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Abstract: COVID-19 represents one of the greatest challenges in modern history. Its impact is most
noticeable in the health care system, mostly due to the accelerated and increased influx of patients
with a more severe clinical picture. These facts are increasing the pressure on health systems. For
this reason, the aim is to automate the process of diagnosis and treatment. The research presented
in this article conducted an examination of the possibility of classifying the clinical picture of a
patient using X-ray images and convolutional neural networks. The research was conducted on
the dataset of 185 images that consists of four classes. Due to a lower amount of images, a data
augmentation procedure was performed. In order to define the CNN architecture with highest
classification performances, multiple CNNs were designed. Results show that the best classification
performances can be achieved if ResNet152 is used. This CNN has achieved AUCmacro and AUCmicro

up to 0.94, suggesting the possibility of applying CNN to the classification of the clinical picture of
COVID-19 patients using an X-ray image of the lungs. When higher layers are frozen during the
training procedure, higher AUCmacro and AUCmicro values are achieved. If ResNet152 is utilized,
AUCmacro and AUCmicro values up to 0.96 are achieved if all layers except the last 12 are frozen
during the training procedure.

Keywords: AlexNet; Convolutional Neural Network; COVID-19; ResNet; VGG-16

1. Introduction

The Coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syn-
drome virus 2 (SARS-CoV-2) is a viral, respiratory lung disease [1]. The spread of COVID-19
has been rapid, and it has affected the daily lives of millions across the globe. The dangers
it poses are well-known [2], with the most important ones being its relatively high severity
and mortality rate [3] and the strain it exhibits on the healthcare systems of countries
worldwide [4,5]. Another problematic characteristic that COVID-19 exhibits is a wide
variation in severity across the patients, which can cause issues for healthcare workers who
wish to determine an appropriate individual treatment plan [6]. Early determination of the
severity of COVID-19 may be vital in securing the needed resources—such as planning the
location for hospitalization of the patient or respiratory aids in case they may be necessary.
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There is a dire need for systems that will allow for the strain put on the resources of the
healthcare systems, as well as healthcare workers, by allowing easier classification of pa-
tient case severity in early stages of hospitalization. Artificial intelligence (AI) techniques
have already been proven to be a useful tool in the fight against COVID-19 [7,8], so the
possibility exists of them being applied in this area as well. Existence of such algorithms
may lower the strain on the potentially scarce resources, by allowing early planning and
allocation. Additionally, they may provide decision support to overworked healthcare
professionals.

Internet of Medical Things (IoMT) is a medical paradigm that allows for integration
of modern technologies in the existing healthcare system [9]. The algorithms developed
as a part of the presented research can be made available to health professionals using
IoMT [10]. Models obtained using the described methodology can be integrated inside a
pipeline system in which an X-ray image will automatically be processed using the devel-
oped models, and the predicted class of the patient whose image has been obtained will
immediately be delivered to the medical professional examining the X-ray. Such automated
diagnosis methods have already been applied in many studies, such as in histopathol-
ogy [11], neurological disorders [12], urology [13], and retinology [14]. All the researchers
agree that not only can such AI-based support systems provide an extremely precise di-
agnosis, but can also be integrated in automatic systems to provide assistance to medical
experts in determining the correct diagnosis. The obtained models are suited for such an
approach. While the training of the models is slow due to the backpropagation process, the
classification (using forward propagation) is fast and computationally moderate [15,16],
allowing for easy integration into existing in-hospital systems.

The machine learning diagnostic approach has been successfully applied to X-ray
images a number of times in the past. For example, Lujan–Garcia et al. (2020) [17] demon-
strated the application of CNNs for the detection of pneumonia using chest X-ray images
using Xception CNN, which was pre-trained using a ImageNet dataset for initial val-
ues. The evaluation was performed using precision, recall, F1 score, and AUROC, with
the achieved scores being 0.84, 0.99, 0.91, and 0.97, respectively. Kieu et al. (2020) [18]
demonstrated the Multi-CNN approach to the detection of abnormalities on the chest X-ray
images. The approach presented in the paper demonstrates the use of multiple CNNs to
determine the class of the input image, with the hybrid system presented achieving an
accuracy of 96%. Bullock et al. (2019) [19] presented XNet—a CNN solution designed for
medical, X-ray image segmentation. The presented solution is suitable for small datasets,
and achieves high scores (92% accuracy, F1 score of 0.92 and AUC of 0.98) on the used
dataset. Takemiya et al. (2019) [20] demonstrated the use of R-CNNs (Region with Convo-
lutional Neural Network) in the detection of pulmonary nodules from the images of chest
X-ray images. The proposed method utilizes the Selective Search algorithm to determine
the potential candidate regions of chest X-rays and applied the CNN to classify the se-
lected regions into two classes—nodule opacities and non-nodule opacities. The presented
approach achieved high classification accuracy. Another example is by Stirenko et al.
(2018) [21], in which the authors applied the deep learning, CNN approach to the X-ray
images of patients with tuberculosis. The CNN is applied to a small and non-balanced
dataset with the goal of segmentation of chest X-ray images, allowing for classification of
images with higher precision in comparison to non-segmented images. In combination
with data augmentation techniques, the achieved results are better. Authors conclude that
data augmentation and segmentation, combined with dataset stratification and removal of
outliers, may provide better results in cases of small, poorly balanced datasets.

There was research that utilized transfer learning methodologies in order to recognize
respiratory diseases from chest X-ray images. In [22], the authors proposed a transfer
learning approach in order to recognize pneumonia from X-ray images. The proposed
approach, based on utilization of ImageNet weights has resulted with high accuracy of
pneumonia recognition (96.4%). Another transfer learning approach has been implemented
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for pneumonia detection in [23]. By utilizing such an approach, a highly accurate multi-
class classification can be achieved, with accuracy ranging from 93.3% to 98%.

Wong et al. [24] (2020) noted that radiographic findings do indicate positivity in
COVID-19 patients, the conclusions of which are further supported by Orsi et al. [25] (2020)
and Cozzi et al. [26] (2020). Borghesi and Maroldi [27] (2020) defined a scoring system for
X-ray COVID-19 monitoring, concluding that there is a definite possibility of determining
the severity of the disease through the observation of X-ray images. Research has been
done in the application of AI in the detection of COVID-19 in patients. Recently, classifi-
cation of patients for preliminary diagnosis has been done from cough samples. Authors
Imran et al. [28] (2020) applied and implemented this into an app, called AI4COVID-19.

Bragazzi et al. [29] (2020) demonstrated the possible uses of information and com-
munication technologies, artificial intelligence, and big data in order to handle the large
amount of data that may be generated by the ongoing pandemic. Further reviews and
comparisons of mathematical modeling, artificial intelligence, and datasets for the pre-
diction were done by multiple authors, such as Mohamadou et al. [30] (2020), Raza [31]
(2020), and Adly et al. [32] 2020. All aforementioned authors concluded the possibility of
application of AI in the current and possibly forthcoming pandemics. Most promise in
AI applications being applied in this field has been shown in the field of epidemiological
spread. Zheng et al. [33] (2020) applied a hybrid model for a 14-day period prediction, Haz-
arika et al. [34] (2020) applied wavelet-coupled random vector functional neural networks,
while Car et al. [35] (2020) applied a multilayer perceptron neural network for the goal
of regressing the epidemiology curve components. Ye et al. [36] (2020) demonstrated a α-
Satellite, AI-driven system for risk assessment at a community level. Authors demonstrate
the usability of such a system in combat against COVID-19, as a system that displays risk
index and the number of cases among all larger locations across the United States. Authors
in [37] have proposed a method for forecasting the impact of COVID-19 on stock prices.
The approach based on stationary wavelet transform and bidirectional long short-term
memory has shown high estimation performances.

Still, a large amount of work was also done in the image classification and detection
of COVID-19 in patients. Wang et al. [38] (2020) demonstrated the use of high-complexity
convolutional neural networks in the application of COVID-19 diagnosis. Their COVID-
Net custom architecture reached high sensitivity scores (above 90%) in the detection of the
COVID-19 in comparison to other infections and a normal lung state. Narin et al. [39] (2020)
also demonstrated a high-quality solution using deep convolutional neural networks on
X-ray images. Through the application of five different architectures (ResNet50, ResNet101,
ResNet152, Inception V3, and Inception-ResNetV2) high scores were achieved (accuracy
95% or higher) by the authors. Ozturk et al. [40] (2020) developed a classification network
for classifying the inflammation, named DarkCovidNet. DarkCovidNet reached an im-
pressive score in binary classification at 98.08% in the case of binary classification, but a
significantly lower score for 87.02% for multi-label classification. In the presented case,
a multi-label classification was conducted with the aim of differentiating X-ray images
of the lungs of healthy patients, patients with COVID-19, and patients with pneumo-
nia. Abdulaal et al. [41] (2020) demonstrated the AI-based prognostic model of COVID-19,
achieving accuracy levels of 86.25% and AUC ROC 90.12% for UK patients.

There have been studies proposing a transfer-learning approach to COVID-19 diagno-
sis from X-ray images of the chest. The study presented in [42] used pre-trained CNNs in
order to automatically recognize COVID-19 infection. Such an approach has enabled high
classification performances with an accuracy level of up to 99%. The research presented
in [43] proposed a similar approach in order to differentiate pneumonia from COVID-19
infection. Transfer learning has enabled higher classification accuracy with utilization of
simpler CNN architecture, such as VGG-16.

While a lot of work suggests that neural networks may be used for the detection of
COVID-19 infection, there is an apparent lack of work that tests the possibility of finding
the severity of COVID-19 through patients’ lung X-rays. Such an approach would allow for
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automatic detection and prediction of case severity, allowing healthcare professionals to
determine the appropriate approach and to leverage available resources in the treatment of
that individual patient. Development of an AI basis for such a novel system is the goal of
this paper. From a literature overview, it can be noticed that all presented research has been
based on a binary classification of X-ray images (infected/not infected) or differentiating
COVID-19 infection and other respiratory diseases.

To summarize the novelty, this article, unlike the articles presented in the literature
review, deals with a multi-class classification of X-ray images of positive COVID-19 patients
with the aim of estimating the clinical picture. All the examples have used a large number
of images (larger than 1000) in the training and testing processes of the neural network.
While the number of COVID-19 patients is high, data collection, especially in countries
with lower quality healthcare systems, may be problematic due to the strain exhibited
by the coronavirus. Because of this, it is important to test the possibility of algorithm
development combined with data augmentation operations, which is the secondary goal
of the presented research.

According to presented facts and the literature overview, the following questions
arise:

• Is it possible to utilize CNN in order to classify COVID-19 patients according to X-ray
images of lungs?

• Which CNN architecture achieves the highest classification performance?
• Which are the best-performing configurations in regards to the solver, number of

iterations, and batch size?
• How do transfer learning and layer freezing influence the performances of the best

configurations?

2. Dataset Construction

In this section, a brief description of the used dataset will be provided, together with
examples of each class. Furthermore, a data augmentation technique will be presented.
At the end, divisions in the training, validation, and testing sets will be presented.

2.1. Dataset Description

The dataset used in this research was obtained from the Clinical Centre in Kraguje-
vac [44] and consists of 185 X-ray images that represent the lungs of 21 patients diagnosed
with COVID-19. The dataset consists of 7 female and 18 male patients, and age of patients
in the form of mean ± standard deviation was 58.9± 11.1 years. Images have been divided
into four groups according to the clinical picture of the patient. Classification to a clinical
picture was performed according to the clinical data that contained parameters such as:

• Clinical picture description;
• Physical examination;
• Laboratory examination; and
• X-ray finding.

According to the aforementioned division, images have been classified into classes:

• Mild clinical picture;
• Moderate clinical picture;
• Severe clinical picture; and
• Critical clinical picture.

An overview of image classes has been presented in Figure 1, where each class is
represented with a X-ray image.
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(a) (b)

(c) (d)

Figure 1. Examples of X-ray images contained in the dataset: (a) A mild clinical picture; (b) moderate
clinical picture; (c) severe clinical picture; and (d) critical clinical picture.

For the purposes of this research, X-ray images collected during treatment have been
used to create a dataset. The dataset was created with respect to the clinical picture of the
patient, where each X-ray image was classified to the appropriate class. Data distribution
according to classes is presented in Figure 2.

38 (21%)

83 (45%)

34 (18%)

30 (16%)

Mild clinical picture
Moderate clinical picture

Severe clinical picture
Critical clinical picture

Figure 2. Overview of dataset distribution.
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2.2. Description of Data Augmentation Technique and Resulting Dataset

Due to a small amount of images in the dataset, a process called augmentation has
been utilized in order to increase the classification performances [45]. The augmentation
procedure was performed with the aim of artificially increasing the training dataset [46],
while the testing dataset remained the same. This procedure is often used in fields such
as bio-medicine, due to the fact that a large amount of bio-medical data is often unavail-
able [47]. In this particular case, a set of geometrical operations was utilized in order to
increase the dataset. The aforementioned geometrical operations are:

• 90 degree rotation around sagittal axis,
• 180 degree rotation around sagittal axis,
• 270 degree rotation around sagittal axis,
• 180 degree rotation around longitudinal axis,
• 180 degree rotation around longitudinal axis combined with 90 degree rotation around

sagittal axis,
• 180 degree rotation around longitudinal axis combined with 180 degree rotation

around sagittal axis, and
• 180 degree rotation around longitudinal axis combined with 270 degree rotation

around sagittal axis.

In addition to the above list, brightness augmentation was also performed. All the
images obtained by the geometrical transformations given above were further modified
by multiplying all image pixel values with factors 0.8, 0.9, 1.1, and 1.2 in addition to the
original brightness.

The 90-degree rotation presents an operation that rotates the original image (presented
with Figure 3a) by 90 degrees in a clockwise direction around the sagittal axis, as presented
in Figure 3b. Following the presented logic, rotations for 180 and 270 degrees were per-
formed as well, as presented in Figure 3c,d. Images rotated by 90 and 270 degrees were
resealed in order to have the same dimensions as the original image. Image generation
by 180-degree rotation around the longitudinal axis was performed in such a way that
the new image represented a mirrored projection of the original image, as presented in
Figure 3e. The mirrored image was rotated around the sagittal axis, forming three new
variations, as presented in Figure 3f–h. As the final approach to image augmentation, a
process of multiplication of all image pixels with a certain factor is proposed. In this case,
four different factors (0.8, 0.8, 1.1, and 1.2) were used. The described transformations have
been presented on an original image with Figure 3i–l. It is important to notice that such
transformations were applied on an augmented set that was created by using all described
geometrical transformations. By using such an approach, the new augmented dataset was
four times larger than the dataset created by using just geometrical transformations.

Only geometrical transformations and multiplication of all image pixels with a certain
factor were used for data augmentation in order to keep the entire data of the image. Other
techniques, such as scaling, could remove parts of the image, so they were considered
inappropriate due to the nature of the problem, which observes the entire image as it is
delivered from the hospital X-ray system.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3. Overview of image augmentation procedure ((a): original image; (b): image rotated for
90 degrees around sagittal axis; (c): image rotated for 180 degrees around sagittal axis; (d): image
rotated for 270 degrees around sagittal axis; (e): image rotated for 180 degree around longitudal axis;
(f): image rotated for 180 degree around longitudal axis and rotated for 180 degree around sagittal
axis; (g): image rotated for 180 degree around longitudal axis and rotated for 180 degree around
sagittal axis; (h): image rotated for 180 degree around longitudal axis and rotated for 270 degree
around sagittal axis; (i): image with pixels multiplied by a factor 0.8; (j): image with pixels multiplied
by a factor 0.9; (k): image with pixels multiplied by a factor 1.1; (l): image with pixels multiplied by a
factor 1.2).

By using the augmentation process described in the previous paragraphs, a new
augmented dataset of 5400 images was constructed. The class distribution of the new set
is presented in Figure 4a. It is important to notice that for the creation of the augmented
dataset, only images contained in the original training set were used. In other words,
images used for classifier testing were not used for the creation of the augmented set.
According to the presented fact, the training set of 881 images was divided into training
and validation sets in a 75:25 manner, as a ratio common in machine-learning practice.
The presented sets were used for the training of CNNs, while the original testing set was
used for the evaluation of their classification performances. The above-described dataset
division is presented in Figure 4b.
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1116 (21%)

2412 (45%)

1008 (18%)

864 (16%)

Mild clinical picture
Moderate clinical picture
Severe clinical picture
Critical clinical picture

(a)

4050

1350

36

Training set
Validation set
Testing set

(b)

Figure 4. Representation of augmented dataset ((a): class distribution; (b): training-validation-testing
division).

3. Description of Used Convolutional Neural Networks

In this subsection, an overview of CNN-based methods for image classification will
be presented. The CNNs used in this research are, in fact, standard CNN architectures
widely used for solving various computer vision and image recognition problems [48].
Such an algorithm, alongside its variations, is widely used for various tasks of medical
image recognition [49]. For the case of this research, four different CNN architectures were
used, and they are:

• AlexNet,
• VGG-16, and
• ResNet.

All of the above-listed CNN architectures have predefined layers and activation
functions, while other hyper-parameters, such as batch size, solver, and number of epochs
could be varied. The above-listed architectures were chosen due to the history of their
high classification performances in similar problems. It has been shown that ResNet
architectures have achieved high classification performances when used for multi-class
classification of X-ray chest images [50]. Furthermore, ResNet architectures were used
in various tasks of medical data classification ranging from tumor classification [51,52],
trough recognition of respiratory diseases [53], to fracture diagnosis [54,55].

Extensive searches for the optimal solution through the hyper-parameter space can
also be called the grid-search procedure. Variations of hyper-parameters used during the
grid-search procedure for CNN-based models are presented in Table 1.

Table 1. An overview of CNN hyper-parameters used during the grid-search procedure.

Number of Epochs Solver Batch Size

1 Adam [56] 2
5 Adamax [57] 4
10 Nadam [58] 8
25 - 16
50 - -
75 - -

100 - -
125 - -
150 - -
175 - -
200 - -
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In order to determine the influence of overfitting, the number of epochs were varied
with the aim of determining the number with the highest performances on the test dataset.
With respect to theoretical knowledge, it can be defined that when training with a large
number of epochs, the model is often over-fitted. For this reason, it is necessary to find the
optimal number of training epochs [15]. Solvers used in this research were selected due
to their performance on multiple multi-label datasets [59]. In the following paragraphs,
a brief description and mathematical models will be provided for each solver.

Adam Solver

The Adam optimization algorithm represents one of the most-used algorithms for
tasks of image recognition and computer vision. By using the Adam optimizer, weights are
updated by following [56]:

wi
t = wi

t−1 −
η√

v̂t + ε
m̂t, (1)

where m̂t is defined as:
m̂t =

mt

1− βt
1

(2)

and v̂t is defined as:
v̂t =

vt

1− βt
2

. (3)

mt is defined as a running average of the gradients, and it can be described with:

mt = β1mt−1 + (1− β1)G. (4)

Furthermore, vi is defined as the running average of squared gradients, or:

vt = β2vt−1 + (1− β2)G2. (5)

G can be defined with:
G = ∇wC(wt), (6)

where C(arg) represents a cost function. Parameters of the Adam solver used in this
research are presented in Table 2.

AdaMax Solver

AdaMax solver follows the logic similar to the Adam solver—in this case, the weights
update was performed as [58]:

wi
t = wi

t−1 −
η

vt + ε
m̂t, (7)

where m̂t is defined as:
m̂t =

mt

1− βt
1

. (8)

Furthermore, vt can be defined as:

vt = max(β2vt−1, |Gt|), (9)

and mt is defined as:
mt = β1mt−1 + (1− β1)G. (10)

As it is in the case of the Adam solver, parameters used in this research are presented
in Table 2.
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Nadam Solver

The third optimizer used in this research in Nadam. As with the AdaMax algorithm,
Nadam is also based on Adam. Weights in these case updates are as [58]:

wi
t = wi

t−1 −
η√

vt + ε
m̃t, (11)

where m̃t is defined with:
m̃t = βt+1

1 m̂t + (1− βt
1)ĝt. (12)

m̂t and ĝt are defined as:

m̂t =
mt

∏t
i=1 β1

(13)

and
ĝt =

gt

∏t
i=1 β1

. (14)

As it is in the case of the Adam and AdaMax optimizers, the parameters of the Nadam
solver are presented in Table 2.

Table 2. Parameters of each optimizer used in this research.

Solver η β1 β2 ε

Adam 0.001 0.9 0.99 1× 10−8

Adamax 0.02 0.9 0.999 1× 10−7

Nadam 0.001 0.9 0.999 1× 10−7

The presented parameters will be used for training the CNNs, and the classification
performances of all trained models will be evaluated by using the testing data set. In the
following paragraphs, a brief overview of the used CNN architectures will be presented.

3.1. AlexNet

AlexNet represents one of the classical CNN architectures that are used for various
tasks of image recognition and computer vision. This architecture is one of the first CNNs
that are based on deeper configuration [60]. AlexNet won the ImageNet competition in
2012. The success of such a deep architecture has introduced a trend for designing even
deeper CNNs that can be noticed today [61]. AlexNet is based on a configuration of nine
layers, where the first five layers are convolutional and pooling layers, and the last four are
fully connected layers [62]. The detailed description of AlexNet architecture in provided in
Table 3.

Table 3. Description of AlexNet architecture (C—convolutional layer, P—Max pooling, FC—fully connected).

Layer Type Feature Size Kernel Stride Activation
Map Size Function

Input Image 1 227× 227× 1 - - -
1 C 96 55× 55× 96 11× 11 4 ReLU

P 96 27× 27× 96 3× 3 2 -
2 C 256 27× 27× 256 5× 5 1 ReLU

P 256 13× 13× 256 3× 3 2 -
3 C 384 13× 13× 384 3× 3 1 ReLU
4 C 384 13× 13× 384 3× 3 1 ReLU
5 C 256 13× 13× 256 3× 3 1 ReLU

P 256 6× 6× 256 3× 3 2 -
6 FC - 9216 - - ReLU
7 FC - 4096 - - ReLU
8 FC - 4096 - - ReLU

Output FC - 4 - - Softmax
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3.2. VGG-16

The described trend of deeper CNN configuration resulted in improvements of the
original AlexNet architecture. One of such architectures is VGG-16, presented in the
following year. VGG-16 represents a deeper version of AlexNet, where the nine-layer
configuration is replaced with a 16-layer configuration, from which the name is derived [63].
A main advantage of VGG-16 is the introduction of smaller kernels in convolutional layers,
in comparison with AlexNet [64]. The detailed description of VGG-16 layers is provided in
Table 4.

Table 4. Description of VGG 16 architecture (C—convolutional layer, P—Max pooling, FC—fully connected).

Layer Type Feature Size Kernel Stride Activation
Map Size Function

Input Image 1 224× 224× 1 - - -
1 2× C 96 224× 224× 64 3× 3 1 ReLU

P 64 112× 112× 64 3× 3 2 -
3 2× C 128 112× 112× 128 3× 3 1 ReLU

P 256 56× 56× 128 3× 3 2 -
5 2× C 256 56× 56× 256 3× 3 1 ReLU

P 384 28× 28× 256 3× 3 2 ReLU
7 3× C 512 28× 28× 512 3× 3 1 ReLU

P 256 14× 14× 512 3× 3 2 -
10 3× C 512 14× 14× 512 3× 3 1 ReLU

P 512 7× 7× 512 3× 3 2 -
13 FC - 25,088 - - ReLU
14 FC - 4096 - - ReLU
15 FC - 4096 - - ReLU

Output FC - 4 - - Softmax

3.3. ResNet

According to the presented networks, the trend of designing deeper networks can
be noticed [65]. This approach can be utilized to a certain level, due to the vanishing
gradient problem [66]. It can be noticed that deeper configurations will have no significant
improvements in terms of classification performances. Furthermore, in some cases, deeper
CNNs can show lower classification performances than CNNs designed with a smaller
number of layers. For these reasons, an approach based on residual blocks is proposed.
The residual block represents a variation of a CNN layer, where a layer is bypassed with
an identity connection [67]. The block scheme of such an approach is presented in Figure 5.

Figure 5. Schematic overview of a residual block.
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By using the presented residual approach, significantly deeper networks could be used
without the vanishing gradient problem. This characteristic is a consequence of identity
bypass utilization because identity layers do not influence the CNN training procedure [68].
For these reasons, deeper CNNs designed with a residual block will not produce the
higher error in comparison with shallower architectures. In other words, by stacking
residual layers, significantly deeper architectures could be designed. For the case of this
research, three different architectures based on the residual block will be used, and these are:
ResNet50 [69], ResNet101 [70], and ResNet152 [71]. The aforementioned architectures are
pre-defined ResNet architectures that are mainly used for image recognition and computer
vision problems which require deeper CNN configurations.

4. Research Methodology

As presented in the previous sections, this research is based on a comparison of
multiple methods of image recognition that will be used in order to estimate the severity
of COVID-19 symptoms according to X-ray images of patients’ lungs. All methods have
been compared and evaluated from a standpoint of classification performances. In this
case, AUCmicro and AUCmacro are used.

4.1. Description of AUCmicro and AUCmacro

Image classifiers are evaluated using standard classification measures, such as the
Area under the ROC curve (AUC). Such an approach is based on construction of the
ROC curve by using a false-positive rate (FPR) and true-positive rate (TPR). TPR can be
described as a ratio between the number of correct classifications in one class (AC) and
the sum of total members of that class. Such a number includes the number of correct
classifications and the number of incorrect classifications (AI). The aforementioned ratio
can be defined as:

TPR =
AC

AC + AI
. (15)

On the other hand, FPR can be defined as a ratio of the number of incorrect classifica-
tions in the first class (BI) and the total number of members of the second class (BI + BC).
The aforementioned ratio can be written as:

FPR =
BI

BI + BC
. (16)

By using TPR and FPR, the ROC curve can be constructed and the AUC value can
be determined. The challenge, in this case, lies in the fact that this measure is designed to
evaluate the binary classifier. In the case of this research, the classification is performed in
four classes. For this reason, a standard ROC-AUC procedure must be adapted to evaluate
multi-class classification performances [49]. This approach is achieved by using AUCmicro
and AUCmacro measures.

4.1.1. AUCmicro

The definition of AUCmicro is based on the calculation of TPRmicro and FPRmicro.
TPRmicro can be calculated as a ratio between the number of correct classifications and the
total number of samples. This relation can be written as:

TPRmicro =
AC + BC + CC + DC

N
, (17)

where AC represents the number of correct classifications in the class A, BC the number of
correct classifications in the class B, CC the number of correct classifications in the class C,
and DC the number of correct classifications in the class D, where N represents the total
number of samples. Following a similar methodology, FPRmicro can be calculated as a
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ratio between the total number of incorrect classifications and the total number of samples.
According to the above-stated notation, this ratio can be written as:

FPR =
N − (AC + BC + CC + DC)

N
. (18)

When the described TPRmicro and FPTmicro are used for ROC curve construction, the
area underneath is called AUCmicro. This area represents a discrete micro-average value for
the evaluation of multi-class classifier performances.

4.1.2. AUCmacro

Similar to AUCmicro, AUCmacro can be used for performance evaluation of a multi-class
classifier. In this case, average TPR is calculated as an average of TPR values that represent
individual classes. For example, the TPR value for the class A can be calculated as a ratio
between the number of correct classifications in the class A (AC) and the total number of
class A members (NA). Such a ratio can be written as:

TPRA =
AC
NA

. (19)

When the presented formalism is applied to all classes, TPRmacro can be calculated as
follows:

TPRmacro =
1
M

M

∑
n=1

TRPn, (20)

where M represents the total number of classes. Following the presented procedure,
FPRmacro can be calculated as an average of individual FPR values:

FPRmacro =
1
M

M

∑
n=1

FRPn, (21)

where the individual value can be calculated as a ratio between the number of incorrectly
classified images as members of a particular class and the total number of images that are
members of the same class. By using these measures, AUCmacro can be calculated.

4.2. Overfitting Issue

Due to the large CNN models used in this research, it is necessary to include steps
to overcome overfitting. Over-fitted CNN shows high classification performances on the
training dataset, while the performances on the testing dataset are quite poor. In order
to prevent overfitting, some steps must be taken. According to [58], there are several
mechanisms used to overcome overfitting in image classifiers. The mechanisms used in
this research are:

• Image augmentation; and
• Early stopping.

Image augmentation, as one of the key techniques for handling the overfitting issue,
was addressed earlier in the article. In order to perform early stopping, an analysis
regarding the change of AUCmicro and AUCmicro over the number of epochs was performed.
Data obtained with this analysis will be used to determine the optimal number of training
epochs for each CNN architecture. By using this approach, selected networks will be trained
for the number of epochs which will allow for full training, while avoiding overfitting.

4.3. Freezing Layers

In order to increase classification performances of proposed networks, an approach of
layers freezing during training procedure will be used. Such an approach will be performed
on the CNN configurations that have already achieved the highest performances. The
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procedure of freezing layers will be performed in an iterative manner from the bottom
of the network towards the higher layers until the maximal classification performances
are achieved. Such a procedure is selected in order to fine-tune only specific layers of a
CNN architecture, pre-trained with ImageNet, while other layers remain frozen during a
training procedure. By using such an approach, issues regarding unscientific datasets are
overcome to some extent. An example of a freezing layers methodology is presented on a
ResNet architecture in Figure 6, where the first, second, third, and half of the fourth block
are frozen during training, while other layers remain unfrozen.

Figure 6. A schematic representation of freezing methodology on ResNet architecture.

4.4. Results Representation

In order to define the network that achieves the best classification performances,
maximal AUCmicro and AUCmacro achieved with all networks will be compared. As a first
step, the influence of the number of epochs and the batch size on maximal AUCmicro and
AUCmacro will be examined. Furthermore, the configuration that produces the highest
result will be presented for all CNNs. As a final step, all maximal AUCmicro and AUCmacro
values achieved with each CNN will be compared in order to determine the architecture
with the highest classification performances. A schematic representation of the research
methodology is presented in Figure 7.
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Figure 7. A schematic representation of the presented research methodology.

5. Results and Discussion

In this section, an overview of results achieved with each of the proposed CNN
architectures will be presented. For each aforementioned architecture, diagrams that
describe the change of maximal AUCmicro, AUCmacro value in dependence of number of
epochs and batch size will be provided. At the and of the section, a comparison of the
achieved results will be presented and discussed.

5.1. Results Achieved with AlexNet

As the first of the results achieved with AlexNet architecture, the change of AUCmacro
over the number of training epochs is presented in Figure 8. When the results are compared,
it can be noticed that AUCmacro achieved its maximum at 50 and 75 training epochs,
regardless of the solver utilized. Furthermore, it can be noticed that in the higher number
of epochs, a significant fall of AUCmacro value occurs in the case of all solvers. Such a fall in
classification performances could be recognized as a consequence of overfitting.
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Figure 8. The change of maximal AUCmacro in dependence of the number of epochs for AlexNet.
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The change of AUCmicro is presented in Figure 9, where a similar trend as in the case
of AUCmicro can be noticed. In this case, maximal performances are also achieved with 50
and 75 consecutive training epochs. Furthermore, it can be noticed that AUCmicro values
are, at the same point, slightly higher than AUCmacro. The trend of overfitting on a larger
number of epochs is also noticeable.
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Figure 9. The change of maximal AUCmicro in dependence of the number of epochs for AlexNet.

When the influence of batch size on AUCmacro is observed, it can be noticed that there
is no configuration that achieves a AUCmacro value higher than 0.8. This property is in
correlation with the case described with Figure 8. It is interesting to notice a significant fall
of AUCmacro values in the case when batches of size 16 are utilized. For this case, AUCmacro
is set around a value of 0.7. This characteristic can be noticed for all three solvers utilized,
as presented in Figure 10. Presented results are in correlation with previous knowledge
regarding a regularizing effect of smaller batch sizes [72]. Such an approach has enabled
overcoming of the overfitting issue.
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Figure 10. The change of maximal AUCmacro in dependence of batch size for AlexNet.
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As the final evaluation of AlexNet’s classification performances, the influence of batch
size on AUCmicro will be observed. Similar to the case presented in Figure 9, an AUCmicro
slightly higher than 0.8 was achieved if batches of four and eight were used. In the case of
a batch size of 16, significantly lower AUCmicro around 0.7 was achieved. The described
property can be noticed regardless of the solver utilized, as presented in Figure 11. These
results are in correlation with results presented in the case of AUCmacro.
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Figure 11. The change of maximal AUCmicro in dependence of batch size for AlexNet.

5.2. Results Achieved with VGG-16

The results, similar to the results achieved with AlexNet, are achieved with VGG-16,
as presented in Figure 12. Maximal AUCmacro values are achieved when the network is
trained for 50 and 75 epochs. On the other hand, a significant decrease of AUCmacro can be
noticed when the network is trained for a larger number of epochs. These lower results are
a consequence of overfitting on a larger number of epochs.
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Figure 12. The change of maximal AUCmacro in dependence of number of epochs for VGG-16.
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Similar behavior of AUCmicro is presented in Figure 13, where maximal performances
could be noticed when the network was trained for 50 or 75 consecutive epochs. When the
network was trained for a higher number of epochs, a significant fall of AUCmicro could be
noticed. Such a result is a consequence of overfitting on the larger number of epochs.
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Figure 13. The change of maximal AUCmicro in dependence of number of epochs for VGG-16.

The influence of batch size on AUCmicro for the case of VGG-16 is presented in
Figure 14. In the case of AUCmacro, the maximal values are achieved when batches of
four and eight are utilized, regardless of solver utilized. For the case of a batch size of
16, classification performances, with a value of 0.5, fall into the domain of the coin-flip
classification. Such a result can be attributed to the regularization character of smaller
batch-sizes and overfitting of larger batch-sizes.
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Figure 14. The change of maximal AUCmacro in dependence of batch size for VGG-16.
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When AUCmicro is measured, it can be noticed that the highest values are achieved
when batches of four and eight are used. In the case when larger batches of 16 are used,
AUCmicro value is positioned around a value of 0.7, as presented in Figure 15. In this case,
a gap between AUCmicro and AUCmacro can also be noticed.
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Figure 15. The change of maximal AUCmicro in dependence of batch size for VGG-16.

5.3. Results Achieved with ResNet Architectures

In the following sub-section, an overview of results achieved by using ResNet archi-
tectures will be presented. All results will be presented and described in a similar manner
as in the case of AlexNet and VGG-16.

5.3.1. Results Achieved with ResNet50

The change of AUCmacro over the number of epochs is presented in Figure 16. From
the presented results, it can be noticed that the maximal AUCmacro values are achieved
when the network is trained for 100 epochs. This characteristic can be noticed only for the
case of the Adam and Adamax solvers, while for the case of the Nadam solver, the maximal
AUCmacro is achieved when the network is trained for 50 consecutive epochs. If the CNN is
trained for a larger number of epochs, a significant drop of AUCmacro can be noticed. Such
a result is pointing towards the fact that the overfitting issue occurs if ResNet50 is trained
for a larger number of epochs.

Furthermore, when Figures 16 and 17 are observed, a similar trend can be noticed for
the case of AUCmicro. A significant drop of AUCmicro occurs if ResNet50 is trained for a
higher number of consecutive epochs, while the AUCmicro value tops when the network
is trained for 75 epochs with an Adam solver or 100 epochs for the AdaMax and Nadam
solvers. The lower performances at the higher number of epochs are pointing towards
overfitting.
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Figure 16. The change of maximal AUCmacro in dependence of number of epochs for ResNet50.
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Figure 17. The change of maximal AUCmicro in dependence of the number of epochs for ResNet50.

When the influence of batch size on AUCmicro and AUCmacro is examined, the results
presented in Figures 18 and 19 are achieved. It can be noticed that the highest results are
achieved when larger batches of 16 are used. In this case, the maximal AUCmacro will go
up to 0.9 only if the AdaMax solver is utilized. In the case of smaller batches, the AUCmacro
values between 0.7 and 0.8 are achieved, regardless of solver utilized.
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Figure 18. The change of maximal AUCmacro in dependence of batch size for ResNet50.

Similar conclusions could be drawn when AUCmicro values are compared. In this case,
the only significant difference is a significant underperformance of networks trained with
the Adam solver by using smaller batches, as presented in Figure 19.
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Figure 19. The change of maximal AUCmicro in dependence of batch size for ResNet50.

5.3.2. Results Achieved with ResNet101

The change of AUCmacro over the number of epochs achieved with ResNet101 is
presented in Figure 20. From the presented results, it can be noticed that the highest
performances are achieved when the CNN is trained for 150 epochs. Such a property can be
noticed for all solvers, with an exception of Nadam, which has achieved similar results at
50 epochs. Furthermore, the significant drop of AUCmacro value can be noticed at a higher
number of epochs. Such a fall can be attributed to overfitting.
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Figure 20. The change of maximal AUCmacro in dependence of number of epochs for ResNet101.

A similar trend is presented in Figure 21, where the change of AUCmicro value over the
number of epochs is presented. As it is in the case of AUCmacro, the maximal classification
performances are achieved when CNNs are trained for 100, 125, and 150 consecutive
epochs. Due to overfitting, significantly lower AUCmicro values are achieved when CNNs
are trained for 175 and 200 epochs. The drop of AUCmicro value is noticeably deeper than
in case of AUCmacro.

0 25 50 75 100 125 150 175 200
Number of epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
C m

ic
ro

Maximal AUCmicro achieved for each number of epochs

Adam
AdaMax
Nadam

Figure 21. The change of maximal AUCmicro in dependence of number of epochs for ResNet101.

The influence of batch size on AUCmacro is presented in Figure 22. When the results
are observed, it can be noticed that the highest classification performances are achieved
when larger data batches are used during training of ResNet101. These characteristics are
noticed only for the case of the AdaMax and Adam solvers. On the other hand, when the
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Adam solver is used, no significant difference of AUCmacro is achieved when batches of 8
and 16 are used during training.
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Figure 22. The change of maximal AUCmacro in dependence of batch size for ResNet101.

A similar conclusion could be reached if classification performances are evaluated by
using AUCmicro. It can be noticed that the highest AUCmacro values will be achieved if the
network is trained by using larger batches, as presented in Figure 23.
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Figure 23. The change of maximal AUCmicro in dependence of batch size for ResNet101.

5.3.3. Results Achieved with ResNet152

The last CNN used in this research is ResNet152. The change of AUCmacro over number
of epochs is presented in Figure 24. From the presented result, it can be noticed that the
highest AUCmacro value is achieved when ResNet152 is trained for 125 epochs. Such a
property can be noticed regardless of the solver utilized. An exception can be noticed in
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the case of the AdaMax solver. In this case, AUCmacro values over 0.9 are also achieved
when the network is trained for 75 epochs. Furthermore, an influence of overfitting can be
noticed when the network is trained for a larger number of epochs. Due to this property,
it is important to train the network for a lower number of consecutive epochs in order to
prevent overfitting and, consequently, lower classification performances.

0 25 50 75 100 125 150 175 200
Number of epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
C m

ac
ro

Maximal AUCmacro achieved for each number of epochs

Adam
AdaMax
Nadam

Figure 24. The change of maximal AUCmacro in dependence of number of epochs for ResNet152.

Similar results are achieved when the change of AUCmicro over different number of
epochs is observed, as presented in Figure 25. In this case, the highest AUCmicro values are
achieved when the network is trained for 100 and 125 consecutive epochs. It is important
to notice that a significant fall of AUCmicro occurs when the CNN is trained for 175 and
200 consecutive epochs. Such a trend can be noticed regardless of solver utilized, and it
points toward an occurrence of overfitting. Due to these results, it can be concluded that
it is necessary to avoid training for such a large number of epochs in order to prevent
overfitting and to achieve higher classification performances.
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Figure 25. The change of maximal AUCmicro in dependence of number of epochs for ResNet152.
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When the influence of batch size on AUCmacro is observed, it can be noticed that by
using a larger batch size of 16, higher AUCmacro will be achieved. The significantly lower
AUCmacro values are achieved when ResNet152 is trained by using smaller batches of four.
This property can be noticed for the case of all three solvers, as presented in Figure 26.
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Figure 26. The change of maximal AUCmacro in dependence of batch size for ResNet152.

Similar results can be noticed when the influence of batch size on AUCmicro is observed.
The only significant difference lies in the fact that for a batch size of four, somewhat higher
values are achieved, as presented in Figure 27. Regardless of higher value, AUCmicro, in this
case, is still too low to be taken into consideration for practical application.
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Figure 27. The change of maximal AUCmicro in dependence of batch size for ResNet152.
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5.4. Comparison of Achieved Results

When the result achieved with all CNN architectures is compared, it can be noticed
that in the case of AlexNet and VGG-16, the highest AUCmacro values are achieved if
networks are trained by using smaller batches for a lower number of epochs. On the other
hand, ResNet architectures show better performances when trained by using larger batches
for a higher number of consecutive epochs. Configurations that have achieved the largest
AUCmacro values are presented in Table 5.

Table 5. Overview of configurations that achieved highest AUCmacro for all CNN architectures.

Network Number of Epochs Batch Size Solver

AlexNet 50 4 AdaMax
VGG-16 50 4 AdaMax

ResNet50 100 16 AdaMax
ResNet101 50 16 Nadam
ResNet152 125 16 Nadam

Similarly to the above-presented architectures, the highest AUCmicro values are achieved
when AlexNet and VGG-16 are trained by using smaller batches for a lower number of con-
secutive epochs. Furthermore, for the case of ResNet architectures, the highest AUCmicro
values are achieved when CNNs are trained by using larger batches for a larger number of
epochs. The described configurations are presented in Table 6.

Table 6. Overview of configurations that achieved highest AUCmicro for all CNN architectures.

Network Number of Epochs Batch Size Solver

AlexNet 50 4 AdaMax
VGG-16 50 4 AdaMax

ResNet50 100 16 AdaMax
ResNet101 100 16 Nadam
ResNet152 100 16 Nadam

Finally, when the highest AUCmacro and AUCmicro achieved with each CNN architec-
ture are compared, it can be noticed that ResNet architectures are achieving dominantly
higher classification performances. On the other hand, it can be noticed that by using deeper
ResNet architectures, a rising trend of AUCmacro and AUCmicro is present, as presented in
Figure 28. The achieved results are pointing to the conclusion that by using ResNet152
architecture, the highest AUCmacro and AUCmicro values of 0.93 and 0.94 are achieved.
Given the results achieved, the possibility of using CNN for automatic classification of
patients with COVID-19 with respect to lung status should be considered.
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Figure 28. Comparison of highest AUCmacro and AUCmicro achieved with every CNN architecture.
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Furthermore, when layer freezing is considered, it can be noticed that by freezing
higher layers of CNNs during the training procedure, higher classification performances
are achieved. The distribution of frozen and unfrozen layers is presented in Table 7 for
each CNN architecture utilized.

Table 7. Representation of distribution of frozen and unfrozen layers with classification performances.

Network Frozen Layers Unfrozen Layers

AlexNet 1–5 6–9
VGG-16 1–12 13–16

ResNet50 1–42 43–50
ResNet101 1–92 93–101
ResNet152 1–139 140–152

When comparing the achieved classification performances with classification perfor-
mances in the case when all layers are fine-tuned, it can be noticed that in the case of
freezing layers, slightly higher performances are achieved with each of the proposed CNN
architectures, as presented in Figure 29.
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Figure 29. Comparison of highest AUCmacro and AUCmicro achieved with every CNN architecture and freezing layers.

Furthermore, it can be noticed how the order of the architectures from the one with
the best classification performance to the one with the worst is the same as in the previous
case.

When the results achieved with transfer learning are compared to the results achieved
on similar problems, it can be noticed that higher classification performances are achieved
if transfer learning is utilized. Such a correlation can be noticed when the achieved results
are compared with the results of research dealing with both COVID-19 [42,43] and other
respiratory issues [22,23]. These results are pointing towards the utilization of transfer
learning in order to increase the accuracy of evaluation of the clinical picture of COVID-19
patients from X-ray lung images.

These results show that ResNet152, in combination with transfer learning, is the
network that achieves the best results in the case of evaluation of the clinical picture of
COVID-19 patients using X-ray lung images.
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6. Conclusions

The results achieved with this research are pointing towards the conclusion that CNN-
based architectures could be used in estimation of the clinical picture of a COVID-19 patient
according to the X-ray lung images. It is important to notice that deep CNN architectures
have the tendency to overfit when they are trained with a higher number of consecutive
epochs. Due to this property, it is concluded that steps such as early stopping and image
augmentation must be used in order to prevent overfitting. According to the presented
results and stated research hypothesis, the following conclusions could be drawn:

• It is possible to utilize CNN for automatic classification of COVID-19 patients accord-
ing to X-ray lung images;

• The best results are achieved if ResNet152 architecture is utilized;
• The best results are achieved if the aforementioned architecture is trained by using

larger batches of data for an intermediate number of consecutive epochs by using
Nadam solver; and

• It can be noticed that by utilization of transfer learning and freezing layers, higher
classification performances are achieved.

Due to the presented results and conclusions, a possibility for utilization of such
an algorithm in battle against COVID-19 and its application in clinical practice should
be taken into account. The main limitation of this research was the small amount of
X-ray images, which could be overcome, to some extent, by augmentation techniques,
and another limitation was class imbalance. Regardless of the presented limitations, the
presented approach has shown promising results which point to further research on a
larger and more balanced data set.
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