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Abstract
The purpose of this study was to examine changes in the polar fatty acid (PL FAs) profile in mice 
spleen after a one-third partial hepatectomy (PH) and a diet enriched with olive and corn oil. 

Fatty acids (FAs) were determined by gas chromatography (GC) after previous fractionation of 
polar fatty acids by solid-phase extraction using an aminopropyl (NH2) column. The data were 
analysed using the nonparametric Kruskal-Wallis test and linear regression analysis.

A diet supplemented with corn oil (FCO) increased palmitic acid, while an olive oil-enriched diet 
(FOO) increased arachidonic and docosahexaenoic acid in the spleen PL FAs during PHx. 

Based on the FAs profile of PL FAs in the spleen during PHx, in the FCO diet group stearoyl CoA 
desaturase (SCD1) activity showed a positive correlation (R=0.58) with 18:2n-6 as the major FAs 
in corn oil, while in the FOO group, SCD1 and elongase-6 (Elovl6) activities positively correlated 
(R=0.84, R=0.55, respectively) with 18:1n-9 as the major FAs in olive oil.

To conclude, despite the beneficial effect of diet, lipid homeostasis in the spleen was regulated more 
by PHx than the n-6 and n-9 diet.
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Abbreviations
ACL: Acyl Chain Length Index; ALA: Alpha-Linolenic Acid, 18:3n-3; AA: Arachidonic Acid, 

20:4n-6; D5D (FADS1): Desaturase-5 or Fatty Acid Desaturase 1; D6D (FADS2): Desaturase-6 
or Fatty Acid Desaturase 2; D9C16: Delta-9-desaturase of the C16; D9C18: Delta-9-desaturase 
of the C18; DBI: Double Bond Index; DGLA: Dihomo-Gamma-Linolenic Acid, 20:3n-6; DHA: 
Docosahexaenoic Acid, 22:6n-3; EGF: Epidermal Growth Factor; Elovl5: Elongase-5; Elovl6: 
Elongase-6; EPA: Eicosapentaenoic Acid, 20:5n-3; EVOO: Extra Virgin Olive Oil; FAMEs: Fatty 
Acid Methyl Esters; FAs: Fatty Acids; FASN: Fatty Acid Synthase; FCO: Standard Diet Enriched 
with Corn Oil; FOO: Standard Diet Enriched with Olive Oil; GLA: Gamma-linolenicacid, 18:3n-
6; HGF: Hepatocyte Growth Factor; IL-6: Interleukin-6 Cytokine; LN: Linoleic Acid, 18:2n-6; 
MUFA: Monounsaturated Fatty Acids; n-3 FAs: Fatty Acids n-3 Series; n-3 PL FAs: Fatty Acids 
n-3 Series in Polar Lipids; n-3 PUFAs: Polyunsaturated Fatty Acids n-3 Series; n-6 FAs: Fatty Acids 
n-6 Series; n-6 PL FAs: Fatty Acids n-6 Seriesin Polar Lipids; n-6 PUFAs: Polyunsaturated Fatty 
Acids n-6 Series; n-9 FAs: Fatty Acids n-9 Series; n-9 PL FAs: Fatty Acids n-9 Seriesin Polar Lipids; 
NK: Natural Killer; OA: Oleic Acid, 18:1n-9; PHx: Partial Hepatectomy; PI: Peroxidizability Index; 
PL FAs: Polar Lipid Fatty Acids; PL: Polar Lipid Or Phospholipids; PUFA: Polyunsaturated Fatty 
Acids; SCD1: Stearoyl-CoA Desaturase; SFA: Saturated Fatty Acids; TGF-α: Transforming Growth 
Factor-α; TGF-β1: Transforming Growth Factor-β1; TNF-α: Tumour Necrosis Factor-α.

Introduction
The liver and spleen are closely linked via the portal vein system. The spleen probably influences 

the hepatic immune microenvironment by cell migration or the secretion of splenic soluble factors 
[1]. Select studies reported that the spleen plays an inhibitory role in liver regeneration through 
spleen-derived transforming growth factor-β1 (TGF-β1) that inhibited the growth of hepatocytes 
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in animals [2,3] and in this way, promoted tissue fibrosis in the 
liver [4,5]. Although the liver has a great regenerative capacity, it 
is reduced during liver damage or resection and causes changes in 
tissue architecture [6]. Liver regeneration induces the proliferation 
of the main non-parenchymal cells of the liver [7]. In this process are 
involved many growth factors and cytokines such as the hepatocyte 
growth factor (HGF), the tumour necrosis factor-α (TNF-α), 
interleukin-6 (IL-6), the transforming growth factor-α (TGF-α), and 
the epidermal growth factor (EGF) [8]. During liver injury, several 
other organs, such as the kidney, the lung and the spleen produce 
HGF in response to HGF-inducers [5]. These changes alter the cell 
membrane and its lipid composition, and also modify the fatty acid 
metabolism.

The membrane proliferation implies major changes in the 
metabolism, traffic and re-modelling of intracellular membranes and 
their lipid constituents such as phospholipids (PLs). The PL fatty acid 
composition contributes significantly to the physical and biochemical 
properties of membranes. Their changes have a wide range of effects 
regarding the integrity of cellular membranes, fluidity, the activity 
of membrane enzymes and the affinity of growth factor receptors. 
Membrane PLs are in a constant process of degradation/resynthesis, 
and theamount of each PLs depends on the cell type and has 
characteristic fatty acids (FAs) [9,10]. The biosynthesis of unsaturated 
fatty acids is presented in Figure 1.

Dietary fats affect several roles in the body; as a source of energy 
and structural components of cells, for cell growth and differentiation 
and in the regulation of gene expression of lipid, and for carbohydrate 
and protein metabolism [11,12]. The seroles attributed to FAs and their 
metabolites, which act directly on specific transcription factors and 
regulate gene transcription, and indirectly on gene expression through 
their effects on specific enzyme-mediated pathways or pathways 

that involve changes in membrane lipid/lipid raft composition 
[13,14]. Several studies reported their effect on immuneresponse and 
immunomodulation [15-17] and changes in gutmicrobiota control 
the occurrence of metabolic diseases [18-20]. PUFAs and MUFAs act 
on immuno-modulation in lymphocyte proliferation [21], production 
of cytokines [22], modification of cell surface molecules [23], change 
phagocytic activity [24,25], and alter natural killer (NK) cell activity 
[26]. Fatty acids of n-6 series are immunosuppressors, while n-9 FAs 
and n-3 FAs are immunomodulators [25-28].

As reported previously, a partial hepatectomy (PHx) induced the 
changes in liver PLs FAs, while olive and cornoil supplemented diet 
saffected PL Fas alteration during PHx [29].

This study explores the effect of one-third PHx on changes in 
splenic PL FAs and theeffect of corn and oliveoilsupplementeddiets on 
splenic PL FAsduring PHx. Ourhypothesisisbased on thephysiological 
and pathophysiologicalinterconnection of theliver and spleen due to 
anincrease of portal hypertensionafterliversurgery, increased HGF, 
theincreasedpooling of plateletsinthe spleen as well as a response to 
oxidativestressdue to PHx inthe spleen.

Materials and Methods
Chemicals and reagents

The used chemicals and reference compounds for gas 
chromatography (GC) were purchased from Sigma (St. Louis, MO, 
USA). Solvents were of the highest reagent grade available. The 
extra-virgin olive oil (EVOO) used for the preparation of the diet 
was obtained from Agroprodukt, d.o.o. (Vodnjan, Croatia) and the 
refined corn oil was purchased from Oleifico Zucchi S.p.A, Cremona, 
Italy. Total phenols in EVOO were 279 GAE mg/kg.

The solid-phase extraction cartridges, NH2 (Bond Elut, 3ml 
volume, 500mg sorbents) used for the lipid classes separation were 

Figure 1: The biosynthesis of monounsaturated (MUFA) and polyunsaturated 
fatty acids (PUFA).

Fatty acid Control diet Olive oil FOO diet Corn oil FCO diet

14:00 n.d. n.d. n.d. 0.01 n.d.

16:00 18.42 11.36 14.01 13.63 15.43

18:00 2.83 2.66 2.72 1.44 1.96

20:00 n.d. 0.43 0.27 0.14 0.09

22:00 n.d. n.d. n.d. 0.05 0.03

24:00:00 n.d. 0.09 0.06 0.07 0.04

16:1n-7 0.85 0.93 0.9 0.06 0.36

18:1n-9 21.19 74.48 54.5 25.37 23.8

20:1n-9 n.d. 0.38 0.24 0.97 0.61

22:1n-9 n.d. n.d. n.d. 0.76 n.d.

18:2n-6 51.8 9 25.05 57.06 55.09

18:3n-3 4.9 0.67 2.26 0.3 2.03

Σ 3−ν 4.9 0.67 2.26 0.3 2.03

Σ 6− 51.8 9 25.05 57.06 55.09

Σ 9− 21.19 74.86 54.74 27.1 24.41

n-9/n-6 0.41 8.32 2.18 0.48 0.44

Σ ΑΦ 21.25 14.54 17.06 15.49 17.55

Σ ΑΦΜ 22.04 75.79 55.63 27.16 24.77

Σ ΑΦΠ 56.7 9.67 27.31 57.36 57.11

Table 1: The fattyacidcomposition of theuseddiets and dietaryoils (g/100g).



Giacometti J, et al., Journal of Nutrition and Food Science Forecast

2018 | Volume 1 | Edition 1 | Article 1005ScienceForecast Publications LLC., | https://scienceforecastoa.com/ 3

purchased from Varian (Harbor City, CA, USA).

Diets and animals
A stock standard diet (pellet, type 4RF21 GLP, Mucedola, Settimo 

Milanese, Italy) wasused as the standard dietinallexperiments. Olive 
and cornoil were added to thestock standard diet to a 5% w/w, (5 g of oil 
to 100 g of standard dietpellets) for preparation of theoliveoil (FOO) 
and cornoil (FCO) enricheddiets. Diets were freshlypreparedonce a 
week by theaddition of theappropriateamounts of oils, gasseswith 
N2 and were stored at 0-4 oC to minimizefattyaciddegradation. The 
FAscomposition of dietaryoils and dietsisshownin Table 1.

Male Balb/c mice (Medical Faculty, Rijeka, Croatia), at the age 
of 2-3 months and weight of at least 25g to 30g, were acclimated for 
1 week at a temperature of (21-23 oC) and in a humidity controlled 
facility on a 12h light/dark cycle. After the acclimatisation period, 
animals were divided into three groups as follows: Group 1 (Control) 
standard diet fed mice; Group 2 (FOO) olive oil fed mice; Group 
3 (FCO) corn oil fed mice. Body weight and food intake were 
monitored during the study. Control group animals (standard diet, 
FCO, FOO) without surgical hepatectomy were sacrificed after three 
weeks. The remaining animals of each group were subjected to 1/3 
PHx under anaesthesia and were then sacrificed on days 1, 2 and 7 
after PHx. The spleen and a portion of the same region of regenerated 
liver in all cases were removed by plastic instruments, washed several 
times with a saline solution (0.9% w/w, NaCl) to remove blood, and 
immediately weighed and stored at -80oC until the analysis. To avoid 
possible diurnal variability, all operations were performed between 
8:00–9:00 a.m. 

All experimental procedures were perform edincompliance 
with the Declaration of Helsinki and were approved by the Ethical 
Committee of the Medicalfaculty, University of Rijeka.

Lipid analyses
The FAs composition of the dietary oil was determined 

according to the modified EC Regulation 2568/91 (EEC) [30] by gas 
chromatographic analysis. In brief, fatty acid methyl esters (FAMEs) 
were prepared at 100oC by acid-catalyzed transesterification of 
oils under reflux over a period of four hours with 2M methanol-
hydrochloric acid containing 0.01% (w/v) butylated hydroxyl toluene 

(BHT). The obtained mixture was extracted with petroleum ether and 
FAMEs were evaporated in a rotating evaporator to dryness. The same 
procedure was used for the preparation of FAMEs extracted from 
pellets and the pellet enriched FCO and FOO diets. Test portions, in 
the form of the FAMEs, were performed in duplicate and 1µl of each 
sample solute in hexane was injected. 

Total lipids from tissues were extracted from tissues with 
chloroform/methanol (CM, 2:1, v/v) according to Folch et al. [31] 
containing 0.01% BHT as an antioxidant. The PL FA composition 
in the spleen tissue was determined after lipid class fractionation 
according to Giacometti et al. [32]. Briefly, the total lipid extracts 
were fractionated and purified by solid-phase extraction (SPE), and 
the polar lipids were separated on the NH2 column. Next, FAs of the 
polar lipids were transmethylated with methanol/n-hexane/sulphuric 
acid (75:25:1, v/v) at 90oC for 90min, extracted using petroleum ether 
and analysed using GC.

GC analyses were carried out using an Auto system XL (Perkin-
Elmer, Norwalk, CT, USA) with a flame-ionization detector (FID). 
Chromatography software from Perkin-Elmer Nelson (Turbochrom 
4, rev. 4.1.) was used for data acquisition from the FID. A capillary 
SP-2330 column (Supelco, Bellefonte, PA, USA), 30m x 0.32mm I.D. 
of 0.2mm film thickness was used. Helium was used as the carrier 
gas with split injection (100:1). The analyses were carried out in 
programmed temperature mode from 140 to 220oC, at 5oC/min and 
then isothermal for 25min. The detector temperature was 350oC and 
the injector temperature was 300oC. The results of individual FAs 
were expressed as a percentage of the polar lipid fraction.

Calculations and statistics
SFAs were calculated as SFAs = Σ% (14:0+16:0+18:0+20:0+22:0

+24:0), MUFAs as MUFAs = Σ% (14:1+16:1+18:1+20:1) and PUFAs 
as PUFAs = Σ% (PUFAn-3 + PUFAn-6). PUFAs n–3 were calculated 
as PUFAs, n–3 = % (20:5n-3+22:5n-3+22:6n-3) and PUFAs n–6 
as PUFAs, n–6 = Σ% (18:2n-6+18:3n-6+20:2n-6+20:3n-6+20:4n-
6+22:4n-6). The delta-9-desaturation ratio of the C16 was calculated 
as D9C16 = 16:1n-7/16:0 and the delta-9-desaturation ratio of the 
C18 as D9C18=18:1n-9/18:0. The delta-6 desaturation ratio was 
calculated as D6D=[(18:3n-6+20:3n-6)/18:2n-6] and the delta-5 
desaturation ratio was calculated as D5D=[(20:4n-6/(20:3n-6)] 

Figure 2: The effect of a standard, FCO and FOO diets on the spleen weight (SW) on the 1st, 2nd and 7th day after partial hepatectomy (PHx).
Values are area per cent (mean ± SD of 6-8 mice/group); *significant difference during PHx among same diet using Kruskal-Wallis Anova by Ranks test; csignificant 
difference between the control and 7th day PHx using Kruskal-Wallis test: multiple comparisons of mean ranks for all groups (P<0.05); esignificant difference 
between the 1st day and 7th day PHx using Kruskal-Wallis test: multiple comparisons of mean ranks for all groups (P<0.05); fsignificant difference between the 2nd 
and 7th day PHx using Kruskal-Wallis test: multiple comparisons of mean ranks for all groups (P<0.05).
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[33]. Stearoyl-CoA desaturase 1 (SCD1) activity has been estimated 
using precursor fatty acid ratios 16:1n7/16:0 or 18:1n9/18:0 and was 
calculated as (18:1n9+16:1n7)/(18:0+16:0), and the elongase-6 ratio 
(Elovl6) was calculated as (18:1n9+18:0)/(16:1n7+16:0). The ratio of 
18:2n-6/20:4n-6 represents the activity of enzymes in the biosynthetic 
pathway of 20:4n-6 from 18:2n-6, and the 22:6n-3/20:4n-6 ratio 
represents the activity of enzymes in the biosynthetic pathway of 
22:6n-3 from 20:4n-6.

The average chain length (ACL) was calculated as ACL = [Σ% 
Total14 x 14) + …+ (Σ% Totaln x n)]/100 (n=carbon atom number). 
The double bond (DBI) index was calculated as DBI=Σmol% of 
unsaturated fatty acids of an x number of double bonds of each 

unsaturated fatty acids. The peroxidizability index (PI) was calculated 
as PI = [(%Monoenoic x 0.025) + (%Dienoic x 1) + (%Trienoic x 2) 
+ (%Tetraenoic x 4) + (%Pentaenoic x 6) + (%Hexaenoic x 8)] [34].

GC data were evaluated with Statistica (data analysis software 
system), version 13 (TIBCO Software Inc., 2017). The statistical 
analysis was performed using the nonparametric Kruskal-Wallis 
Anova by Ranks and Kruskal-Wallis Multiple Comparisons p values 
(2-tailed) among PHx in each diet group, and between time points 
of PHx in each diet group, respectively. Statistical significance was 
assumed, given P < 0.05, and the data are reported based on the mean 
(SD).

Figure 3: The desaturase-5 (D5D), desaturase-6 (D6D), stearoyl-CoAdesaturase (SCD1) and elongase-6 (Elovl6) ratiosinthe spleen (A and C), and in the liver (B 
and D) on the 1st, 2ndand 7th day after partial hepatectomy (PHx).
Values are area per cent (mean ± SD of 6-8 mice/group); *significant difference during PHx among same diet using Kruskal-Wallis Anova by Ranks test; asignificant 
difference between the control and 1st day PHx using Kruskal-Wallis test: multiple comparisons of mean ranks for all groups (P<0.05); bsignificant difference 
between the control and 2nd day PHx using Kruskal-Wallis test: multiple comparisons of mean ranks for all groups (P<0.05); csignificant difference between the 
control and 7th day PHx using Kruskal-Wallis test: multiple comparisons of mean ranks for all groups (P<0.05); dsignificant difference between the 1st and 2nd day 
PHx using Kruskal-Wallis test: multiple comparisons of mean ranks for all groups (P<0.05); esignificant difference between the 1st day and 7th day PHx using 
Kruskal-Wallis test: multiple comparisons of mean ranks for all groups (P<0.05); fsignificant difference between the 2nd and 7th day PHx using Kruskal-Wallis test: 
multiple comparisons of mean ranks for all groups (P<0.05).
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A linear regression analysis used the least square method used in 
significant correlation determination of individual parameters in the 
liver and spleen tissues.

Results and Discussion
The liver has the unique capability to restore lost tissue mass after 

resection by compensatory liver growth. That process is recognized 
as a liver regeneration. The liver grows rapidly, immediately after 
resection of more than 50% of its mass. The potential for liver 
regeneration is different and depends on the degree of liver damage; 
the response to one-third PHx is moderate and maximal for two-
third PHx [35,36]. Because of the close connection between the 
liver and the spleen, via the portal vein system, after liver injury, the 
destroyed blood cells accumulate in the spleen and thus result in 
an enlarged spleen [5]. However, the volume of liver resection does 
not affect the spleen hypertrophy, and then it depends on common 
regulatory factors [37]. Moreover, it is reported that a hepatectomy 
stimulates DNA synthetic activity in the spleen [38] by confirming 
the hypothesis on stimulating growth factors [39]. It is implied that 
liver regeneration affects signalling pathways, thus ensuring the 
synchronized proliferation of liver cells and modulation of their cell 
membranes and the membranes of other associated tissues as the 
spleen.

As shown in Figure 2, the spleen weight was significantly altered 
in all used diets during PHx. In the group fed a standard diet it 
was increased, while it was reduced in the groups FCO and FOO. 
Although in 1/3 pH a minor degree of liver damage was observed, 
which can induce moderate stimulus for liver regeneration, we 
found that the spleen significantly enlarged on day 7 after PHx in all 
examined groups. A diet supplemented with olive oil has the most 
effect on spleen enlargement (Figure 1).

It is well established that FAs and their metabolites are implicated 
in essential aspects of cellular signalling including controlling cell 
growth, the inducing and regulating of apoptosis as well as having a 
protective effect on immunological response. 

The dynamics of 1/3 PHx affected the PL FAs profile in the spleen 
tissue as shown in Table 2. In the group fed a standard diet, the n-3 
and MUFAs class changed statistically during PHx. Although SFAs 
and PUFAs did not change significantly, their fatty acids as 18:0, 20:0, 
24:0, 20:5n-3 and 22:6n-3 were altered. However, when the splenic PL 
FAs profile was compared, marked changes were found in the liver 
previously as reported [29]. The main n-3 PUFAs, eicosapentaenoic 
acid (EPA) and docosahexaenoic acid (DHA) in the spleen changed 
markedly during PHx and decreased on day 7 (Table 2). Furthermore, 
the PHx changed significantly: 18:0, 20:0, 24:0, as well as 16:1n7, 
18:1n9 and 20:1n-9.

The n-3 PL FAs in the spleen negatively correlated with MUFAs 
in the group fed a standard diet and the FOO group (R=-0.63, R=-
0.79, respectively), identically as with the liver [29]. 

Diets enriched with olive and corn oil changed significantly PL 
PUFAs in the spleen, as well as n-6 PUFAs during PHx. As shown 
in Table 1, a diet enriched with 5% FCO contains 55.09% of n-6 
FAs, while a 5%-enriched FOO diet contains 55.63% MUFAs. The 
major FA in an FCO diet is linoleic acid (18:2n-6) at 55.09%, and 
oleic acid at 54.50% was the largest FAs in the 5%-enriched FOO diet. 
The application of the FOO diet increased 5.32-fold the n-9 FAs as 
compared to the standard diet, and 4.95-fold compared to the FCO 

diet.

Arachidonic acid (AA, 20:4n-6) was the largest in PUFA type 
in the spleen, ranging from 13.34 to 19.91% in the group FCO diet, 
and from 9.50 to 18.11% in the group FOO diet. In addition, it was 
observed that 20:4n-6 decreased in the FCO group during PHx, 
while it increased in the FOO group on day 7. The FCO diet is rich in 
18:2n-6 FA, however, its intake increased 18:2n-6 PL FAs in spleen 
in the group without PHx. In addition, 18:2n-6 PL FA decreased 
significantly during PHx in the group of the FCO diet as well as in 
other groups with and without supplementation.  However, although 
18:1n-9 is the highest in the FOO diet, their increase in the splenic PL 
FAs was observed on the 2nd days and decreased on day 7 following 
initiation of PHx (Table 2). Palmitic acid (16:0) was practically 
unchanged during PHx in the group fed a standard diet, while the 
group FCO and the group FOO diet showed a decrease and then 
an increase, respectively. Stearic acid (18:0) showed a similar trend 
(see Table 2). More changes in PL FAs was found in the liver after 
consumption of all studied diets during PHx [29] (data in additional 
Table S2).

A hyperlipidic diet that contained saturated FAs induces more 
death in splenic lymphocytes via apoptosis than the diet that contained 
unsaturated FAs [40]. Oleic acid is recognized as a trigger for cell 
death in mammary epithelial cells [41], while palmitate is a trigger 
for cell death in macrophages [42-44]. Oleic acid also prevented 
apoptosis by induction with t10, c12-linoleic acid [45], reduced cell 
growth via stearic acid-induced inhibition and suppressed the pro-
inflammatory responses [46] as well as decreasing lipid accumulation 
and apoptosis in cultured hepatocytes compared to palmitic acid 
[47].  However, recent studies indicate the important roles of lipids 
and lipid metabolism in both triggering and executing non-apoptotic 
regulated cell death [48]. 

The repair of the lipid membrane is essential for liver 
regeneration and is associated with apoptosis. Apoptotic cells and 
cellular components are not removed because they are probably 
used in the synthesis of lipids, the formation of double-membrane 
intracellular vesicles and in helping in stabilization or repair of 
damaged membranes through autophagy [48]. One relevant aspect 
of membrane proliferation during cell death is that phospholipids 
specific to different organelles may become intermixed within newly 
formed membrane structures such as vacuoles [48,49].

Dietary 18:2n-6 promotes cell apoptosis in the hepatocytes in 
rats fed palm oil compared to rats receiving palm oil alone [50], 
however, apoptosis was not observed if hepatoma cells were co-
treated with palmitic acid [51]. Oleic acid promoted the formation of 
triglyceride-enriched lipid droplets that induced autophagy and had 
a minimal effect on apoptosis. Palmitic acid suppressed autophagy 
due to poor conversion into triglyceride-enriched lipid droplets and 
thus, significantly induced apoptosis [52]. That implies that diets 
supplemented with corn and olive oil have perhaps a different effect 
on autophagy, and thus on apoptosis. Given the different effect on 
the PL FAs in the spleen, and especially in the liver, these diets can 
differently affect liver regeneration.

For the betterment of knowledge of the potential benefits of 
dietary fatty acid composition, Svahn et al. [53] investigated the 
dietary effect on the transcriptome profile of some tissues including 
the spleen. They found that the greatest effect of a high-fat diet rich in 
PUFAs on tissue transcriptomics was observed in the spleen, while by 
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contrast a high-fat diet rich in SFAs barely affected the liver where it 
exhibited a mixed response compared to a low-fat diet.

Soni et al. [15] investigated the effect of dietary n-3 FAs 
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on 
the immune response regulation in the spleen. They suggested that 
EPA and DHA down-regulated the splenic immune response induced 
by a high-fat diet based on corn oil as well as that the spleen is a target 
organ for the anti-inflammatory effects of these n-3 fatty acids.

Fatty acid ratios in different tissues or lipid fractions are useful 
for the determination of the direction of a specific enzyme and 
thus their activity. A 20:4/22:6 ratio greater than 18:2/20:4 on the 
7th day achieved higher AA in the spleen as shown in Tables 2 and 
S1. Similarly, changes in the n-3/n-6 ratio indicate an unbalanced 
metabolism of unsaturated FAs, therefore a lower n-3/n-6 ratio can 
be associated with the higher 20:4n-6, as found on day 7 in the spleen. 
In addition, a significant negative correlation was found between 
the n-9/n-6 ratio and the n-3 PUFAs in the spleen for the standard 
control diet group (R=-0.57) and the FCO group (R=-0.82).

The homeostasis of PUFA was under control of diet intake and 
hepatic metabolism.  The key enzymes in the PUFA synthesis are the 
delta-5 desaturase (D5D, FADS1), delta-6 desaturases (D6D, FADS2), 
fatty acid elongases-2 (Elovl2) and 5 (Elovl5). Fatty acid synthase 

(FASN), stearoyl CoA desaturase 1 (SCD1) and fatty acid elongase-6 
(Elovl6) catalysed de novo lipogenesis and MUFA synthesis [54] (see 
FAs pathways in Figure 1). Fatty acid synthase (FASN) is the central 
enzyme of the de novo fatty acid biosynthesis pathway.

The Elovl6 and SCD1 ratios significantly correlated in the spleen 
in the FCO and FOO groups (R=0.83 and R=0.72, respectively), as in 
the liver [29]. Analogous to this, the Elovl6 activity correlated with 
n-3 and n-6 PL FAs in the spleen only in the group FCO (R=0.83, 
R=0.70, respectively), while in the liver, the positive significant 
correlation found in the group fed a standard diet was between Elovl6 
and n-3 PL FAs and Elovl6 and n-6 PL FAs in the group FCO. 

The activity of desaturases D5D and SCD1 was also higher in 
the spleen than in the liver in the FCO group and the FOO group. 
As shown Figures 3A and 3C, the FCO and FOO diets induced 
significant changes in spleen desaturase and elongase activity. In the 
spleen and the liver, the activities of D5D and D6D increased during 
PHx. Thus, an FCO-enriched diet activated more D5D and inhibited 
D6D in the spleen on the 2nd day after PHx. In comparison to the 
aforementioned results, hepatic D6D decreased in the liver on the 1st 
day. Then, splenic D5D decreased more in the group fed FOO diets 
on the 2nd day after PHx, while D6D remained almost unchanged. 
Similarly, the hepatic D6D was inhibited on the 1st day. 

Fatty 
acids

Control diet FCO diet FOO diet

Control
pHx Control-

FCO

pHx Control-
FOO

pHx

1d 2d 7d 1d 2d 7d 1d 2d 7d

18:2n-6 8.90±1.38 9.09±0.66 9.54±1.16 8.53±0.88 12.10±2.40* 10.55±1.23 10.56±0.55 8.63±1.50c 7.78±0.50 8.08±0.50 7.41±0.92 6.54±1.37

18:3n-6 0.73±0.10* 0.34±0.06 0.25±0.11 0.15±0.03c,e 0.61±0.12* 0.14±0.11 0.22±0.20 0.06±0.08c 1.00±0.25* 0.14±0.15 0.12±0.14 0.03±0.05c

20:2n-6 0.81±0.09 0.96±0.14 0.72±0.13 0.95±0.35 1.25±0.17 1.09±0.15 1.07±0.17 1.00±0.29 1.02±0.23 0.87±0.32 0.66±0.25 0.77±0.26

20:3n-6 0.86±0.09 0.73±0.36 0.55±0.20 0.65±0.21 0.56±0.04 0.70±0.15 0.48±0.19 0.72±0.45 0.73±0.03 0.53±0.20 0.50±0.27 0.54±0.24

20:4n-6 13.74±1.35 12.20±1.14 12.53±2.13 14.90±2.77 19.91±1.08* 15.96±1.01 13.34±3.57 14.90±0.93 11.91±1.52* 13.01±1.39 9.50±3.59 18.11±6.47f

Σν−6 25.03±2.21 23.32±1.63 23.60±3.17 25.19±2.69 28.42±2.73* 28.43±0.72 25.68±2.82 25.32±1.99 22.44±1.29* 22.62±0.92 18.19±4.34 25.99±5.61f

20:5n-3 0.83±0.13* 1.41±0.64 0.99±0.28 0.40±0.11e,f 0.68±0.14* 0.68±0.10 0.45±0.10 0.71±0.51 0.84±0.19* 1.33±0.90 0.51±0.28 0.40±0.13c,e

22:6n-3 10.46±1.43* 10.14±0.77 10.08±3.19b 6.63±2.32c,e 9.89±1.50 10.24±0.49 9.34±3.54 7.53±2.87 8.81±1.20 10.16±1.44 6.14±3.38d 10.71±5.77

Σν−3 11.29±1.41* 11.55±1.07 11.07±3.30 7.03±2.42c,e 10.57±1.59 10.92±0.50 9.79±3.58 8.23±2.56 9.66±1.33 11.49±1.74 6.65±3.63d 11.11±5.79

Σ ΠΥΦΑ 36.33±2.84 34.87±2.09 34.68±4.86 32.21±4.89 39.00±4.23* 39.35±0.63 35.47±6.35 33.55±2.93e 32.10±1.30* 34.11±1.95 24.84±7.94d 37.10±11.22

14:00 0.49±0.08 0.65±0.17 0.56±0.16 0.71±0.12 0.47±0.08 0.61±0.16 0.58±0.22 0.74±0.05 0.51±0.14 0.74±0.11 0.75±0.33 0.60±0.20

16:00 33.86±2.26 35.65±0.60a 35.68±2.75b 37.75±4.11 32.39±3.46* 33.62±1.52 38.43±6.79 40.86±4.23e 34.42±3.95 34.09±2.61 37.96±4.69 31.53±12.52

18:00 14.03±1.70* 12.34±1.73 12.76±1.29 10.82±0.89c 13.35±0.81 12.71±0.55 12.22±1.12 11.75±1.76 13.34±2.55 13.00±1.26 13.12±1.45 13.62±4.21

20:00 0.54±0.26* 0.10±0.14a 0.14±0.11 0.06±0.03c 0.30±0.08* 0.11±0.07 0.10±0.05b 0.14±0.15 0.50±0.11* 0.10±0.10a 0.09±0.06b 0.12±0.06c

24:00:00 1.12±0.47* 0.42±0.07 0.35±0.10b 0.34±0.11c 0.47±0.18 0.41±0.18 0.50±0.19 0.55±0.23 0.78±0.66 0.46±0.16 0.91±1.04 0.75±1.65

Σ ΣΦΑ 50.04±2.58 49.17±1.98 49.57±4.12 49.68±3.60 46.98±3.86* 47.47±1.47 52.06±6.08 54.04±4.36 49.55±2.76 48.38±1.93 52.83±6.40 46.61±9.23

16:1n-7 1.63±0.46* 2.86±0.48 2.38±0.21 2.06±0.35 1.20±0.30* 1.25±0.25 1.43±0.39 0.19±0.37e,f 1.66±0.59 1.91±1.07 1.98±0.54 1.40±0.96

18:1n-9 12.00±0.49* 12.86±1.74 12.88±0.93 15.53±2.57c 12.73±0.97* 11.37±0.76 10.59±0.53b 11.60±1.33 16.68±2.17* 15.02±1.43 19.70±2.22d 14.22±2.04f

20:1n-9 0.00* 0.24±0.20 0.47±0.14 0.50±0.15c 0.09±0.19* 0.54±0.07a 0.42±0.10 0.58±0.07c 0.00* 0.51±0.06 0.63±0.15b 0.65±0.12c

Σ ΜΥΦΑ 13.64±0.60* 15.96±2.13 15.75±0.98 18.11±2.65c 14.02±0.68 13.18±0.93 12.47±0.65 12.42±1.60 18.35±2.19* 17.50±0.40 22.32±2.34 16.29±2.66f

Table 2: Fatty acid composition (%) of the total phospholipids (PL) in the mice spleen in the group fed a standard diet, FCO and FOO diets on the 1st, 2nd and 7th day 
after partial hepatectomy (PHx).

Values are area per cent (mean±SD of 6-8 mice/group); *significant difference during PHx among same diet using Kruskal-Wallis Anova by Ranks test; asignificant 
difference between the control and st day PHx using Kruskal-Wallis test: multiple comparisons of mean ranks for all groups (P<0.05); bsignificant difference between 
the control and 2nd day PHx using Kruskal-Wallis test: multiple comparisons of mean ranks for all groups (P<0.05); csignificant difference between the control and 7th 
day PHx using Kruskal-Wallis test: multiple comparisons of mean ranks for all groups (P<0.05); dsignificant difference between the 1st and 2nd day PHx using Kruskal-
Wallis test: multiple comparisons of mean ranks for all groups (P<0.05); esignificant difference between the 1st day and 7th day PHx using Kruskal-Wallis test: multiple 
comparisons of mean ranks for all groups (P<0.05); fsignificant difference between the 2nd and 7th day PHx using Kruskal-Wallis test: multiple comparisons of mean 
ranks for all groups (P<0.05).
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It is necessary to point out that it the highest activity of Elovl6 
was in the liver in the group fed with standard diet (Figure 3D) where 
the Elovl6 ratio was more than 3-fold higher than that of the FCO 
and FOO groups. As opposed to the liver, no significant changes were 
found in the activity of Elovl6 in the spleen in the group fed on a 
standard diet (Figure 3C).  However, significant changes were found 
in the activity of Elovl6 during PHx in the spleen in the groups FCO 
and FOO (Figure 3C).

The SCD1 activity decreased in the spleen during PHx in the 
group fed an FCO diet. In comparison to this, an olive oil-enriched 
diet increased the activity of SCD1: in the spleen peaked on the 2nd day 
and in the liver on the day 7 after PHx (Figure 3C). In all administered 
diets, SCD1 showed maximal activity on the 7th day after PHx in the 
liver (Figure 3D).

Recently, nutritional and tissue-specific regulation of elongase 
expression has been examined [55]. Chen et al. [56] observed 
significantly high transcript levels of bovine Elovl6 in adipose tissue 
and intestines and moderate levels in the lungs, stomach, spleen, 
kidney, liver and heart, and the lowest levels in the skeletal muscles 
among the tissues investigated. Some reports have demonstrated that 
Elovl6 is highly expressed in brown adipose tissue (BAT). Since BAT 
has the highest mitochondrial density of all tissues, it was proposed 
that Elov6 is a regulator of thermogenesis in the BAT [57].  Tan et al. 
[58] connected with the lipid composition of the adipose tissue upon 
development of obesity and the metabolic dysfunction of obesity, while 
the mechanism of incorporation of the majority of FAs into adipose 
tissue in the fed state was examined via the Elovl6, SCD1 and DNL 
indices. The oleate rich diet strongly suppressed fatty acid synthase 
(FAS), Elovl6 and SCD1 in the liver. These authors concluded that 
the oleate-rich diets reduced the expression of the mRNA expression 
of Elovl6 and SCD1 in the liver [58]. Elongase-5 (Elovl5) plays a key 
role in MUFA and PUFA synthesis and regulates hepatic triglyceride 
catabolism in obese C57BL/6J mice as demonstrated by Tripathy et 
al. [59]. Authors suggested Elovl5 as the target for the treatment of 
diet-induced hyperglycemia [60].

Our results confirm the transcriptomic results reported as 
showing a higher expression of Elovl6 in the liver as compared to that 
of the spleen. 

If SCD1 is overexpressed, then it can increase intracellular MUFA 
and can lead to lipid accumulation in the liver. However, a suppressed 
SCD1 should decrease oleic acid and affect triacylglycerol (TAG) 
accumulation. That could suggest SCD1 as a target for cell stress 
response and induced apoptosis. A significant positive correlation was 
found here between SCD1 ratio and MUFA (RControl=0.89, RFCO=0.96, 
RFOO=0.81), and SCD1 ratio and 18:1n-9 (RControl=0.86, RFCO=0.69, 
RFOO=0.75) in the spleen in all diet groups.

In the study by Wang et al. [61], authors proposed the mechanism 
underlying FADS1 and its polymorphisms in modulating hepatic 
lipid deposition by altering gene transcription and controlling lipid 
composition in human livers. This work highlights a multilevel 
integrated omics (systems biology) approach to better understand 
causal mechanisms behind the genotype-phenotype associations as a 
perspective in improving or preventing hepatic fat accumulation and/
or other metabolic comorbidities.

During ageing, the membrane fatty acid profile changes with 
increased PUFAs. The liver and spleen in rodents are long-lived 
organs with a high degree of unsaturation (approximately 50% and 

60%, respectively) and a different contribution of PUFA. The spleen 
has a lower peroxidability index (PI) and double bond index (DBI) 
compared with the liver. 

Both administered oil-enriched diets significantly changed 
unsaturation and peroxidizability during PHx in the spleen as 
determined via the DBI and PI indices (Table S1).With the intake of 
the FCO enriched diet, DBI and PI decreased during PHx, however, 
intake of an FOO diet decreased DBI and PI on the 1st and 2nd days 
after PHx and then increased on the 7th day. These parameters 
significantly correlated with n-3 PUFAs (R=0.86, R=0.88, R=0.93, 
respectively) in the spleen in the group fed on a standard diet, in the 
FCO group (R=0.96, R=0.97, R=0.97, respectively) and in the group 
FOO (R=0.90, R=0.94, R=0.96, respectively) (Tables S1 and S2). As 
reported previously, the liver showed a lower correlation between n-3 
PUFAs and ACL, DBI and PI in all diet groups (Table S3) [29].

The membrane FAs profile is a criterion of the resistance to 
lipid peroxidation in the prediction of their longevities. The study 
Arranz et al. [62] used female BALB/c mice which were divided into 
three groups: adult (28 weeks), old (76 weeks) and exceptionally 
old (128 weeks). Membrane fatty acids composition were analyzed 
and the results showed significantly lower PI and lipoxidation-
derived protein damage in the brain and the spleen in the group of 
exceptionally old animals as compared with old animals and adult 
animals. However, the adaptation of membrane unsaturation of each 
cell, tissue and organ and organism to ageing, depending on surgical 
damage, diseases, recovery, possible dietary intervention, etc., will be 
opened with new research.

Conclusion
The lipid metabolism is fundamental to the understanding of 

a number of human diseases and conditions. Therefore, fatty acid 
metabolism is an inevitable participant in a network of biological 
processes available for cellular metabolism. An integrative approach 
involving transcript identification, protein and lipid analysis in order 
to the betterment of understanding the physiological role of lipid 
metabolism in mammals as a biochemical system. 

Here, we focused on fatty acid composition in polar lipids in 
the spleen and its response a) to stress induced by PHx, b) to the 
involvement of dietary fats in the modulation of phospholipid fatty 
acids.

The most abundant PL FA in the mice spleen was palmitic 
acid (16:0) as SFA, arachidonic acid (20:4n-6) as n-6 PUFA, 
docosahexaenoic acid (22:6n-3) as n-3 PUFA and oleic acid (18:1n-
9) as n-9 MUFA, but only 22:6n-3 and 18:1n-9 was changed in the 
spleen during PHx. 

A diet supplemented with 5% corn oil, rich in 18:2n-6 FA 
reduced 18:2n-6, pro-inflammatory abundant 20:4n-6 and 
increased endogenous palmitic acid in the spleen. In addition, a 
diet supplemented with 5% olive oil and rich in 18:1n-9, enhanced 
20:4n-6 and reduced 18:1n-9. If the amount of dietary 18:2n-6 is low, 
desaturation is directed to 18:1n-9 (due to the high amount in the diet 
with olive oil).

These results confirmed the importance of diet in stress conditions 
such as liver damage, not only in the liver but also in others organs 
such as the spleen. In conclusion, despite the beneficial effect of diet, 
lipid homeostasis was regulated more by liver regeneration than a n-6 
and n-9 diet after one-third PHx.  
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The one-third PHx serves as a model for studying the regulation 
of PL FAs not only in the liver but also in the spleen.
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