
Evaluation of the Efficacy of Cancer Drugs by Using
the Second Largest Eigenvalue of Metabolic Cancer
Pathways

Tomić, Draško; Skala, Karolj; Kranjčević, Lado; Pirkić, Boris; Štifter,
Sanja; Šmit, Iva

Source / Izvornik: Journal of Computer Science & Systems Biology, 2018, 11, 240 - 248

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.4172/jcsb.1000280

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:184:708181

Rights / Prava: Attribution 4.0 International / Imenovanje 4.0 međunarodna

Download date / Datum preuzimanja: 2024-11-26

Repository / Repozitorij:

Repository of the University of Rijeka, Faculty of 
Medicine - FMRI Repository

https://doi.org/10.4172/jcsb.1000280
https://urn.nsk.hr/urn:nbn:hr:184:708181
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://repository.medri.uniri.hr
https://repository.medri.uniri.hr
https://www.unirepository.svkri.uniri.hr/islandora/object/medri:3661
https://dabar.srce.hr/islandora/object/medri:3661


Volume 11(4) 240-248 (2018) - 240 

Research Article Open Access

Tomic et al., J Comput Sci Syst Biol 2018, 11:4 
DOI: 10.4172/jcsb.1000280

Research Article Open Access

Journal of 

Computer Science & Systems BiologyJo
ur

na
l o

f C
om

pu
ter Science & System

s Biology

ISSN: 0974-7230

J Comput Sci Syst Biol, an open access journal  
ISSN: 0974-7231

*Corresponding author: Dr. Drasko Tomic, Department of Informatics and Center 
for Advanced Computing and Simulation, University of Rijeka, Radmile Matejcic
2, 51000 Rijeka, Croatia, Tel: +385915778380; E mail: drasko.tomic@uniri.hr (or) 
drasko.tomic@yahoo.com

Received June 19, 2018; Accepted July 03, 2018; Published July 16, 2018

Citation: Tomic D, Skala K, Kranjcevic L, Pirkic B, Stifter S, et al. (2018) Evaluation 
of the Efficacy of Cancer Drugs by Using the Second Largest Eigenvalue of 
Metabolic Cancer Pathways. J Comput Sci Syst Biol 11: 240-248. doi:10.4172/
jcsb.1000280

Copyright: © 2018 Tomic D, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
Cancer is a system with thousands of genes and proteins with the complex interactions between them. By 

examining the cancer drug activity on only part of this system, we do not know in which direction the whole system 
will evolve, and whether therapy will be useful or not. This is one of the main reasons why cancer therapies still do 
not meet our expectations. In order to find more effective anticancer therapies, it is important to consider the impact 
of drugs on the entire cancer system.

The second largest eigenvalue plays a key role in complex systems optimization. The algorithms minimizing 
the second largest eigenvalue of graphs have been already used to speed up processes in computer networks and 
differential cryptanalysis. Based on the aforementioned, it could be assumed that maximizing the second highest 
eigenvalue could slow down the processes in metabolic networks that describe processes in cancer. To verify our 
hypothesis, we have built the in silico model of cancer Vini and run it on a supercomputer. Vini transformed the 
metabolic pathways of cancer from Kyoto Encyclopedia of Genes and Genomes into the binding energy matrices 
representing binding energies between the genes and proteins on one side and drugs being investigated on another 
side. Some matrix elements also represent interactions between proteins and genes. Then, it calculated the second 
largest eigenvalues of these matrices.

In the end, we compared the calculated results against the existing in vitro and in vivo experimental results. The 
calculated efficacy of cancer drugs was confirmed in 79.31% of in vivo experimental cases, and in 92.30% of in vitro 
experimental cases.

These results show that the second largest eigenvalue plays an important role in metabolic cancer networks and 
that the Vini model can be an effective aid in finding more effective cancer therapies.
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Introduction
Despite the major improvements in the effectiveness of cancer 

therapy over the last decades, cancer remains one of the leading causes 
of mortality in the world. Cancer was responsible for 8.8 million deaths 
worldwide in 2012 [1] and according to World Health Organization 
cancer fact sheets, with approximately 14 million new cases every year, 
the second leading cause of death globally. In addition, an increase in 
the number of new cases from 14.1 million in 2012 to 21.6 million in 
2030 is expected. According to the US National Cancer Institute, a 
5-year survival rates for patients with metastatic stage IV colon cancer, 
rectal cancer, kidney and pancreatic cancer, small cell lung cancer
(SCLC), non-small cell lung cancer (NSCLC) and hepatocellular
carcinoma are 11, 12, 8, 1, 2, 1 and 3 percent respectively, giving an
average 5-year survival rate of 5.42 percent. This means that out of
1,000 patients diagnosed with one of these types of cancer in stage IV,
and after the period of 5 years, about five of them will still be alive.
Even if we take into account that some of these patients will die from
some other diseases not directly related to cancer, the five-year average 
survival rate is weak and unsatisfactory. However, with the emergence
of supercomputers, we can analyze in more depth the natural laws of life 
on Earth, including the metabolic processes regarding cancer. We can
analyze data obtained from high-throughput genomic and proteomic
tools, solve systems with millions of linear equations, and analyze
graphs that represent thousands of genes and proteins. The better we

understand life, the more chances we have of finding more effective 
cancer therapies. Efficient processing of huge amount of data condensed 
in human genome, with the goal to find the optimal cancer therapy, lies 
at the heart of our in silico model of cancer Vini. The Vini model was 
developed as a parallel application for supercomputers. The need for 
supercomputing power lies in the complexity of cancer disease, where 
thousands of molecules are organized in multi-molecular complexes 
and interact with one another. In addition, these complexes interact 
with one another, leading to exponentially increased complexity [2].

There are several approaches that help us understand the 
complexity of cancer and the processes from one genetically mutated 
cell to the last metastatic cancer phase. The chaos theory, which is 
the theory of highly non-linear dynamical systems, is trying to find 
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the laws to model this complexity [3], either by setting systems of 
nonlinear equations describing cancer behavior or by investigating 
cancer mechanisms by means of strange attractors [4]. In contrary 
to the chaos theory, omics approaches gather huge amounts of data 
generated by changes of all genes and proteins, trying to find functional 
entities within the complex cancer organization [5]. System biology is 
different from the omics approach and from the chaos theory. It tries 
to disclose the molecular structures of individual genes and proteins, 
and then integrate them into larger information structures [6]. These 
larger information structures are organized into databases focusing on 
cancer-related genes such as COSMIC [7], or focusing on cancer drugs 
such as Cancer Cell Line Encyclopedia [8]. They are analyzed using 
methods based on known pathways such as PathScan [9] and Netbox 
[10], or using networks describing metabolic pathways such as those 
from Kyoto Encyclopedia of Genes and Genomes (KEGG) database 
[11], and MetaCyc [12], which contain proteins, chemical compounds, 
and relationships between these entities.

The Vini model approaches cancer in the spirit of system biology, 
and is oriented towards analysis of metabolic pathways. It was tested 
with the data from KEGG database, which, along with Reactome [13], 
is considered the most reliable source of experimentally confirmed 
metabolic reactions. Systematic analysis [14] revealed 15161 
compounds in KEGG, 14621 of them with structure, and with the mean 
associated pathway per compound of 0.67. Since Vini is an in silico 
model of cancer [15], it only analyzes cancer pathways, in this case 
KEGG cancer pathways. They contain more than 600 compounds of 
which about 400 have a structure. KEGG cancer pathways are network 
diagrams describing the metabolism of 17 specific cancer types: gastric 
cancer, colorectal cancer, pancreatic cancer, hepatocellular carcinoma, 
endometrial cancer, breast cancer, prostate cancer, thyroid cancer, 
bladder cancer, acute and chronic myeloid leukemia, melanoma, basal 
cell carcinoma, small cell lung cancer, non-small cell lung cancer, 
renal cell carcinoma, and glioma. There is additional cancer pathway 
providing the general overview of cancer metabolism, and besides 
some of the main hallmarks of cancers [16] like genomic instability, 

proliferation, insensitivity to anti-growth signals, evading apoptosis 
sustained angiogenesis and tissue invasion and metastasis, it describes 
additional cancer mechanisms like mitochondrion, immortality, 
resistance to chemotherapy, block of differentiation, microtubule, 
fumarate to S-malate conversion, and genomic damage. Typical KEGG 
cancer pathway elements are rectangles representing genes, circles 
representing chemical compounds and glycans, and lines representing 
reactions and interactions. Specific boxes may exist providing 
additional information (Figure 1).

Besides homo sapiens cancer pathways, KEGG cancer pathways are 
available for more than fifty other species, e.g., Canis familiaris, Felix 
domesticus, Mus musculus, Gorilla gorilla etc.

There are various ways of how in silico models of cancer 
complement in vitro and in vivo experiments, thus helping us to find 
better and more effective cancer therapies and to set better diagnosis. 
These models analyze cancer processes either at higher scale, like 
tumor extracellular matrix [17], or at the molecular level [18]. The 
cancer analysis can be performed with statistically based graphing 
models developed on genomic [19], transcriptional [20] and trajectory 
levels [21], statistically derived network models [22] trying to detect 
the basic distribution of probability from data samples and metabolic 
models that use ordinary [23] or partial differential equations [24]. A 
comprehensive overview of the various statistical and mathematical 
methods used in various in silico models of cancer can be found [25].

Although in silico models of cancer are already valuable tools 
for the detection of new drugs [26] and the establishment of more 
precise cancer diagnoses [27], they are still not accurate enough to be 
implemented in clinical practice. Increasing the in silico model accuracy 
is one of the most important goals, and this can be accomplished by 
using larger and more complete datasets, by personalized approach 
to each cancer patient, and by using well developed mathematical 
algorithms which solve large optimization problems. Optimal solution 
means more precise diagnosis and more effective therapy.

Some actions in this direction have already been made. Non-convex 

Figure 1: An example of KEGG metabolic pathway of cancer (hsa05200). Green rectangles hold gene and protein names, lines between nodes represent 
interactions, while gray rectangles annotate main cancer mechanisms.
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By multiplying the matrix A with the structure pdb(l), original 
matrix is transformed to the matrix A’:
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Let’s define operator V(A’) acting on the main-diagonal elements 
of A’:
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As the next, let’s node 1 connects to nodes 2 and 3 via added 
edges with weights rel (12) and rel(13). In addition, let’s nodes 2 and 3 
connect to node 4 via edges with weights rel(24) and rel(34) (Figure 3).

Then, the adjacency matrix A’’ of this graph will be:

V(pdb(l)pdb(r1)) rel(12) rel(13) 0
0 V(pdb(l)pdb(r2)) 0 rel(24)

A ''
0 0 V(pdb(l)pdb(r3)) rel(34)
0 0 0 V(pdb(l)pdb(r4))
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As the next, assume that nodes are genes in a certain KEGG cancer 
pathway, and edges are interactions between them. pdb(r1) to pdb(r4) 
are molecular structure files of these genes in pdb format from Protein 
Data Bank [35]. pdb(l) is molecular structure file of cancer drug in pdb 
format. rel(12), rel(13), rel(2,4) and rel(3,4) are interactions between 
genes. Operator V is a program for molecular docking computing the 
binding energies e1, e2, e3, e4 between genes and chemical compound. 
Then, matrix A’’ transforms into a new matrix. We call this matrix 
binding energy matrix, abbreviated BE. For this simple example, the 
BE matrix will be:
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and convex optimization [28] were applied in liver cancer radiotherapy 
with a significant improvement in tumor reduction [29]. Semidefinite 
programming [30] has helped to classify patients with breast cancer on 
those with benign and malignant tumors with a high accuracy of 95.5 
percent [31]. Correlation of the eigenvalues of networks representing 
normal and carcinogenic breast tissue at the proteomic level was 
investigated [32].

Enabling more effective cancer therapies by using eigenvalue 
optimization [33] is the main goal of this study and lies at the heart of 
the in silico model of cancer Vini. It is to be expected that by increasing 
the second largest eigenvalue (in further text abbreviated SLEM) of the 
network describing the metabolic pathway of cancer the carcinogenesis 
process will slow down and perhaps even completely stop, which will 
be discussed in the next section. Since the algorithm for maximizing 
the SLEM of a certain network which describes the metabolic pathway 
of cancer is unknown, Vini uses supercomputing power and seeks for 
the solution with the highest SLEM value in the space of all available 
solutions. This space is defined as a set of matrices whose elements 
represent the binding energies between the genes and proteins defined 
by the metabolic pathway of cancer and drugs whose efficacy is being 
investigated.

The Model
Network diagrams are graphical presentations of networks. 

Network theory is a part of graph theory, and the network can be 
viewed as a graph in which nodes have attributes [34]. In that sense, 
KEGG network diagrams are graphs with nodes representing the 
names of genes, proteins, and compounds. Besides, KEGG networks 
describe the various types of relationships between genes, proteins, 
and compounds. Therefore they can be also viewed as weighted and 
directed graphs, that is, graphs that have some values associated with 
directed edges. In computer science and other applications, these 
values are usually real numbers, but may also be complex numbers, 
lists, structures, and so on. We may here recall that in the graph theory, 
a loop is defined as an edge that connects the node to itself. This allows 
us to define fully weighted graphs, with values assigned both to nodes 
and edges.

Definition 1

Fully weighted graphs are graphs with weighted edges and weighted 
loops. Edges and loops in fully weighted graphs may have directions. 
This allows us to define fully weighted and directed graphs.

Definition 2

Fully weighted and directed graphs are graphs with weighted and 
directed edges and weighted and directed loops.

In case of metabolic networks, fully weighted and directed 
graphs allow allocating molecular structures of genes, proteins and 
compounds to graph nodes, and relationships to graph edges. Matrices 
representing such graphs can be constructed, and algebraic operations 
performed on these matrices. For example, consider the fully weighted 
and directed graph, each node with one loop. Weights are molecular 
structures pdb(r1), pdb(r2), pdb(r3) and pdb(r4), associated to loops 
on nodes 1, 2, 3 and 4, as shown the next (Figure 2).

Adjacency matrices are used for the algebraic representation of 
graphs. The adjacency matrix A for this graph is: Figure 2: The graph with 4 nodes and 4 loops. As weights are associated with 

the loops which have directions, this graph is fully weighted and directed.
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representing genes, proteins, RNAs, chemical compounds, glycans 
and chemical reactions. Based on additional information on chemical 
compounds whose anti-cancer effectiveness needs to be estimated. Vini 
transforms cancer pathways into binding energy matrices and after 
that calculates SLEM values of these matrices. Binding energy matrices 
describe the interaction of cancer with chemical compounds, such as 
with approved cancer drugs, anticancer herbal substances, vitamins, 
dietary supplements, opioids, anti-inflammatory and other drugs 
sometimes accompanying the cancer therapy. We assumed that the 
SLEM values of these matrices are related to the rate of development 
of the cancer processes defined by these metabolic pathways, with 
the higher SLEM value expressing the slower rate and vice versa. 
In order to check our assumption, we let Vini to process 17 KEGG 
cancer pathways against the number of chemical compounds, to create 
binding energy matrices, and finally to calculate their SLEM values. The 
calculation was performed on 600 Intel core processors and lasted for 
about 160 hours.

During this time Vini created 3417 binding energy matrices 
representing interactions between 17 metabolic cancer pathways 
and 201 chemical compounds, among them 132 cancer drugs, 15 
vitamins (A, C, D2, D3, E, K1, K2, B1, B2, B3, B5, B6, B9, B12, 
aminobensoic_acid), 11 Anticancer herbal compounds (artemisinin, 
beta-glucan, beta-lapachone, lapachol, curcumin, cannabidiol, 
tetrahydrocannabinol, epigallocatechin-gallate, genistein, hirsutine, 
resveratrol), 8 supplements (chondroitin-sulfate, D-methionine, 
decarenone, glucosamine, glutathione, hyaluronic acid, omega-3-fatty-
acid, soy-lecithin), 7 Antibiotic compounds (amoxicillin, clavulanate, 
norfloxacin, ciprofloxacin, enrofloxacin, sulfamethoxazole, 
trimethoprim), 4 NSAID drugs (meloxicam, carprofen, firocoxib, 
aspirin), two opioids (morphine, oxycodone), 2 drugs for inflammatory 
bowel disease (sulfasalazine, mesalazine) and 3 other drugs (diazepam, 
edetic acid, ranitidine). As an example, the following two tables list the 
SLEM values of 60 cancer drugs and 69 other chemical compounds 
computed against the KEGG prostate cancer pathway (Tables 1 and 2).

Besides, Table S1 in the supplementary information lists the 
SLEM values for all KEGG cancer pathways and chemical compounds 
investigated.

Evaluation of the model was performed by comparing the SLEM 
values with the cancer drugs efficiency results obtained from the 
existing in vivo and in vitro experiments. The results of the evaluation 
against in vivo experimental results are given in Table 3.

The fields in the table for cancer drugs with no in vivo reference 
are labeled in yellow. The numbers in the table fields are references 
[43-99] of the relevant studies. The probability that Vini will correctly 
predict the efficiency of a cancer drug against a specific type of cancer 
is defined as the ratio of the number of green fields to the sum of green 
and violet fields and is 0.793. The abbreviations: PTX- paclitaxel, DTX 
- docetaxel, VNB- vinorelbine tartrate, TRP- triptorelin pamoate, EVE- 
everolimus, EBU- eribulin mesylate, IDA- idarubicin hydrochloride,
MDT- midostaurin, TES- temsirolimus, RCC- renal cell carcinoma,
HCC-hepatocellular carcinoma, BCC- basal cell carcinoma, CML- 
chronic myeloid leukemia, AML- acute myeloid leukemia, SCLC-
small cell lung cancer, non-small cell lung cancer. The short description 
of each study, together with the results and conclusion from the study,
is in Table S2 of supplementary information.

The accuracy of the Vini model in predicting in vitro efficacy of 
cancer drugs was estimated by comparing the SLEM values with 
data from the NCI-60 database. This database contains data about 

BE matrices are of the much bigger size than the matrix in 
this example. Their size depends on cancer type and is in the range 
from several thousand to several tens of thousands of elements, with 
dozens of interactions between them. Consequently, screening for the 
most efficient drug candidates against the cancer is computationally 
expensive. It consists of two stages. In the first stage, Vini downloaded 
KEGG cancer pathway structure from Genome Net, a Japanese network 
of database and computational services for genome research and related 
research areas in biomedical sciences. The structure is then parsed for 
genes, proteins, compounds and relation entries. Then, the adjacency 
matrix is created according to the procedure already explained through 
(1)-(5). V operator is Auto dock Vina program for molecular docking 
[36], which calculates e1, e2, . . . , en binding energy levels between 
genes and drugs. For each drug, one BE matrix is created, and the 
process is repeated until all available drugs are screened. In the second 
stage, second largest eigenvalues of these matrices are computed.

Our thesis is that the drug with the highest second largest 
eigenvalue has the highest anticancer activity. There are several reasons 
for such thinking. In 1973, Fiedler [37] and Donath and Hoffmann [38] 
pointed to the possibility of using eigenvalues for graph partitioning. 
According to Tomic [39], the SLEM was reported as the measure of 
the execution speed of parallel processing systems. Boyd et al. [40] 
developed the algorithm for minimizing the SLEM in stochastic 
networks. With some modifications, this algorithm was successfully 
implemented for the optimization of High Performance Linpack 
benchmark [41] on supercomputer [42]. Consequently, since a lower 
SLEM value ensures the faster run in computer networks, it is expected 
that the cancer drugs with higher SLEM values will more effectively 
slow down carcinogenesis in cancer networks.

Vini is written in Linux shell scripting language and Python, and 
uses Auto dock Vina for computing molecular binding energies. As 
the calculation of binding energies and the creation of binding energy 
matrices is computationally intensive, Vini is targeted to run on the 
supercomputer. It is an open source code and is available from the 
authors of this research on the request. However, the usage of metabolic 
cancer pathways generally requires the proper licensing from the 
providers of these pathways.

Results
KEGG cancer pathways are network diagrams with various entities 

Figure 3: The fully weighted and directed graph with 4 nodes, 4 loops, and 4 
newly added edges. Edges from node 1 are directed to nodes 2 and 3, while 
edges from nodes 2 and 3 are directed to node 4.
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in vitro anti-cancer efficacy for more than 100,000 compounds and 
50,000 natural products extracts against 60 types of tumor cells, which 
represent nine types of cancer tissues [100]. In the NCI-60 database, 
the efficacy of a cancer drug is defined as the logarithm of a drug 
concentration which by 50% inhibits cancer cell division. The drug 
with the highest SLEM value for the specific KEGG cancer pathways 
was validated in the NCI-60 database considering its efficacy against 
the corresponding tumor cell type. If that drug is not found in the NCI-
60 database, the search is repeated for the drug with the next highest 
SLEM value and so on, until the five drugs with the highest SLEM 
values were found. Similarly, the drug with the lowest SLEM value for 
the specific KEGG cancer pathway is searched in the NCI-60 database 
against the same type of cancer modeled with that specific pathway. If 
this drug is not found in the NCI-60 database, the search is repeated 
for the drug with the next lowest SLEM value and so on, until the five 
drugs with the lowest SLEM values were found. The search is repeated 
for 9 KEGG cancer pathways for which NCI-60 has data on the efficacy 
of cancer drugs against corresponding cancer cells, including cells of 
colon cancer, renal cell carcinoma, glioma, prostate cancer, melanoma, 
chronic myeloid leukemia, acute myeloid leukemia, non-small cell 

lung cancer and breast cancer. For example, in vitro activity of five 
cancer drugs with the highest SLEM values and five cancer drugs with 
the highest SLEM values against the KEGG prostate cancer pathway is 
shown in Table 4.

Besides, Table S3 in the supplementary information lists the drugs 
with the highest and the lowest SLEM values and their logarithmic 
(-log4) concentrations that inhibit cell division by 50% for all 9 cancer 
tissues in NCI-60 database.

The probability that Vini will accurately identify the drugs 
according to their in vitro activity depends on the cancer type and is 
shown in Table 5.

Conclusions
In silico model of cancer Vini was developed on the hypothesis 

that there is a correlation between the anti-cancer activity of chemical 
compounds and SLEM values of binding energy matrices. Thereby, 
binding energy matrices represent binding energies between the genes 
and proteins on one side and drugs being investigated on another side.

Cancer drug SLEM  Cancer drug SLEM  Cancer drug SLEM
docetaxel 12.8 Epirubicin hydrochloride 10.3 Estradiolvalerate 9.7

triptorelin pamoate 12.7 Degarelix 10.2 Etoposide phosphate 9.7
paclitaxel 12.5 Sonidegib phosphate 10.2 Testosterone enanthate 9.7

vinorelbine tartrate 12.1 Bosutinib hydrate 10.2 Sorafenib tosylate 9.7
everolimus 12 Daunorubicin hydrochloride 10.2 Crizotinib 9.6

eribulin mesylate 11.6 Idarubicin hydrochloride 10.2 Lapatinib ditosylate 9.6
midostaurin 11.3 Exemestane 10.1 Palbociclib 9.6

vincristine sulfate 11.2 Cabazitaxel acetonate 10.1 Ibrutinib 9.6
Irinotecan hydrochloride 11.2 prednisolone 10.1 Sorafenib 9.6

temsirolimus 11.1 Valrubicin 10 Pazopanib hydrochloride 9.6
Megestrol acetate 11 Imatinib mesylate 10 Regorafenib hydrate 9.5

Abiraterone acetate 10.8 Enasidenib mesylate 10 Topotecan hydrochloride 9.5
Ixabepilone 10.8 Trametinib dimethyl_sulfoxide 10 Sorafenib tosylate 9.4

Cabozantinib s_malate 10.6 Abemaciclib 9.9 Axitinib 9.4
Nilotinib hydrochloride 

hydrate 10.6 Alectinib hydrochloride 9.9 Bicalutamide 9.4

Olaparib 10.6 Ponatinib hydrochloride 9.8 Tamibarotene 9.4
Dabrafenib mesylate 10.5 Ceritinib 9.8 Enzalutamide 9.3

Neratinib maleate 10.4 Goserelin acetate 9.8 Cobimetinib fumarate 9.3
Goserelin acetate 10.3 Bexarotene 9.8 Dasatinib 9.3

Doxorubicin hydrochloride 10.3 Etoposide 9.8 Brigatinib 9.3

Table 1: 60 anticancer drugs with the highest SLEM values against the KEGG prostate cancer pathway.

Vitamin SLEM Anticancer herbal compounds SLEM Nutraceuticals SLEM
A 7.5 artemisinin 9.1 chondroitin sulfate 8.7
C 5.9 beta glucan 8.4 D_methionine 4.3
B1 6.5 beta lapachone 8.7 decarenone 8.2
B2 9,10 cannabidiol 9.2 glucosamine 5.9
B6 5.6 tetrahydrocannabinol 9 glutathione 7
B9 8.5 curcumin 7.6 hyaluronic acid 10

B12 11.8 epigallocatechin-gallate 10.6 omega_3_fatty_acid 6.9
D2 9.4 genistein 8.4 soy lecithin 6.5
D3 9.5 hirsutine 8.2
E 8.5 lapachol 8.4

K1 8.3 resveratrol 7.7
K2 9.4

aminobensoic acid 5.6

Table 2: The SLEM values for vitamins, anticancer herbal compounds, and supplements. These eigenvalues were calculated against the KEGG metabolic pathway 
representing the prostate cancer.
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To confirm this, we used Vini to create 3417 matrices that describe 
the interactions of 132 cancer drugs and 69 other chemical compounds 
with 17 KEGG cancer pathways and to calculate their SLEM values.

Calculated SLEM values were compared with the logarithmic 
concentration values of cancer drugs in NCI-60 database that inhibit 
the cancer cells division by 50%, and with the results of relevant in vivo 
experiments. The correlation of the SLEM values with the data from the 
NCI-60 base was found in 92.30% of cases, while the correlation with 
the data from in vivo experiments was found in 79.31% of cases.

The difference in predicting in vivo and in vitro drug efficacy is 
inherent to the model. Vini acts at the genomic and proteomic level 
defined by the metabolic pathways of cancer. Therefore, it does not take 
into the account effects of tumor stroma [101], extracellular matrix 
[102], pharmacokinetics [103], and toxicity [104] of cancer drugs.

Other well-developed computer models like Swiss ADME [105] 

can be used to bridge this gap. Besides, as Vini calculates the binding 
energies between a certain drug and only one domain of each gene in 
metabolic pathways, there is a certain loss of information. In addition, 
Auto dock Vina performs well molecular docking calculations of 
drugs with molar masses of up to several hundred Daltons but is not 
suitable for the drugs with higher molar masses. Therefore, further 
improvement in the accuracy and the functionality of Vini can be 
obtained by letting Vini compute the binding energies of drugs across 
several domains of genes, and by integrating additional molecular 
docking tools able to work with large molecule drugs [106]. Besides 
KEGG, other metabolic pathway databases like Reactome [107] can be 
used. Thus there is a chance to further increase the functionality of Vini 
and accuracy of drug efficacy prediction by combining two or more 
metabolic pathways.

Vini already points out that some drugs not approved for certain 
types of cancer are effective but in vivo and in vitro experiments 

Table 3: The list of cancer drugs with the five largest SLEM values for the specific KEGG cancer pathways. The only exception to this “rule five” is in case of melanoma, 
where eribulin on the 5th and vinorelbine on the 6th place has the same SLEM value. If the efficiency of a drug is confirmed by the existing in vivo testing, the appropriate 
field of the table is labeled green.  Otherwise it is labeled purple. The fields in the table for cancer drugs with no in vivo reference are labeled in yellow. The numbers in the 
table fields are references [43-99] of the relevant studies.  The probability that Vini will correctly predict the efficiency of a cancer drug against a specific type of cancer is 
defined as the ratio of the number of green fields to the sum of green and violet fields and is 0.793. The abbreviations: PTX-paclitaxel,  DTX-docetaxel, VNB-vinorelbine 
tartrate, TRP-triptorelin pamoate, EVE-everolimus, EBU-eribulin mesylate, IDA-idarubicin hydrochloride, MDT-midostaurin, TES-temsirolimus, RCC-renal cell carcinoma, 
HCC-hepatocellular carcinoma, BCC-basal cell carcinoma, CML-chronic myeloid leukemia, AML-acute myeloid leukemia, SCLC-small cell lung cancer, non-small cell lung 
cancer. The short description of each study, together with the results and conclusion from the study, is in the S2 table of supplementary information.

Prostate cancer SLEM PC-3 DU-145
docetaxel 12.8 -8 -8
paclitaxel 12.5 -8.032 -7.667

triptorelin pamoate 12.2 NA NA
vinorelbine tartrate 12.1 -8 -8

everolimus 12 -8 -7.02
thioguanine 5.4 -5.475 -6.269
fluorouracil 5.3 -4.352 -5.547
dacarbazine 5.3 -4.016 -4.143

thiotepa 4.7 NA NA
Mechlorethamine hydrochloride 4.2 -5.182 -5.783

Table 4: The NCI-60 logarithmic (-log4) concentration values of some cancer drugs required for 50% inhibition of PC-3 and DU-145 prostate cancer cell division. Listed 
are the five drugs with the highest SLEM values and the five drugs with the lowest SLEM values. All five cancer drugs with the highest SLEM values belong to a group of 
drugs that express the high inhibition of cancer cells PC-3 and DU-145, while all five drugs with the lowest SLEM values express the low inhibition of cancer cells PC-3 and 
DU-145. There is no case that the value of the concentration of any drug in the group of those with the highest SLEM values is greater than or equal to the concentration 
of any drug from the group with the lowest SLEM values, and vice versa.  It follows that Vini 100% accurately identifies cancer drugs with the highest and lowest in vitro 
activity against PC-3 and DU-145 prostate cancer cells.

KEGG cancer pathway PTX DTX VNB TRP EVE EBU IDA MDT TES
Colorectal  cancer 43 44 45 46

RCC 47 47 48 49 50
HCC 52 51 53

Endometrial cancer 55 54 57 56
Glioma 59 58 61 60

Prostate cancer 63 62 65 64 66
Thyroid  cancer 69 68 67

BCC 70
Melanoma 71 72 75 73 74

Bladder  cancer 76 77 78
CML 79
AML 80 81 82

SCLC 84 83 87 85 86
NSCLC 88 89 91 90

Breast cancer 95 93 92 94
Gastric cancer 98 97 96 99

Legend: active inactive no reference
numbers: trial references
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are missing to confirm this. A good example for this is triptorelin 
pamoate, approved only for the therapy of prostate cancer. However, 
Vini declares it as effective in colorectal cancer, melanoma, and 
acute myeloid leukemia. There are also other chemical compounds 
calculated by Vini as effective against various cancer types, like several 
herbal compounds and high molecular weight hyaluronic acid [108]. 
Additionally, these substances have relatively low toxicity, and there 
is a chance they may work in synergy with the approved cancer drugs. 
That reinforces our opinion that Vini is an effective aid in the process 
of screening new drug candidates for cancer therapy.

Likewise, it’s presumable that the results are applicable also in 
veterinary oncology, which is to be more profoundly investigated in 
the future.

One of the major problems in cancer therapy is frequent 
appearance of chemoresistence in case of chemotherapy with only one 
drug. That is why our future research will focus on the evaluation of the 
effectiveness of combinations of two or more drugs. Another problem 
is the resistance of some types of cancer to radiotherapy. Therefore, in 
our future research, a special emphasis will be put on extending the 
functionality of the Vini model in this direction.
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