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Summary

Human cytomegalovirus (HCMV) is the most common cause of viral infection acquired in utero. 

Even though the infection has been studied for several decades, immune determinants important 

for virus control and mechanisms of long-term sequelae caused by infection are still insufficiently 

characterized. Animal models of congenital HCMV infection provide unique opportunity to study 

various aspects of human disease. In this review, we summarize current knowledge on the role of 

immune system in congenital CMV infection, with emphasis on lessons learned from mouse 

model of congenital CMV infection.
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1. Pathogenesis of congenital CMV infection

Human cytomegalovirus (HCMV) is a widespread β-herpesvirus which infects 40–100% of 

the adult population worldwide [1]. Like all herpesviruses, HCMV establishes lifelong 

latency that can lead to periodic reactivations. Infection with HCMV is usually 

asymptomatic in healthy individuals [2]. However, in immunocompromised individuals and 

in congenitally infected children, HCMV can cause severe disease and even mortality. Thus, 

development of HCMV vaccine is a public health priority [3].
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Even though the primary HCMV infection in healthy adults is usually asymptomatic, 

viremia can last for several weeks or even longer [4]. Due to broad tropism, HCMV is able 

to infect the majority of cell types and organs. Infection of epithelial cells in kidney and 

salivary glands enables virus shedding in the saliva and urine for months, supporting 

transmission to new hosts [5]. Epithelial cells in mucosal tissues are the first targets of virus 

in new host, while myeloid and endothelial cells enable dissemination of virus throughout 

the organism. The mechanism of HCMV transmission to fetus is still incompletely defined, 

however it requires infection of placenta [6].

In general, infections acquired before birth, or early after birth are characterized by higher 

levels of viral replication, greater risk of persistent infection and more severe disease 

outcome, as compared to infections acquired later in life [7]. HCMV is the leading cause of 

viral congenital infection, the most common non-genetic cause of hearing loss and an 

important cause of neurodevelopmental delay [8–11]. Congenital HCMV infection affects 

0.2–2.0% of all newborns worldwide, and the rate depends on many variables, including 

geographic location, socioeconomic status and ethnicity [12]. Approximately 10–15% of 

children with congenital HCMV are symptomatic at birth [13]. The infection induces a wide 

array of symptoms including intrauterine growth retardation, jaundice, hepatosplenomegaly 

and neurodevelopmental deficits [14]. Up to 10% of infected infants can exhibit long-term 

neurological sequelae, including sensorineural hearing loss [15]. Despite the lack of 

symptoms infected infants excrete virus for years after birth indicating lack of efficient 

control in some organs [16]. In comparison, in immunocompetent adults viral excretion can 

continue for a maximum of several months [4].

The determinants of HCMV transmission to fetus and why the infection is symptomatic in 

some cases is still not completely understood. Infection of the fetus during the early stages 

of pregnancy confers higher risk for long-term adverse central nervous system (CNS) 

outcome, probably due to infection and damage of a less developed CNS [17, 18]. Early 

emergence of both arms of adaptive immune responses has been shown to be important in 

preventing congenital transmission. However, pre-conceptional maternal immunity to 

HCMV does not prevent transmission of virus to fetus nor the development of disease in the 

infected fetus [19]. In fact, the rates of congenital HCMV are highest in populations in 

which women of childbearing age have the highest HCMV seroprevalence. The infection of 

offspring born to women with existing immunity, thought to result from either reactivation 

of latent virus or infection with a new strain of HCMV, can also cause congenital HCMV 

disease [19].

In addition to intrauterine transmission, postnatal transmission of virus, usually via maternal 

breast milk, can cause significant morbidity [20]. Disease following breast milk transmission 

of HCMV is typically observed in low birth weight premature infants [21]. Currently there is 

no evidence that such infection can cause long-term neurodevelopmental sequelae [22]. 

When congenital and perinatal infection were compared, the level of viruria among cases of 

congenital HCMV was on average one log higher in symptomatic compared to 

asymptomatic cases, while at the same time the viruria was one log higher in infants with 

congenital asymptomatic infection compared to perinatally infected children [23]. However, 

after one year all three groups had same low-level persistent infection.
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1.1. Animal models to study congenital HCMV infection

Due to strict species specificity of HCMV, animal cytomegaloviruses (CMV) have been 

exceptionally useful in defining immune responses to congenital HCMV infection. Mouse 

cytomegalovirus (MCMV) infection of mice has been the most commonly used model of 

HCMV infection [24]. In contrast to HCMV, MCMV does not cross the placenta [25]. 

Therefore, we employ a model of congenital infection in which newborn mice are infected 

with MCMV intraperitoneally immediately after birth [26]. It is worth mentioning that the 

central nervous system (CNS) in newborn mice is developmentally equivalent to the human 

fetus at 15 weeks of gestation, a period when HCMV infection in humans is most frequently 

acquired during pregnancy [25]. Upon intraperitoneal infection of newborn mice, the virus 

disseminates to various tissues, including the brain where infection results in widespread, 

focal, non-necrotizing encephalitis [26]. CNS pathology in infected newborn mice closely 

recapitulates the pathology occurring during the congenital HCMV infection, most evident 

in smaller cerebellum size and thicker external granular layer. Moreover, the infection causes 

hearing loss associated with inner ear inflammation and loss of spiral ganglia neurons [27].

2. Innate immune responses to congenital CMV infection

2.1. Myeloid cells

Upon infection, innate immune response is the first line of defense. Monocytes, 

macrophages and dendritic cells (DCs) are specialized in sensing pathogens and production 

of cytokines. They are important not only for direct antiviral properties but also for proper 

formation of adaptive immune response [28]. Myeloid cells recognize highly conserved 

structures called pathogen-associated molecular patterns (PAMPs) or endogenous molecules 

released from damaged cells termed damage-associated molecular patterns (DAMPs). 

PAMPs and DAMPs are recognized by germline-encoded pattern recognition receptors 

(PRRs). Among PRRs, Toll-like receptors (TLRs) are the most extensively studied.

TLR9 is the main sensor of MCMV, whereas TLR3 and TLR7 play a supportive role in 

induction of inflammatory cytokine responses [28]. In addition, HCMV glycoproteins gH 

and gB are agonists for TLR2, even though the importance of these interactions is still not 

completely clear. While myeloid cells play an important role in combating CMV infection, 

the virus has many ways of evading their response [28]. In addition, macrophages and 

conventional DCs (cDCs) are fully permissive for lytic infection with HCMV [28]. Upon 

infection of myeloid cells, HCMV impairs their antigen presenting ability by 

downregulation of MHC class I and II, and costimulatory molecules. However, rapid T cell 

responses develop in spite of these evasion mechanisms. It is assumed that this is due to the 

fact that in vivo only a very small proportion of DCs (<5% at peak of infection) is infected 

[29]. Upon resolution of acute infection, HCMV resides latent in monocytes and myeloid 

progenitors in bone marrow and is able to reactivate upon differentiation of progenitors to 

macrophages and DCs, consequently spreading the virus to other organs [30].

By second trimester, CD14+ monocytes and macrophages, plasmacytoid DCs and cDCs are 

present in the human fetus [31]. Majority of studies investigating functional potential of 

myeloid cells upon encounter of different stimuli found that myeloid cells in neonates 
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produce lower amounts of proinflammatory cytokines as compared to adult counterparts [7]. 

In addition, fetal DCs promote regulatory T-cell induction and inhibit T-cell TNF-α 
production through arginase-2 [31]. Fetal immune response is skewed towards Th2 response 

to avoid potentially damaging Th1 response in utero [32]. Therefore, neonatal innate 

immune defenses are focused towards protection against extracellular rather than 

intracellular pathogens, which is probably essential for survival advantage in early life 

against fatal bacterial infections [7].

The role of myeloid cells in response to congenital CMV infection has been poorly 

characterized. Pregnancy by itself is associated with altered cytokine milieu [33]. Increased 

IL-10 production during pregnancy has been associated with increased susceptibility to fetal 

CMV infection [34]. Infants with congenital CMV infection have upregulated macrophage-

derived chemokines in serum, as compared to healthy infants [35]. Cord blood cDCs are 

equally susceptible to HCMV in vitro as adult cDCs, but they produce less IL-12, IFN-β and 

IFN-γ, while levels of IFN-α are similar [36]. In another study it was shown that neonatal 

DC function was not overly compromised, but had delay in IFN response as compared to 

adult DCs [37]. In addition, some published data claim that single nucleotide 

polymorphisms in TLR4 and TLR9 may contribute to the development of congenital HCMV 

infection [38].

2.2. NK cells

NK cells are component of innate immune system involved in control of intracellular 

pathogens and tumors, able to directly kill transformed and infected cells [39]. In addition, 

NK cells produce cytokines which stimulate other components of immune system. NK cell 

activation is dictated by repertoire of activating and inhibitory receptors and balance of their 

engagement. Fetal NK cells develop in utero, but it is assumed they go through final stage of 

differentiation and maturation postnatally [40]. Unlike in adults where majority of peripheral 

blood NK cells are terminally mature, fetal NK cells are less mature and less cytotoxic. 

Human fetal NK cells display antibody dependent cytotoxicity and respond to cytokine 

stimulation, however, they are hyporesponsive to absence of MHC I or to allogeneic cells 

[40]. This unresponsiveness correlates with number of killer-cell immunoglobulin-like (KIR) 

receptors expressed, and with sensitivity of fetal NK cells to TGF-β mediated suppression. 

Similarly, in newborn mice NK cells are kept immature due to TGF-β rich environment and 

express low levels of Ly49 receptors (functional homologs of KIR receptors) [41]. Inability 

to be activated via engagement of activating receptors and to respond to changes of MHC 

class I levels might make newborns susceptible to viral infections since those are the primary 

mechanisms by which virus infected cells trigger NK cytotoxicity.

The importance of NK cells in control of herpesvirus infections has been first observed in 

individuals lacking NK cells [42]. Similarly, NK cells are crucial in early control of MCMV 

infection [43]. Mouse activating NK cell receptor Ly49H is able to directly recognize 

MCMV-infected cells (viral protein m157) and mediate destruction of infected cells [43]. In 

addition, Ly49H+ NK cells expand upon infection with MCMV and form a pool of “memory 

NK cells” able to provide enhanced protection upon challenge [44]. Similarly"adaptive” 

NKG2C+ NK cells are often expanded in HCMV seropositive individuals and possess 
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enhanced antibody dependent cellular cytotoxicity [45]. However, the role of these 

“adaptive” NK cells as well as the ligand(s) that mediate their expansion are still unknown. 

In addition, the requirement for NKG2C in induction of “adaptive” NK cells is redundant 

as ”adaptive” NK cells are found also in individuals with NKG2C deletion [46].

The role of NK cells during congenital HCMV infection is still poorly defined. In HCMV 

seropositive children increased numbers of NKG2C+ NK cells were detected [47, 48]. In 

addition, NK cells of these children express lower levels of activating receptors NKp30 and 

NKp46 and higher levels of inhibitory LILRB1 receptor [47]. NKG2C+ NK cell expansion 

was particularly marked in children who suffered symptomatic congenital infection [48]. 

Expansion of these cells seems to be amplified if T cell response is not effective or is 

delayed, indicating that NKG2C+ NK cell expansion could reflect inadequate T cell 

response. Evidence of this linkage between T cell responses and NK cell expansion was 

provided by findings in an immunocompromised 3-month old child with severe T cell 

deficiency in which NKG2C+ NK cell expansion correlated with reduction in virus load, 

indicating protective role of these cells [49]. However, incidence of congenital HCMV 

infection appears to be the same in children with NKG2C deletion as compared to children 

that express NKG2C [48]. In addition, it is highly unlikely that NK Ly49H/m157 interaction 

plays an important role in early control of MCMV in newborn mice, as this receptor is only 

beginning to be expressed after one week after birth [50]. As mentioned earlier, NK cells are 

actively being suppressed in newborn mice by TGF-β. In the absence of TGF-β, NK cells 

mature faster in newborn mice, express Ly49H receptor earlier and can provide protection 

against MCMV [41].

Cytomegaloviruses encode variety of genes with function directed towards evasion of NK 

cell recognition [43]. However, how this affects pathogenesis of congenital infection remains 

to be determined. We have shown that NK cell evasion is critical for efficient virus 

replication in newborn mice [51, 52]. Recombinant viruses expressing NKG2D ligand 

RAE-1γ or unable to regulate expression of PVR (CD155) are efficiently controlled in 

newborn mice (Fig. 1). Since NK cells in newborns are considered to be immature and 

actively suppressed [41], these findings suggest that suppressed NK cells possess potential to 

control infection which can be manifested if the activating signal strength increases. We 

have also shown that by exploiting such mechanisms, attenuated vaccine vectors can be 

generated that provide strong and durable immunity to vectored antigen [53].

It is worth mentioning that during pregnancy the uterus contains cells known as uterine or 

decidual NK cells. In fact, ~70 % of decidual leukocytes are NK cells. These NK cells have 

lower cytotoxic ability as compared to peripheral NK cells, but produce high amounts of 

cytokines and play important role in placentation [54]. However, these cells acquire 

cytotoxic potential when exposed to HCMV infected decidual fibroblasts, thus they could be 

important in prevention of CMV transmission in early pregnancy [55].
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3. Adaptive immune responses to congenital CMV infection

3.1. T cells

T cells are major players of adaptive immune response which recognize foreign antigen in 

the context of MHC molecules presented on surface of infected cells or by professional 

antigen presenting cells. CD8+ T cells display their function through direct cytotoxicity, 

whereas CD4+ T cells differentiate into one of the subsets mediating distinct helper and 

regulatory functions. Upon encounter of foreign antigen, naïve T cells bearing specific T-cell 

receptor (TCR) activate and start rapid clonal expansion. Following the resolution of 

infection, antigen specific T cells contract, leaving behind only small portion of memory T 

cells ready to respond to challenge [56]. Compared to infections in adulthood, infections 

acquired in neonatal period lead to more restricted TCR clonotype diversity of CD8+ T cells, 

which impairs their recall capacity later in life [57]. In addition, neonatal CD8+ T cells do 

respond upon infection but preferentially turn into short lived effectors instead of long lived 

memory effector cells, resulting in narrowed CD8+ T cell memory repertoire [58]. CD4+ T 

cell response is even more affected by immature microenvironment in fetuses and newborns. 

In newborns, CD4+ T cell response is biased towards Th2 rather than Th1, additionally 

impairing CD8+ T cell mediated cytotoxicity [59].

Studies in mouse model have shown that CD8+ and CD4+ T cells play a central role in the 

resolution of acute MCMV infection in adult mice [60, 61]. Correspondingly, adoptive 

transfer of HCMV-specific T cell clones provides efficient control of infection in 

immunocompromised individuals [62–65]. Following CMV infection, T cells specific for 

certain epitopes are sustained at high frequencies and increase with age, encompassing as 

much as 10% of CD8+ T and CD4+ T cell memory reservoir. This observation was termed 

“memory inflation” and is more pronounced in CD8+ T cell compartment [62]. Latent CMV 

infection is also characterized by the appearance of virus-specific cytotoxic CD4+ T cells 

lacking expression of CD28 (CD4+CD28−) [66]. These virus-specific CD4+CD28− T cells 

show specific tissue localization and provide protection against reactivation [67, 68].

Congenital HCMV infection induces strong CD8+ T cell response which develops as early 

as 22nd week of gestation [69–73]. In the mouse model of congenital infection, CD8+ T cells 

are essential for resolution of MCMV infection, and depletion of CD8+ T cells results in 

fatal outcome [74]. Despite being able to respond, CD8+ T cells in young infants with active 

HCMV infection have more focused peptide specificity and lower peptide avidity compared 

to adults, however the peptide specificity seems to broaden over time [75]. Similarly, 

infection of newborn mice results in diversified T cell repertoire [76]. Fetal HCMV specific 

CD8+ T cells are phenotypically similar when compared to adult CD8+ T cells and are able 

to produce perforin, granzyme and IFN-γ upon stimulation, but to a lower extent than their 

adult counterparts [69, 72, 73]. The reduced polyfunctionality of both CD4+ and CD8+ T 

cells could be due to a certain level of exhaustion characterized by expression of PD1 in 

congenitally infected infants [77]. Interestingly, blockade of PD1 receptor can enhance 

neonatal T cell responses in vitro, opening the possibility for therapeutic intervention. The 

magnitude of the CD4+ T cell response in fetus correlates with the severity of CMV disease 

[78]. Unlike CD8+ T cells, HCMV specific CD4+ T cells are very low or even undetectable 
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in infants with congenital HCMV infection [79, 80]. In addition, they show reduced ability 

to produce IFN-γ and IL-2 [81]. Impaired CD4+ T cell responses in early life could interfere 

with virus clearance and enhance shedding for long periods after primary infection, as CD4+ 

T cells are important for control of MCMV in salivary glands [61].

Beside CD4+ and CD8+ T cells, γδ T cells differentiate and expand in utero upon HCMV 

infection, express IFN-γ and show antiviral activity in vitro [82]. However, the contribution 

of these cells to virus control during congenital infection remains to be determined.

3.2. Antiviral antibodies

The B cell compartment also shows distinct features in early life. Naive cells are dominant 

population of B cells upon birth, with memory B cells increasing in size during the first six 

months of life [83]. In general, newborns use a biased antibody gene repertoire with a low 

frequency of somatic mutations, which probably contributes to poor affinity maturation and 

impaired functional antibody response [84].

Maternal HCMV-specific antibodies have been proposed to decrease the risk of placental 

HCMV transmission, although the nature of the magnitude and specificity of protective 

antiviral antibodies remains poorly understood [85]. Similarly, pregnant women developing 

early high avidity antibodies appear to be at lower risk of vertical HCMV transmission [85, 

86]. The major targets of antibodies are viral glycoproteins expressed on the surface of 

virions and important for viral entry, primarily gB and gH/gL/pUL(128-131A) (pentameric 

complex) [87]. gB antibody titers are similar in transmitting and non-transmitting mothers, 

but antibodies to pentameric complex are increased in the groups of non-transmitting 

mothers, suggesting that antibodies targeting pentameric complex could be important for 

prevention of HCMV transmission [88]. Over the last decade, it has been argued that the 

pentameric complex of HCMV is targeted by very potent neutralizing antibodies, while gB 

is targeted mainly by non-neutralizing antibodies [89].

Up to now two groups of vaccines have been developed against HCMV [87]. One group 

includes live attenuated vaccines (Towne, AD169 and Towne/Toledo chimeric viruses) and 

dense bodies, while the second includes vaccines exploiting viral subunits. Laboratory 

strains Towne and AD169 have large deletion in ULb’ region, and lack pentameric complex 

as a result of in vitro passaging [87]. New vaccine approaches are incorporating pentameric 

complex as well. One such example is AD169 virion vaccine with restored pentameric 

complex [90]. Immunization with replication-defective variant of this vaccine shows 

antiviral activity against a panel of distinct clinical isolates of HCMV and elicits durable 

neutralizing antibody response in Rhesus macaques [90, 91]. In mouse model it was shown 

that gH/gL/gO complex is essential for in vivo infection, while the alternative gH/gL 

complex can compensate for the spread once the infection is established [92]. Therefore, 

targeting of gH/gL/gO complex might also be important to prevent transmission of virus.

Passive immunization was also tested for prevention of vertical transmission of CMV. 

Administration of CMV-specific hyperimmune globulin (HIG) to pregnant women initially 

appeared to lower the risk of congenital HCMV infection [93]. In addition, several case 

reports have provided evidence that timely HIG administration is able to reduce severity of 
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CMV-associated fetal anomalies [94]. However, in a double-blind placebo-controlled study 

no significant impact of administration of anti-CMV immunoglobulin was found [95].

Maternal antibodies efficiently cross the maternal-fetal interface, conferring passive 

immunity to infections. We have shown that transplacentally transferred maternal antibodies 

provide complete protection to newborn mice upon challenge with the same strain of 

MCMV [51]. Transfer of maternal IgGs is facilitated by transcytosis via the neonatal Fc 

receptor in syncytiotrophoblasts of the placenta which progressively increases in the last 

trimester of gestation [96]. However, antibodies could even facilitate transmission of CMV 

across the placental barrier, as it was shown that complex of IgG and virion can be 

transcytosed across the surface of trophoblast cells via the neonatal Fc receptor, opening the 

possibility for viral subversion of antibodies [97].

HCMV can readily reinfect pregnant women with existing HCMV immunity [19]. One of 

the explanations for this is that the reinfection of immunocompetent women occurs with new 

strain(s) of HCMV, encoding different antigenic determinants [98, 99]. In these studies it 

was observed that the newly acquired virus was also transmitted to the fetus. Therefore, 

current literature suggests that the pre-existing antibodies to HCMV can reduce the 

frequency of transmission, but they cannot prevent infection with new HCMV strain.

Low total IgM levels, but not HCMV specific IgM levels, in newborns are characteristic of 

symptomatic congenital HCMV infection [100]. CMV-specific, high-avidity IgG with 

neutralizing activity was similar in the fetal bloodstream as compared with the maternal 

circulation and viral DNA in the placenta was reduced in the presence of high-avidity IgG 

[101]. Infants with an increased numbers of B cells present at birth had a reduced incidence 

of long-term impairment, suggesting that antibodies may be critical for effective anti-HCMV 

immunity upon congenital infection [102]. In a mouse model, passive transfer of immune 

sera or monoclonal antibodies to infected newborn mice significantly reduced viral load in 

infected newborn mice [103].

4. Immune responses to CMV infection in the CNS: A double-edged sword

The developing brain is inherently more susceptible to MCMV infection as compared to 

adult brain, independently of immune system [104]. Virtually all cell types in the brain have 

some degree of susceptibility to CMV infection [105]. However, only astrocytes and 

endothelial cells support productive infection in vitro. In addition, neuronal stem cells and 

neuronal precursor cells are permissive for CMV infection, and infection in the brain results 

in reduced proliferation, altered differentiation and apoptosis of neuronal stem cells [106, 

107]. Following resolution of acute infection, latent MCMV persists in the brain of infected 

neonatal mice and can be reactivated using in-vitro culture of brain slices from persistently 

infected mice [108].

In a mouse model of congenital CMV infection, MCMV infection is characterized by 

neurodevelopmental abnormalities that recapitulate key features of the congenital HCMV 

infection [26]. The abnormalities in CNS development that are most readily observable are 

in the cerebellum, probably because that region of mouse brain undergoes extensive 
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postnatal development [26]. MCMV infection in the brain results in focal non-necrotizing 

encephalitis, with no specific cellular tropism, similar to the histopathology reported in 

studies of brain tissues from infants with congenital HCMV infection [26]. In addition, 

infection induces a strong inflammatory response in the brain characterized by the activation 

of microglia (brain resident macrophages), recruitment of activated peripheral immune cells 

and the expression of pro-inflammatory cytokines [25]. Deficits in cerebral development are 

symmetric and global and it was therefore assumed that inflammation induced by MCMV 

infection is responsible for deficits in CNS development [26]. Indeed, treatment of mice with 

anti-inflammatory drugs (glucocorticoids, corticosteroids) or with TNF-α neutralizing 

antibodies limits morphogenic abnormalities in the CNS without affecting level of virus 

replication in brain [109, 110].

MCMV infection in brain induces strong IFN-stimulated genes response, and treatment of 

primary brain cultures with type I IFNs or IFN-γ reduces number of MCMV infected cells 

[111]. Following MCMV infection, microglia cells polarize towards proinflammatory state 

and produce antiviral molecules [74]. Beside activation of microglia, MCMV infection in the 

brain is associated with infiltration of NK cells, monocytes/macrophages and T cells (Fig. 

2A). Infiltrating monocytes, together with microglia, seem to be the main source of pro-

inflammatory cytokine TNF-α, central for induction of inflammation in brain [110]. While it 

seems that monocytes do not contribute significantly to virus clearance, it seems that they 

play important role in induction of neurodevelopmental abnormalities. Depletion of NK cells 

in newborn mice infected with MCMV intracerebrally results in increased virus load in brain 

[112]. Furthermore, blockade of NO synthase similarly resulted in increased virus load in 

brain [112]. In addition, NK cells and NOS2 positive macrophages co-localized in proximity 

of infected cells in brain. In contrast, MCMV infected neurons were not surrounded with 

these immune cells, indicating active immunoevasion [112]. Production of iNOS and 

proinflammatory cytokines by activated meningeal macrophages and parenchymal microglia 

is also associated with reduced stemness of neural progenitor stem cells in MCMV infected 

newborn brains [113]. In addition, there is some evidence that miRNAs could play a role in 

control of MCMV in newborn mice as in Dicer-deficient mice, unable to generate miRNAs, 

higher levels of MCMV can be detected in the brain of newborn mice [114].

Adaptive immunity plays a central role in control of CMV in the brain. CD8+ T cells are 

essential for resolution of MCMV infection in the brain of infected newborn mice [74]. In 

addition, adoptive transfer of virus specific CD8+ T cells decreases neurodevelopmental 

changes (Jonjić et al, unpublished). Passive immunization of MCMV-infected newborn mice 

also protects against infection of brain and neurodevelopmental abnormalities [103]. In 

brains of MCMV-infected newborn mice treated with immune serum or antiviral monoclonal 

antibodies, the titer of infectious virus was reduced as well as mononuclear cell infiltrates 

and CNS pathology. Following the resolution of acute MCMV infection in brain, the virus-

specific T cells persist in the brain of infected newborn mice long-term, essentially for the 

lifetime of mice (Jonjic et al unpublished and [76]). These cells phenotypically represent 

tissue resident memory T cells (TRM cells) as they express CD69 and CD103 (Fig. 2B). 

Whether these cells contribute to control of latent virus and brain pathology during virus 

reactivation remains to be determined. However, persistence of TRM cells along with long-

term polarization of microglia suggests that MCMV infection in the brain permanently 
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changes immune homeostasis in the brain (Fig. 2B). Whether this persistent virus infection 

could contribute to development of neurodegenerative CNS disease or other chronic CNS 

disease remains to be determined. Our published data suggest that MCMV can significantly 

impact neurodegenerative diseases in CNS as we could observe that mice resistant to 

experimental autoimmune encephalitis (EAE), become sensitive to EAE upon MCMV 

infection [115]. Similarly, MCMV infection in EAE susceptible C57BL/6 mice exacerbates 

EAE symptoms, which correlates with expansion of CD4+CD28− T cells [116].

CMV encephalitis has been studied in intracranially infected adult mice as well. In this 

paragraph we list major findings in this model, however it remains to be determined to what 

extent do these findings reflect congenital disease. Upon intracerebral infection of adult 

mice, CD8+ T cells are essential for control of virus in brain via perforin [105]. CD8+ T 

cells infiltrating infected brain produce IFN-γ that polarizes microglia cells towards pro-

inflammatory phenotype but also induces PDL-1 on microglia, which in turn inhibits 

production of IL-2 and IFN-γ by T cells [117, 118]. The PD-1:PDL-1 pathway also 

promotes generation of CD8+ TRM cells [117, 119]. Treg cell depletion results in increased 

proliferation of T cells, but impaired generation of functional CD8+ TRM cells, and prolongs 

chronic reactive phenotypes of the resident glial cells [120, 121]. B cells also accumulate 

and persist in the brain of intracerebrally infected mice, and reduce virus reactivation [122]. 

Furthermore, upon intracerebral infection of adult mice IL-10 is essential for survival [105]. 

Absence of IL-10 is associated with increased IFN-γ response and reduced lymphocyte 

infiltration while the virus control in the brain was unchanged, however the mechanistic role 

of IL-10 remains elusive.

As in the case of congenital HCMV infection, perinatal MCMV infection induces hearing 

loss associated with inner ear inflammation and loss of spiral ganglia neurons [27]. 

Similarly, intracerebral inoculation of MCMV in neonatal mice results in hearing loss 

associated with loss of hair cells, even though these cells are not infected with MCMV, and 

this correlated with proinflammatory response [123].

5. Concluding remarks

HCMV infection is the most common congenital viral infection, and can result in 

neurological sequelae and mental retardation. Development of vaccine could prevent 

intrauterine transmission of HCMV and/or disease. For optimal designing of CMV vaccine, 

we also need to improve our understanding of key factors responsible for developmental of 

neurological sequelae, as only 10% are symptomatic at birth and significant proportion of 

asymptomatic has long term sequelae as well. Thus, there is an unmet need to define basic 

mechanisms of CNS infection and disease in congenital CMV infection. Such studies could 

determine critical parameters in virus entry into the CNS and mechanisms of control of 

acute and chronic CNS infection that could be more precisely targeted by prophylactic 

vaccines and antiviral agents. Lessons learned from mouse model indicate that beside 

neurodevelopmental impairment induced by infection, immune cell homeostasis in CNS is 

subject of continuous changes resulting in induction of tissue resident lymphocyte 

populations. It will be important to determine how these cells impact the pathogenesis. 
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These studies combined with better understating of immune response in fetal and neonatal 

period will likely further define the nature of optimal CMV vaccine.
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Figure 1. Viral immunoevasion compromises virus control in newborn mice
A) Efficient control of MCMV expressing NKG2D ligand RAE-1γ. WT MCMV 

downregulates RAE-1γ via m152 protein making the virus resistant to NKG2D dependent 

control in vivo. Insertion of gene encoding RAE-1γ in place of its viral inhibitor results in 

overexpression of RAE-1γ on the surface of infected cells and makes virus immunologically 

attenuated in vivo. B) MCMV inhibitor of PVR (CD155) encoded by MCMV gene m20.1 

causes retention of PVR inside of the infected cell resulting in lower cell surface expression 

and preferential engagement of NK inhibitory receptor TIGIT. Deletion of m20.1 gene 
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restores high cell surface expression of PVR and attenuates the virus in vivo via engagement 

of activating receptor DNAM-1.
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Figure 2. Immune response in the brain of MCMV-infected newborn mice
A) Kinetics of infiltrating immune cells and virus in the brain of neonatal mice infected 

intraperitoneally. Upon infiltration in brain, MCMV replicates up to day 20 after infection. 

Infection of brain results in rapid infiltration of NK cells and monocytes/macrophages (Mo/

MΦ), followed by infiltration of T cells. Upon resolution of acute infection, latent virus 

persist in brain, as well as CD8+ and CD4+ T cells. B) MCMV infection of newborn mice 

permanently changes immune cell homeostasis in brain. Microglia: Upon infection, resting 

microglia polarizes towards proinflammatory, M1, phenotype which is maintained for 

prolonged period of time. CD8+ T and CD4+ T cells: Upon infection of brain, activated 
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CD8+ T and CD4+ T cells 26 infiltrate the brain. While CD8+ T cells control the infection 

(Perforin, IFN-γ), the role of CD4+ T cells is not determined. Upon resolution of acute 

infection, CD8+ T and CD4+ T cells are maintained in the brain as tissue resident memory 

cells (TRM cells).

Brizić et al. Page 21

Microbes Infect. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Summary
	1. Pathogenesis of congenital CMV infection
	1.1. Animal models to study congenital HCMV infection

	2. Innate immune responses to congenital CMV infection
	2.1. Myeloid cells
	2.2. NK cells

	3. Adaptive immune responses to congenital CMV infection
	3.1. T cells
	3.2. Antiviral antibodies

	4. Immune responses to CMV infection in the CNS: A double-edged sword
	5. Concluding remarks
	References
	Figure 1
	Figure 2

