances, results achieved with standard and hybrid U-net architectures are
compared. In this section, a brief description of semantic segmentation performance
metrics is provided. Furthermore, the procedure of the U-net model selection procedure
is described.

To maximize the segmentation performances of the proposed parallel U-net architec-
ture, a grid search procedure is performed. Such a procedure is performed by changing
U-net hyperparameters, re-training, and segmentation performance evaluation on the
testing dataset. With this approach, the U-net configuration with the highest segmentation
performances is included in the parallel algorithm. U-net hyperparameters used during
the grid-search procedure are presented in Table 5.

Table 5. Overview of U-net hyperparameters used during grid-search procedure.

Solver Batch Size Number of Epochs

Adam 1 50
AdaMax 2 75
Adagrad 4 100
AdaDelta 8 125
RMSprop 16 150
Nadam - 175

- - 200
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6.1. Semantic Segmentation Performance Metrics

Comparison of designed U-nets is performed according to metrics for the semantic
segmentation performance evaluation. As it is in the case of classification and regression, in
this case, performances are also evaluated by using input and output data from the testing
dataset. In this research, metrics:

• Intersection over union [56] and
• Dice coefficient [57]

are used. Both metrics are based on a comparison of generated and true segmentation
masks and represent the relationship between their shape and position. In the following
paragraphs, a brief description of the aforementioned metrics will be provided.

6.1.1. Intersection over Union

Intersection over Union (IoU) is a metric based on the ratio between the intersection
of two segmentation maps and their union [58]. This ratio is defined as:

IoU =
X ∩Y
X ∪Y

, (7)

where X ∩Y represents an intersection and X ∪Y represents a union. When the overlap of
the actual and generated segmentation map is high, IoU will tend to

IoU → 1. (8)

On the other hand, when the overlap is lower, IoU will tend to:

IoU → 0. (9)

From the presented extremes, it can be noticed that IoU, as a scalar measure for the
semantic segmentation performance evaluation, will be part of the interval:

IoU ∈ [0, 1]. (10)

6.1.2. Dice Coefficient

Alongside IoU, the Dice coefficient (DSC) is also used as a metric for evaluation of
semantic segmentation performances. DSC is defined as [59]:

DSC =
2|X ∩Y|
|X|+ |Y| , (11)

where |X| represents the cardinality of the real, and |Y| represents the cardinality of the
generated segmentation map. As it is in the case of IoU, when the overlap of the actual
and generated segmentation map is high, DSC will tend to:

DSC → 1. (12)

When the overlap is low, DSC will tend to:

DSC → 0. (13)

From the presented extremes, it can be noticed that DSC will be a part of the interval:

DSC ∈ [0, 1]. (14)
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6.2. U-Net Model Selection

For purposes of selecting the best semantic segmentation model for each plane, a cross-
validation procedure is introduced. The cross-validation procedure represents a standard
procedure used in machine learning applications in order to define not only classification
or semantic segmentation but also generalization performances. The aforementioned
procedure is based on repeated re-training and testing of an ANN where data sets fractions
(folds) that represent training and testing data sets are used interchangeably. The procedure
is repeated until all folds are used for training and testing. The graphical representation of
the described procedure is presented in Figure 10.

Figure 10. A schematic representation of the five-fold cross-validation procedure.

With the obtained information about CNNs classification or semantic segmentation
performances in all cases, information about generalization performances can be derived.
The average classification or semantic segmentation performances (P) are defined as:

P =
1
N

N

∑
i=1

Pi, (15)

where Pi represents a result of the classification or semantic segmentation metrics obtained
on a network trained and tested with data sets defined as case i. On the other hand,
generalization performances (σ(P)) of a CNN are defined by using the standard deviation
of Pis achieved in all cases, or:

σ(P) =

√√√√ 1
N − 1

N

∑
i=1

(Pi − P)2 (16)

It has to be noted that CNNs with high classification and semantic segmentation perfor-
mances will have:

P→ Pmax, (17)

where
Pmax = 1. (18)

On the other hand, a CNN with high generalization performances will have:

σ(P)→ 0. (19)
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By using the presented criteria for performance evaluation, it can be noted that
multi-objective criteria will be used for choosing the architecture that has the highest
performances. All models are represented with tuples defined as:

Tn = {DSC, IoU, σ(DSC), σ(Iou)}, (20)

and are added to a set of tuples:

T = {T1, T2, . . . , TN}, (21)

A set of tuples is sorted in such a manner that:

π1(Tq) ≤ π1(T2) ≤ · · · ≤ π1(TN), (22)

where π1 represents the first element in a tuple, DSC. In the case when

π1(Tn−1) = π1(Tn), (23)

these two tuples are sorted that:

π3(Tn−1) < π3(Tn). (24)

In this case, π3(Tn) can be defined as:

π3(Tn) = σ(DSC(Tn)) (25)

7. Results and Discussion

In this section, an overview of the achieved results is presented. In the first subsection,
the results achieved with AlexNet CNN architecture for plane recognition are presented. In
the second, third, and fourth subsections, the results achieved with U-net architectures are
presented for each plane. At the end of the section, a brief discussion about the collected
results is provided.

7.1. Plane Recognition

When the results of plane classification achieved by using AlexNet CNN architecture
are observed, it can be noticed that the highest classification and generalization perfor-
mances are achieved if the AlexNet architecture is trained by using RMS-prop optimizer for
10 consecutive epochs with data batches of 16. With the presented architecture AUCmicro
value of 0.9999 and σ(AUCmicro) value of 0.0006 are achieved, as presented in Table 6.

Table 6. The AlexNet architecture with the highest plane recognition performances.

Solver Epochs Batch Size AUCmicro σ(AUCmicro)

RMS-prop 10 16 0.9999 0.0006

If the change of classification and generalization performances through epochs are
compared, it can be noticed that the highest results are achieved when AlexNet is trained
for 10 consecutive epochs. Furthermore, it can be noticed that the performances are
significantly lower when AlexNet is trained for higher number of epochs, pointing towards
the over-fitting phenomena. If AlexNet is trained for just one epoch, the performances are
also significantly lower as presented in Figure 11.



Biology 2021, 10, 1134 18 of 25

1 10 20 50 100
Number of epochs

0.94

0.95

0.96

0.97

0.98

0.99

1.00

AU
C m

ac
ro

AUCmacro

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(A
U

C m
ac

ro
)

(AUCmacro)

Figure 11. The change of AUCmicro and σ(AUCmicro) through the number of epochs achieved with
AlexNet for plane recognition.

From the presented result, it can be concluded that AlexNet can be used for CT image
plane recognition due the high classification and generalization performances.

7.2. Semantic Segmentation in Frontal Plane

If the results of semantic segmentation in the frontal plane are compared, it can be
noticed that by applying the transfer learning paradigm, a significant improvement of
semantic segmentation results is achieved. If a standard U-net architecture is utilized, DSC
does not exceed 0.79 and IoU value does not exceed 0.77. Such results are pointing toward
the conclusion that such a configuration has sufficient performance for practical application.
Furthermore, if a transfer learning approach utilized a significant improvement of semantic
segmentation and generalization performance is achieved.

The highest performances in both criteria are achieved if a pre-trained ResNet101
CNN architecture is used as a backbone for U-net. In this case, DCS values up to 0.9587 are
achieved. Furthermore, IoU up to 0.9438 are achieved. When generalization performances
are observed, it can be noticed that the lowest standard deviations are achieved when
ResNet50 is used, followed by ResNet101. A detailed overview of the results achieved
with and without pre-trained backbones is presented in Table 7, together with the hyper-
parameters that achieved the highest results per backbone architecture.

Table 7. Results achieved with images in the frontal plane.

Backbone Architecture Solver Epochs Batch DSC IoU σ(DSC) σ(IoU)

None AdaMax 25 2 0.7846 0.7655 0.0439 0.0444
VGG-16 Nadam 150 4 0.9134 0.9011 0.0816 0.0787
InceptionV3 RMS-prop 75 2 0.9031 0.8955 0.0149 0.0147
ResNet50 Adam 50 8 0.9314 0.9258 0.0019 0.0019
ResNet101 Nadam 50 2 0.9587 0.9438 0.0059 0.0079
ResNet152 RMS-prop 100 8 0.8121 0.8067 0.0082 0.0092
Inception-ResNet Nadam 175 2 0.8991 0.8962 0.1212 0.1209

If the change of semantic segmentation and generalization performances through
epochs are observed for ResNet101, it can be noticed that the highest semantic segmentation
and generalization performances are achieved when the U-net is trained for 125 consecutive
epochs. When the network is trained for a higher number of epochs, it can be noticed that
significantly poorer performances are achieved. Such a property can be attributed to the
occurrence of the over-fitting phenomena. When the network is trained for a lower number
of epochs, the results are also poorer, as presented in Figure 12.
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Figure 12. The change of DCS and σ(DSC) through a number of epochs achieved with pre-trained
ResNet101 as U-net backbone for the semantic segmentation of urinary bladder cancer masses from
CT images in frontal plane.

7.3. Semantic Segmentation in Axial Plane

When the performances of semantic segmentation algorithms trained with CT images
captured in the axial plane are compared, it can be noticed that by applying the transfer
learning approach, significant improvement in both semantic segmentation and general-
ization performances is achieved. When the isolated learning paradigm is utilized, DSC
and IoU are not exceeding 0.83 and 0.78, respectively. On the other hand, by utilization
of a transfer learning approach, DSC and IoU values up to 0.9372 are achieved. From the
detailed result presented in Table 8, it can be noticed that the highest semantic segmentation
performances are achieved in a pre-trained ResNet50 architecture used as a backbone for
the U-net.

Table 8. Results achieved with images in the axial plane.

Backbone Architecture Solver Epochs Batch DSC IoU σ(DSC) σ(IoU)

None AdaMax 50 4 0.8347 0.7832 0.0711 0.0948
VGG-16 Adam 150 2 0.8804 0.8656 0.2456 0.2432
InceptionV3 RMS-prop 150 4 0.9147 0.9147 0.0051 0.0051
ResNet50 Adam 150 4 0.9372 0.9372 0.0147 0.0147
ResNet101 Nadam 75 8 0.9069 0.9069 0.0203 0.0203
ResNet152 RMS-prop 100 4 0.8549 0.8421 0.0563 0.0671
Inception-ResNet Adam 100 8 0.8456 0.8362 0.0514 0.0548

When the change of DCS and σ(DSC) trough epochs is observed for the U-net de-
signed with the pre-trained ResNet50 architecture as a backbone, it can be noticed that
the highest semantic segmentation and generalization performances are achieved if the
network is trained for 150 consecutive epochs. When the network is trained for a lower
number of epochs, significantly lower performances could be noticed. Furthermore, if the
network is trained for a higher number of epochs, the trend of decaying performances can
be noticed, as presented in Figure 13. Such a property can be attributed to the over-fitting.
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Figure 13. The change of DCS and σ(DSC) through a number of epochs achieved with a pre-trained
ResNet50 architecture as U-net backbone for the semantic segmentation of urinary bladder cancer
masses from CT images in axial plane.

7.4. Semantic Segmentation in Sagittal Plane

The last data set used in this research is the data set of CT images captured in the
sagittal plane. In this case, a significant improvement of semantic segmentation and
generalization results can be observed if the transfer learning approach is utilized. In the
case of standard U-net architectures, DSC and IoU do not exceed 0.86. On the other hand,
if the transfer learning paradigm is utilized, significantly higher performances are achieved.
By using this approach, DSC and IoU values up to 0.96660 are achieved, if a pre-trained
VGG-16 architecture is used as a backbone for the U-net. Detailed results and models are
presented in Table 9.

Table 9. Results achieved with images in the sagittal plane.

Backbone Architecture Solver Epochs Batch DSC IoU σ(DSC) σ(IoU)

None Adam 10 4 0.8639 0.7938 0.0845 0.0917
VGG-16 Adam 200 2 0.9660 0.9482 0.0486 0.0398
InceptionV3 RMS-prop 75 8 0.8754 0.8497 0.0654 0.0758
ResNet50 AdaMax 150 4 0.8448 0.8358 0.0256 0.0262
ResNet101 AdaMax 75 2 0.8356 0.8280 0.0129 0.0134
ResNet152 Adam 100 2 0.8726 0.8655 0.0844 0.7753
Inception-ResNet Adam 200 2 0.8454 0.8385 0.0275 0.0288

If the change of performances through epochs is observed, it can be noticed that the
network with pre-trained VGG-16 architecture as a backbone achieved higher results if it
is trained for a higher number of epochs. It is interesting to notice that the network has
higher semantic segmentation performances if it is trained for 200 consecutive epochs.
On the other hand, generalization performances are higher if the network is trained for
100 consecutive epochs, as presented in Figure 14.
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Figure 14. The change of DCS and σ(DSC) through a number of epochs achieved with pre-trained
VGG-16 architecture as U-net backbone for the semantic segmentation of urinary bladder cancer
masses from CT images in the sagittal plane.

7.5. Discussion

If DCS and σ(DSC) achieved on all three planes are compared, it can be noticed that
the highest semantic segmentation performances are achieved on the sagittal plane, if
pre-trained VGG-16 architecture is used as a backbone. For the case of the frontal and
axial plane, slightly lover performances are achieved. On the other hand, if generalization
performances are compared, it can be noticed that the highest σ(DSC) is achieved for the
case of the sagittal plane. The best classification performances are achieved in the case of
the frontal plane, as presented in Figure 15.

From the presented results, it can be seen that U-net for the case of the sagittal plane,
although having the highest performance from the point of view of semantic segmentation,
has significantly lower results from the point of view of generalization. Such a characteristic
can be attributed to the fact that this part of the data set has a significantly lower number of
images, in comparison with the other two parts. Such a lower number of images results in a
lower number of training images in all five cases of the five-fold cross-validation procedure.

Such a lower number of training images results in lower semantic segmentation
performances in some cross-validation cases and, thus, lower generalization performances.
For these reasons, it can be concluded that, before the application of the proposed semantic
segmentation system, more images captured in the sagittal plane need to be collected in
order to increase the generalization performances of U-net for the semantic segmentation
of images captured in the sagittal plane.
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Figure 15. Comparison of DCS and σ(DSC) achieved with the most successful architectures for
each plane.



Biology 2021, 10, 1134 22 of 25

A similar trend can be noticed when the results measured with IoU are compared as
presented in Figure 16. In this case, the difference between the results achieved on different
planes, although lower, is still clearly visible. For these reasons, it can be concluded that
the network used for images in the frontal plane has a more stable behavior. On the other
hand, it can be concluded that the network used on images taken in the sagittal plane has
much less stable behavior. This characteristic can clearly be attributed to the fact that the
sagittal part of the data set has a significantly lower number of images.
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Figure 16. Comparison of IoU and σ(IoU) achieved with the most successful architectures for
each plane.

The presented results are showing that there is a possibility for the application of the
proposed system in clinical practice. It is shown that the high semantic segmentation per-
formances enable the automatic evaluation of urinary bladder cancer spread. Furthermore,
high generalization performances, especially in the case of the frontal and axial plane,
indicate that the semantic segmentation system can be used for the evaluation of the new
image data and new patients. The presented system can be used as an assistance system to
medical professionals in order to improve clinical decision-making procedures.

8. Conclusions

According to the presented results, we concluded that the utilization of the transfer
learning paradigm, in the form of pre-trained CNN architectures used as backbones for
U-nets, can significantly improve the performances of semantic segmentation of urinary
bladder cancer masses from CT images. Such an improvement can be noticed in both
semantic segmentation and generalization performances. If the semantic segmentation
performances are compared, DSC values of 0.9587, 0.9587, and 0.9660 are achieved for the
case of the frontal, axial, and sagittal planes, respectively.

On the other hand, for the case of generalization performances, σ(DSC) of 0.0059,
0.0147, and 0.0486 are achieved for the case of the frontal, axial, and sagittal planes,
respectively, suggesting the conclusion that the transfer learning approach opened the
possibility for future utilization of such a system in clinical practice. Furthermore, U-nets
for the semantic segmentation of urinary bladder cancer masses from images captured
in the sagittal plane achieved significantly lower generalization performances. Such a
characteristic can be assigned to the fact that the data set of sagittal images consists of the
significantly lower number of images in comparison with two other data sets. According
to the hypothesis questions, the conclusion can be summarized as:

• The design of a semantic segmentation system separately for each plane is possible.
• There is a possibility for the design of an automated system for plane recognition.
• By utilizing the transfer learning approach, significantly higher semantic segmentation

and generalization performances are achieved.
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• The highest performances are achieved if pre-trained ResNet101, ResNet50, and VGG-
16 are used as U-net backbones for the semantic segmentation of images in the frontal,
axial, and sagittal planes, respectively.

From the presented results, by utilizing the proposed approach, results in range of
the results presented from the state-of-the-art approach were achieved. Furthermore, the
proposed redundant approach increased the diagnostic performances and minimized the
chance for incorrect diagnoses.

Future work will be based on improvements of the presented combination of classifi-
cation and semantic segmentation algorithms by the inclusion of multiple classification
algorithms before a parallel algorithm for the semantic segmentation. Furthermore, we
plan to design a meta-heuristic algorithm for model selection with a fitness function that
will be based on the presented multi-objective criteria.
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Automatic Evaluation of the Lung Condition of COVID-19 Patients Using X-ray Images and Convolutional Neural Networks. J.
Pers. Med. 2021, 11, 28.

52. Rezende, E.; Ruppert, G.; Carvalho, T.; Ramos, F.; De Geus, P. Malicious software classification using transfer learning of resnet-50
deep neural network. In Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications
(ICMLA), Cancun, Mexico, 18–21 December 2017; pp. 1011–1014.

53. Ghosal, P.; Nandanwar, L.; Kanchan, S.; Bhadra, A.; Chakraborty, J.; Nandi, D. Brain tumor classification using ResNet-101
based squeeze and excitation deep neural network. In Proceedings of the 2019 Second International Conference on Advanced
Computational and Communication Paradigms (ICACCP), Gangtok, India, 25–28 Feburary 2019; pp. 1–6.

54. Guo, Q.; Yu, X.; Ruan, G. LPI radar waveform recognition based on deep convolutional neural network transfer learning.
Symmetry 2019, 11, 540.

55. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual connections on
learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February
2017.

56. Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized intersection over union: A metric and a loss
for bounding box regression. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach,
CA, USA, 16–20 June 2019; pp. 658–666.

57. Jha, S.; Kumar, R.; Priyadarshini, I.; Smarandache, F.; Long, H.V.; et al. Neutrosophic image segmentation with dice coefficients.
Measurement 2019, 134, 762–772.

58. Hou, F.; Lei, W.; Li, S.; Xi, J.; Xu, M.; Luo, J. Improved Mask R-CNN with distance guided intersection over union for GPR
signature detection and segmentation. Autom. Constr. 2021, 121, 103414.

59. Skourt, B.A.; El Hassani, A.; Majda, A. Lung CT image segmentation using deep neural networks. Procedia Comput. Sci. 2018,
127, 109–113.


	Introduction
	Problem Description 
	Algorithm Description
	Transfer Learning Approach
	Used CNN Architectures
	Alexnet
	Vgg-16 
	Inception
	Resnet
	Inception-Resnet

	Research Methodology
	Semantic Segmentation Performance Metrics
	Intersection over Union
	Dice Coefficient

	U-Net Model Selection

	Results and Discussion
	Plane Recognition
	Semantic Segmentation in Frontal Plane
	Semantic Segmentation in Axial Plane
	Semantic Segmentation in Sagittal Plane
	Discussion

	Conclusions
	References

