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Cytoplasmic virion assembly compartment  
of betaherpesviruses

Abstract

During their life cycle, betaherpesviruses extensively reorganize the mem-
branous system of the cell in order to develop a unique cytoplasmic environ-
ment of virion production (“virus factory”), known as cytoplasmic virion 
assembly compartment (cVAC). The betaherpesvirus cVAC has been studied 
both in human and murine cytomegalovirus (CMV) infected cells as they are 
considered to be models for betaherpesviruses biology. Studies of the cVAC were 
mainly based on electron microscopy and immunofluorescence tools, and in 
the previous decade, they have expanded to the use of new technologies and 
systems approaches (i.e., transcriptomics, proteomics, lipidomics), which led to 
the acquisition of a vast amount of data. Despite the immense expansion of 
knowledge about membranous organelle system, including a large amount of 
data derived from CMV infected cells, the organization and biogenesis of the 
cVAC remain unclear. Accordingly, very little is known about the processes of 
a final stage of CMV maturation and the virion egress. This minireview 
summarizes current knowledge about the biogenesis of the betaherpesvirus 
factory from the already existent endosomal compartments.

INTRODUCTION

Herpesviruses (Herpesviridae) are virus family with 107 different 
species divided into three subfamilies (1, 2). They are widely spread 

between both humans and animals, and share several characteristics such 
as ubiquity, incurability, reactivation, asymptomatic, and opportunistic 
infection. Their main functional feature is life-long, latent infection. 

All herpesviruses share the fundamental principles of their biology. 
Their large linear DNA is packaged in the nucleus into an icosahedral 
protein cage called the viral capsid, which is then  embedded into the 
tegument by a stepwise process of tegumentation and wrapped by mem-
branous-organelle derived a membrane-like lipid bilayer called the (1). 
This entire particle is then considered as one mature virion, capable of 
successfully infecting the cell.

There are four members of the betaherpesvirus subfamily known to 
infect humans. One of them is human cytomegalovirus (HCMV, also 
known as human herpesvirus 5, HHV-5), which causes asymptomatic 
infections in the majority of the overall population. It establishes a life-
long latent state from which they can reactivate and cause various patho-
physiological alterations, including life-threatening diseases in immu-
nocompromised individuals (3, 4). CMV infection is associated with 
birth defects and congenital abnormalities (5). Human herpesvirus 6A 
(HHV-6A), HHV-6B, and HHV-7 are also known to infect a high 
percentage of the human population, similar to HHV-5, and are associ-
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ated with various pathophysiological states, including 
neuroinflammatory diseases, Alzheimer’s disease, and the 
exanthema subitum in infants (3, 4). 

The development of effective vaccines and antiviral 
therapies against betaherpesviruses, especially CMV, is 
among the top priorities in the fight against infectious 
agents. However, despite the long-lasting efforts through-
out the last several decades, effective prevention and 
therapy of CMV infections are still not achieved (4). Cur-
rently, there is no singular therapy for patients with severe, 
acute HCMV infections, and they are usually treated 
with antivirals, on a case-by-case basis (6). One of the 
reasons for the lack of success is an incomplete under-
standing of CMV biology and pathogenesis, including 
potential viral and cellular targets of antiviral research. 
The critical point in the CMV life cycle that could be 
targeted is host-cell and viral machinery that drives the 
production of infectious virions during CMV infection. 

In this mini-rewiev the main events that occur with 
the endosomal compartments during the lytic cycle of 
CMV infection (as model infection for betaherpesviruses) 
are summarized and brought to a broader herpesvirus 
audience.

Herpesvirus maturation

Herpesviruses share general mechanisms for matura-
tion and egress of virions through several budding and 
fusion events during replication, preventing abrupt dis-
ruption of cellular membranes (7). During the productive 
infection, viral DNA is replicated in the cell nucleus, fol-
lowed by the synthesis of viral structural proteins used for 
the formation of capsids (Figure 1). During a process 
called primary envelopment, complete capsids acquire an 
envelope by budding through the inner nuclear mem-
brane (INM) into the perinuclear space. These semi-
products in the production of virions undergo de-envel-
opment, mediated by membrane fusion between the 
existing primary envelope and the outer nuclear mem-
brane (ONM) (8, 9). This means that only the “naked” 

capsids are delivered into the cytoplasm, where they ac-
quire the final layer of tegument proteins. Tegument-
coated capsids undergo a secondary envelopment by pass-
ing through the membranes of different cytoplasmic 
compartments, gaining their ultimate envelope, and fi-
nally, mature virions are produced. Vesicles containing 
mature virions are then transported to the cell surface 
where they fuse with the plasma membrane and are re-
leased into the extracellular space (Figure 1).

The difference in the production of different herpesvi-
rus subfamilies is most prominent during the stage of 
secondary envelopment. Alphaherpesviruses (i.e., herpes 
simplex virus, varicella-zoster virus) usually gain their final 
envelope in vesicles derived from the trans-Golgi network 
and early endosomes – vesicles which are predominately 
positive for Rab5 (10). Betaherpesviruses (i.e., human 
cytomegalovirus), which are partially in the focus of this 
mini-review, reorganize already existing cellular compart-
ments, where a lot of cellular markers (including those of 
trans-Golgi network, early endosomes, multivesicular 
bodies, and late endosomes) are present (11–13). The final 
envelopment of gammaherpesviruses (i.e., Epstein-Barr 
virus) occurs in the compartments showing characteristics 
of both cis- and trans-Golgi network (7).

Cytomegalovirus life-cycle and 
maturation

Cytomegalovirus (CMV) has linear DNA about 230 
kbp long with 170 open reading frames (ORFs), which 
encode more than 250 gene products (14, 15). The execu-
tion of the gene program after infection includes a cell-
type-specific sequence of the gene expression during lytic 
infection, which results in cell disruption and infectious 
progeny release. The lytic infection seems to be restricted 
to a limited number of cell types in an immunocompetent 
host. Additionally, in some cell types, which are still un-
known, the gene program is aberrantly executed, leading 
to the state of the life-long latency from which asymptom-
atic reactivation occurs throughout life and may lead to 

Figure 1. Stages of beta-herpesvirus manufacturing in infected cells. The manufacturing process is divided into seven stages and ends with 
the release of infectious virions from the cell. At each stage, beta-herpesviruses exploit an appropriate set of cellular functions and reorganize 
cellular machinery.
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life-threatening conditions in immunocompromised in-
dividuals (3, 4, 14). 

The mechanisms of CMV infection and entry into the 
host cell are still unresolved. Altogether, it seems that in-
fective CMV particles can penetrate the cell in two dif-
ferent ways. Both ways require virion binding to the cor-
responding receptors at the cell surface. After binding and 
tight attachment to the plasma membrane, the entire vi-
rion may be internalized into the endosomal system, move 
with endosomal vesicles and reach the cytoplasm by the 
release from the vesicle. Another way of virus entry is a 
direct fusion of the virion envelope with the plasma mem-
brane, release of capsid into the cytosol, its attachment to 
microtubules and transport towards the nucleus using 
microtubule-dependent motor proteins (16).

The lytic type of infection, which results in the viral 
progeny production and cell lysis, can be divided into 
several different stages, according to the viral gene expres-
sion, assembly of the virus replication machinery in the 
nucleus and cytoplasm, and the sequence of host-cell re-
organizations (17). The gene expression is highly coordi-
nated and divided into at least three distinct phases: im-
mediate-early (IE), early (E) and late (L) classes of genes/
proteins (18). IE proteins are, in fact, transcription factors 
that enable the transcription from the succeeding genes 
in the CMV genome (19). Early genes are expressed im-
mediately after IE gene in a sequence that takes place 
16-48 hours and leads to the establishment of molecular 
machinery which extensively reorganizes the host-cell 
organelles and cytoskeleton, rearranges several host-cell 
processes resulting in the hindering the host’s immune 
system recognition and assemble replication machinery 
in the nucleus and cytoplasm for the production of new 
virions (20, 21). The assembly of viral DNA replication 
machinery in the nucleus results in the arrest in host-cell 
DNA synthesis and enables viral DNA replication, which 
initiates the expression of a large number of late genes and 
the late phase of infection. These genes continue to reor-
ganize host-cell organelles, represent building compo-
nents that incorporate into newly formed virions, and 
build several intracellular clusters that are required for the 
virion manufacturing processes (22, 23). The manufac-
turing of new virions requires the sequence of events that 
starts in the nucleus and continues through the cytoplas-
mic manufacturing stations, which involves the entire 
cell. Therefore, the entire host-cell is reorganized for virus 
manufacturing, and the whole sequence is often called 
the “virus factory. “ 

The full replication cycle for human CMV (HCMV) 
lasts between 72 and 96 hours (17, 24), while murine 
CMV (MCMV) replication cycle length is shorter, and it 
takes between 24 and 48 hours to be completed (25). 
These two types of cytomegaloviruses are the most stud-
ied, although CMVs specific for other species also exist 
but are less studied. Given that CMVs are species-specif-
ic, i.e., murine cytomegalovirus can not be replicated on 

human cells and vice-versa (14), MCMV is usually used 
as a model to study HCMV infection due to the high 
level of similarity between their life cycles, the biology of 
infection in their native hosts and pathophysiological out-
comes of infection. Cells infected with both types of cy-
tomegaloviruses show similar cytopathological pheno-
typic characteristics, including the enlarged nucleus and 
the same type of nuclear inclusions, cell rounding, and 
development of sizeable cytoplasmic inclusion represent-
ing reorganized membranous system of the cell known as 
assembly compartment (19, 20). Furthermore, the short-
er replication cycle of MCMV in the existing systems 
seems is beneficial for the cell biology studies of CMV 
replication cycle, and the outcomes of these studies can 
be easily tested in the animal models that mirror patho-
physiological conditions of CMV infection in humans. 
Additionally, the manufacturing process of virion produc-
tion during CMV infection is highly complex and still 
poorly understood. The shorter replication cycle of 
MCMV, thus, may facilitate the acquisition of knowledge 
about these processes that involve more than 1,500 host-
cell factors (26).  

The virion manufacturing involves a series of events 
that occur sequentially in the nucleus and the cytoplasm. 
The nascent capsids are assembled in the “nuclear viral 
factory “ (27, 28), and they bud through inner nuclear 
envelope lammela. The lammela’s composition is changed 
at this point during infection due to the insertion of the 
viral glycoproteins into it (Figure 1). This process is 
known as primary envelopment. According to the pre-
dominant conjectures, newly formed infective particles 
(virions) are transferred from inner to the outer nucleic 
membrane, but only the “naked “capsids are exported into 
the cytoplasm (29). There, it enters into the cytoplasmat-
ic virion assembly compartment (cVAC), where the capsid 
acquires its tegument and envelope (17, 29). This is con-
sidered to be a secondary envelopment process, which is 
different from other members of the herpesvirus subfam-
ily. Betaherpesvirus, in contrast to other herpesviruses, 
acquire their final envelope in the “chimera-like” com-
partment that shows markers from different cellular com-
partments at the same time, i.e., trans-Golgi network 
(TGN), endosomal recycling compartment, early endo-
somes and, perhaps, late endosomes (Figure 2). Given that 
the physiological relations between these organelles, es-
pecially at the interface among them, are still far from 
being fully resolved, it is not surprising that the processes 
of the secondary envelopment of CMVs and the mecha-
nisms of the host-cell alterations during CMV infection 
are still poorly understood (30). Recent studies of the 
host-cell transcriptome (26, 30, 31) and proteome (32) 
during CMV infection suggest that a spatio-temporal 
dynamic of a large number of host-cell factors (more than 
1,500) is affected, including an extensive reorganization 
of their localization pathways. 
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Cytomegalovirus alters host-cell 
functions in the early phase of infection

Cytoplasmatic viral assembly compartment (cVAC), a 
membranous structure where the process of secondary 
envelopment takes place, is formed from different cellular 
compartments. Since every cellular protein that resides in 
the membranous system of the cell has specific features 
determining its intracellular localization and lifetime, 
perturbation of the endosomal route of cellular proteins 
(including those involved in immune recognition and 
response) may result in specific changes of their cellular 
routing (33). These routes are usually monitored by map-
ping the presence of specific protein markers – either 
cargo material (i.e., MHC-I) or small GTPases (usually 
from Rab or Arf families). Rab/Arf proteins act as switch-
es between different stages of endosome maturation. 

Under normal physiological conditions, MHC-I mol-
ecules are constitutively internalized, but the majority of 
them are recycled back to the cell surface (34, 35 ,36). 
Their sudden downregulation from the cell surface during 
the first couple of hours of infection was, at first, explained 
with a disabled synthesis of new MHC-I combined with 
intensified degradation of the pre-existing MHC-I mol-
ecules, due to basic viral response of evading the innate 
immune response. However, if only these two processes 
were involved, the loss of the MHC-I molecules from the 
cell surface would have been much slower (approximately 
it would take 10 hours) then the one observed (within the 
first couple of hours of infection) (37, 38, 39, 40). There-
fore additional viral interference in the cellular endosom-
al system must be taking place (41). It has been shown that 
during the early phase of infection with MCMV, a reten-
tion compartment is created, showing characteristics of 
completely mature early endosomes (41, 42). This means 
that this compartment shows both EEA1 and Rab5 pro-
teins on its membranes (markers of early endosomes), but 
not late endosomal markers (i.e., lysobisphosphatic acid, 
LBPA). In this newly formed retention compartment, not 
only molecules that are transported by recycling (MHC-
I, transferrin receptor - TfR) pathways but also by endoly-
sosomal (epidermal growth factor receptor, EGFR) ones 
(41) can be found. The surface expression of TfR in 
MCMV infected cells is also severely downregulated, 
probably due to the disarranging of the recycling machin-
ery. This causes TfR to accumulate in the perinuclear 
region, together with the rest of the cargo material that is 
endocytosed both by clathrin-dependent and clathrin-
independent endocytosis (43). Consequently, it is possible 
to conclude that in CMV infected cells, recycling path-
ways are impaired, as well as the maturation process from 
early to late endosomes. Finally, these changes result in 
the formation of a perinuclear retention compartment (33, 
41). Further proof of this claim is the reduced protein 
amount of Rab11 and Rab7 in full cell lysates (41), the two 
markers that are essential in forming recycling and late 
endosomes, respectively (44, 46). The exact role of viral 

proteins in the endosomal pathways is not yet fully under-
stood. Still, it is shown that early viral protein m06 can 
be found in the endosomal retention compartment, to-
gether with MHC-I molecules (42). This retention com-
partment, formed in the early phase of infection, serves as 
a foundation for the complete cVAC formation well into 
the late phase of CMV infection. At that point, several 
late CMV proteins essential for the virion formation (teg-
ument and envelope) will also be located there. So, it is 
important to note that, even though the main function 
for which cVAC is formed only takes place well into the 
late phase of infection, the changes in the endosomal sys-
tem begin already in the early phase of infection, probably 
under the influence of early viral proteins.

It is essential to point out that viral interference into 
the cellular endosomal system leads to retardation of the 
trafficking throughout it, but not the complete blockage 
of these processes. This is proven by overlapping of the 
cargo molecules with the usual fate of recycling (TfR) and 
endosomal degradation (EGFR) in cells infected with 
MCMV in the only place where their respective pathways 
merge – in the sorting endosomes (47). The agglomeration 
of the host cell protein markers of the corresponding en-
dosomes further endorses this claim. 

Similar changes in the endosomal system also appear 
in cells infected with HCMV. In that setting, the high 
level of endosomal remodeling is directly connected with 
the formation of the cVAC. This newly-formed compart-
ment is round in shape, and in each infected cell, there is 
only one, even in the syncytium-like cells, there is only 
one copy of this compartment. cVAC is usually situated 
perinuclear in the cell, causing the nucleus to adopt a 
kidney-like shape (21, 48). It is important to note that 
cVAC composition is changing as the infection progress-
es through the temporal phases. Fully developed cVAC is 
an extremely complex structure composed of a large num-
ber of host-cell components. Alteration of the host-cell 
functions is associated with an alteration of more than 
one thousand host-cell genes (26, 30, 32). The current 
knowledge about cVAC composition is summarized in 
Figure 2.

After the CMV infection, the housekeeping cellular 
processes remain unaltered, but the entire cellular traf-
ficking system is remodeled. To change these cellular 
mechanisms, it is required to comprehensively restructure 
the cytoskeleton as well as modulate the vast number of 
processes and proteins that take part in it. It was shown 
that HCMV infection alters the expression of over 2,000 
genes connected to different aspects of cellular organelles, 
about 800 being downregulated and nearly 600 being 
upregulated, and the rest having some relative changes. 
The changes also appear both in spatial and functional 
clusters, i.e., the downregulated genes are vital in the 
early phase of infection. On the other hand, within the 
Golgi markers, those connected to intracellular transport 
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and membrane organization are upregulated, and those 
connected to the transport of organic substances are 
downregulated (26, 30, 32).

Cytomegalovirus assembly compartment

The cytoplasmatic viral assembly compartment can not 
be created if there is no preceding viral DNA synthesis 
(50). This directly implies a correlation of cVAC formation 
with L gene expression, but at the same time, it does not 

exclude the possible connection of  E genes and their prod-
ucts with the cVAC formation. In the cVAC, there are no 
traces of protein markers and/or cargo from the endoplas-
mic reticulum (Figure 2). Markers of ERGIC are situated 
radially, while the markers of the trans-Golgi network can 
be found on the outer parts of the cVAC (Figure 2). Mark-
er of early endosomes (EEA1), usually dispersed through-
out the cytoplasm (51), is clustered in the center of the 
newly-formed structure (52), together with checkpoint 

Figure 2. Summary of current knowledge about cytomegalovirus maturation. This model presents the prevailing view in the cytoplasmic 
virion assembly compartment (cVAC), viral proteins (glycoproteins and tegument proteins), and cellular organelle markers examined until now. 
Viral proteins are depicted in blue and cellular proteins in red. Viral tegument proteins are located in the center of the cylinder made of mem-
branes that show markers of Golgi apparatus (i.e. Rab6, GM130, Golgin97 etc), recycling endosomes (i.e. Rab11) with inclusions derived from 
late and early endosomes. Therefore it is possible to strongly speculate that this is the place where final viral envelopment takes place. Abbrevia-
tions: DB, dense body; ER, endoplasmic reticulum; EE/RE, early endosomes/ recycling endosomes; LE, late endosomes; MVB, multivesicular 
body; NIEP, non-infectious enveloped particles. Presented data refer to the published research on HCMV (11, 12, 20, 21, 52, 55, 57, 63, 67, 
68, 72-75, 77–80, 81), MCMV (32, 40, 42, 43) and the most recent reviews about cytomegalovirus maturation (10, 29, 30, 56, 61, 76).
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kinase 2 (Chk-2), a protein responsible for cell cycle con-
trol – regulating cell response to double-stranded DNA 
breakage (53). In the same area, Rab11, connected with 
recycling endosomes, is also accumulated (20, 52, 54, 55), 
as well as Arf6, a protein with a similar role in recycling 
processes (47). Late endosomal marker, Lamp1, was not 
found in the space occupied by cVAC, but it was found 
near the highly concentrated HCMV encoded glycopro-
tein gH (55). This newly-formed compartment also con-
tains a CD63 molecule, specific for multivesicular bodies 
(MVB), implying its possible connection with the final 
assembly of viral particles and their release from the cell 
(21). The fact that CD63, EEA1, and TfR can all be found 
in the supernatant of the cells infected with MCMV sup-
ports this claim; however, it does not necessarily mean 
that they are also part of virions. Concurrent presence of 
these proteins can indicate active excretion of newly-
formed virions from the infected cells (55). 

The available data point that cVAC is formed by a mas-
sive restructuring of the secretory and endosomal organ-
elles (20, 21, 29, 47). Membranes from endosomes and 
membrane compartments derived from the Golgi appara-
tus form the “viral factory” in the perinuclear area, while 
Golgi Apparatus, together with lysosomes, surrounds the 
actual location where the virions are assembled (43, 56). 
When observed from above, cVAC appears to be assem-
bled from separate spheres, stacked upon each other, each 
one derived from distinct pre-existing endosomal vesicles. 
In short, cVAC is formed from existing membranes of the 
endosomal system, rearranged by the viral activity. 3D 
reconstruction of the cVAC shows that it is, in fact, a set 
of concentrically situated cylindrical structures, each de-
rived from a distinct subset of endosomes (20).

One of the most noticeable changes in protein expres-
sion levels during CMV infection is the change of Rab27a 
levels. That is a protein that regulates secretion from the 
organelles related to lysosomes, but that are derived from 
late endosomes (13). This is a confirmation that HCMV 
uses the mechanism of endolysosomal secretion for its 
excretion. However, Rab27a-positive vesicles do not colo-
calize with the newly-formed cVAC and are found 
throughout the infected cells (47).

The early stages of the cVAC biogenesis are mostly un-
clear. Our studies on MCMV infected cells indicate that 
cVAC is initiated very early in the infection, at approx. 
5-6 hours post-infection (43, 47). The biogenesis appears 
to be associated with the reorganization and unlinking of 
the Golgi stacks, which also unlinks membranous system 
that participates in the trafficking between the trans-
Golgi (TGN), early endosomal (EE) system and endo-
somal recycling system (ERC) (43). As a result of these 
unlinking events, several components of the membranous 
organelle system expand, such as elements at the interface 
between the TGN and the ERC, as well as EE and the 
ERC (43). Thus, it appears that host-cell factors regulating 

the Golgi ribbon and EE-ERC-TGN interface are tar-
geted by CMV gene functions to initiate the cVAC forma-
tion. Studies in HCMV infected cells also demonstrated 
that targeting of Grasp65, a host-cell protein that main-
tains the integrity of the cis-Golgi, is associated with 
Golgi disassembly as the earliest event in HCMV cVAC 
biogenesis (57). Altogether, the studies on the biogenesis 
of cVAC are still in the initial phase, and a more in-depth 
analysis of a sequence of membranous system reorganiza-
tion is required to reconstruct cVAC development and to 
construct the roadmap of host-cell alterations that are 
integrated into the cVAC biogenesis. Conclusions from 
the recent high-throughput studies on HCMV (26, 30, 
32) suggest that these alterations involve perturbation of 
an extensive network of host-cell factors. They also in-
clude a quite complex roadmap of sequential events that 
initiate early in the infection and evolve through the phase 
of virion production and end in the latest phases of host-
cell infection, including cell extinction.  

The center of the structure of the proposed cVAC can 
be colocalized with the microtubule organization center 
(MTOC), and the importance of microtubules in the 
cVAC formation is proven by the use of nocodazole. To 
be precise, when applied, this reversible inhibitor of mi-
crotubule polymerization (58) also reversibly causes the 
breakdown of the cVAC and incapability of viral produc-
tion (12, 59). Recent live-cell imaging studies (60) dem-
onstrated impressive active movement, and changes in the 
position of the nucleus and Golgi derived structures in 
HCMV infected cells. These movements are associated 
with the inactivation of centrosomes and Golgi-derived 
nucleation of MTOCs outside the centrosomal area. 
These seminal studies suggest that the study of the cVAC 
biogenesis and physiology, including also other aspects of 
cytopathogenicity, should focus on live-cell imaging un-
der conditions that minimally perturb host-cell functions.

Egress of newly-formed CMV virions 
from the cell as a model for 
betaherpesviruses

The egress of the newly-formed virions from the cell is 
a complex process. The necessary steps in this process are 
the same for all of the herpesviruses, and, as said before, 
the first step is the passing of the newly-formed nucleo-
capsid through the nuclear membrane, starting with pri-
mary virion envelopment in the inner nuclear membrane. 
Already at this time point, the viral glycoproteins envelop 
the virion, but while passing through the outer nuclear 
membrane, this primary layer of proteins is lost. The cap-
sid delivered to the cytoplasm acquires the envelopment 
made of 16-35 tegument proteins. The general functions 
of these proteins are promoting the immediate-early 
phase of infection, arrest in host proteins expression to-
gether with transactivation of immediate early and early 
viral genes. The secondary envelopment occurs either at 
the TGN, Golgi, or some other endosomes in a still un-
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resolved way, resulting in the production of infective vi-
rions in the cellular vesicles. Afterward, they are trans-
ferred to the cell membrane, where they fuse with it, and 
virions are set free (61–63).

The mechanisms of virion egress of all of the herpesvi-
ruses are understudied and still poorly understood (30). 
Several studies tried to gain conclusions by the analysis of 
the composition of CMV virion particles (64–66). Lipi-
dome analysis of the HCMV virion-particles revealed the 
composition similar to that of synaptic vesicles (63) and 
suggested the use of secretory vesicle-like pathway for vi-
rion egress. Although some regulatory components of the 
secretory vesicle pathway are recruited to the cVAC, such 
as Rab3 and Rab27A (67) and STX3 and SNAP23 ele-
ments of the SNAP/SNARE-complexes that mediate 
exocytosis of secretory vesicles (66, 68), their inhibition 
did not abolish egress suggesting the use of alternative 
pathways for betaherpesvirus egress. However, alternative 
routes have not been studied in that context. Recent stud-
ies indicate that CMVs may exploit the endosomal recy-
cling system for cVAC development and organization as 
well as secondary envelopment and egress (30, 46, 69). 

CONCLUSION AND PERSPECTIVES

Even though at first glance, one could claim that the 
entire process of betaherpesvirus assembly and egress is 
well understood, only rough outlines regarding the final 
viral assembly and egress are somewhat known, as well as 
some of the changes in the remodeling of the endosomal 
system. It can be argued that the ambiguity and some-
times contrary findings and descriptions of this chimera-
like compartment are a direct result of using mostly 
static methods, such as immunofluorescent microscopy, 
in order to follow a process that is the epitome of change 
and motion. Also, the disruption in functions of the en-
dosomal system can be indirect proof of occurring 
change(s) and can indicate general pathways that are dis-
rupted. Therefore, there is a high chance of overlooking 
quick changes that occur in the real-time, but are essential 
to viral assembly process and egress, or by having too 
short half-life to capture, or overlapping with several 
other pathways. Nowadays, new methods have been de-
veloped that could lead to a better understanding of the 
dynamic process of viral production, i.e., digital holoto-
mographic microscopy (DHTM), that can, through live-
cell imaging, bring new insights to this complex process. 
If used wisely, this new method could show cellular 
changes taking place during CMV infection in real-time 
(combining low energy light microscopy with epifluores-
cence), and capture them as quickly as they occur. There-
fore, it would be possible to notice even the most short-
lived changes that could potentially be of great significance 
for the viral formation and egress but which are overseen 
with more conventional, static approaches.  
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