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Statement of translational relevance:

Temozolomide and radiotherapy are the adjuvant standard of care for patients with
glioblastoma. This manuscript demonstrates an unprecedented role of the NKG2D-
dependent immune pathway for the efficacy of these anti-cancer therapies against
glioblastoma. Both treatment modalities induce immune-stimulatory NKG2D ligands
also in unfavorable but clinically relevant settings of MGMT overexpression, TMZ
resistance and at tumor recurrence. This promotes the role of the NKG2D system as an
attractive immunotherapeutic target in glioblastoma at primary diagnosis and at
recurrence. Furthermore, it provides a strong rationale for future combination studies of

conventional radiochemotherapy and NKG2D-based immunotherapy.
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Abstract

Purpose: NKG2D is a potent activating immune cell receptor and glioma cells express
the cognate ligands (NKG2DL). These ligands are inducible by cellular stress and
temozolomide (TMZ) or irradiation (IR), the standard treatment of glioblastoma, could
affect their expression. However, a role of NKG2DL for the efficacy of TMZ and IR has
never been addressed.

Experimental Design: We assessed the effect of TMZ and IR on NKG2DL in vitro and in
vivo in a variety of murine and human glioblastoma models including glioma-initiating
cells and a cohort of paired glioblastoma samples from patients before and after
therapy. Functional effects were studied with immune cell assays. The relevance of the
NKG2D system for the efficacy of TMZ and IR was assessed in vivo in syngeneic

orthotopic glioblastoma models with blocking antibodies and NKG2D knockout mice.

Results: TMZ or IR induced NKG2DL in vitro and in vivo in all glioblastoma models and
glioblastoma patient samples had increased levels of NKG2DL after therapy with TMZ
and IR. This enhanced the immunogenicity of glioma cells in a NGK2D-dependent
manner, was independent from cytotoxic or growth inhibitory effects, attenuated by O°-
methylguanine-DNA-methyltransferase (MGMT) and required the DNA

damage response. The survival benefit afforded by TMZ or IR relied on an intact

NKG2D system and was decreased upon inhibition of the NKG2D pathway.

Conclusion: The immune system may influence the activity of convential cancer
treatments with particular importance of the NKG2D pathway in glioblastoma. Our data

provide a rationale to combine NKG2D-based immunotherapies with TMZ and IR.
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Introduction

Glioblastoma is the most common malignant primary brain tumor in adults with a dismal
prognosis (1). The first-line treatment in patients below 70 years of age includes surgical
resection as feasible, radiotherapy and concomitant and maintenance chemotherapy
with temozolomide (TMZ), an alkylating agent that induces DNA damage (2, 3). In
addition to these treatment modalities, several promising immunotherapeutic
approaches against glioblastoma are currently being evaluated (4, 5). These efforts are
supported by the observation that glioma cells express molecules that allow for an
interaction with cells of the immune system such as major histocompatibility complex
(MHC) class | and class Il molecules (6) as well as MHC class I-like ligands which bind
to the activating immune cell receptor natural-killer group 2 member D (NKG2D) (7). In
humans, NKG2D ligands (NKG2DL) comprise the MHC class I-related chains (MIC) A
and B (MICA, MICB) and the UL16 binding proteins (ULBP) 1-6 (8). These ligands are
expressed on human glioma cells in vitro (9) and in vivo (10) as well as on glioma-
initiating cells (GIC), a subpopulation of cells with stem cell properties (11, 12). In mice,
NKG2DL comprise the retinoic acid early inducible-1 (RAE-1) proteins, members of the
H60 family (H60a, H60b, H60c) and the murine UL16-binding protein like transcript-1
(MULT-1) which are also expressed by mouse glioma cells (9, 13). All NKG2DL bind to
the NKG2D receptor which is one of the major activating receptors on natural killer (NK)
cells (8). In addition to NK cells, this receptor is constitutively expressed on NKT cells,
o CD8 T cells and yd T cells (8, 14). Furthermore, its expression is induced on CD4 T
cells by tumor necrosis factor (TNF)-a and interleukin (IL)-15 (15, 16). However, various
glioma-derived humoral and cellular immunosuppressive mechanisms preclude an
efficient anti-tumor immune response, including the expression of transforming growth

factor (TGF)-B (17), prostaglandin E2 (PGE2) (18), IL-10 (19), growth and differentiation
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factor (GDF)-15 (20), lectin-like transcript 1 (LLT1) (21), indoleamine 2,3-dioxygenase
(IDO) (22), programmed death ligand 1 (PD-L1) (23), as well as the presence of
immunosuppressive regulatory T cells (Tregs) (24) and M2-polarized microglia (25).
Enhancing the immunogenicity of glioma cells may be achieved either by inhibition of
these immunosuppressive mechanisms (26) or by promoting immune activating signals
such as the NKG2DL (27). Since various cellular stress stimuli including malignant
transformation of cells or DNA damage can induce NKG2DL (8), we explored whether
TMZ or irradiation (IR) as part of the standard treatment for glioblastoma increase
NKG2DL levels on glioma cells and whether this promotes their immunogenicity. We
also defined the molecular mechanisms underlying the TMZ- and IR-induced NKG2DL
expression in glioma cells. Finally, we investigated the significance of the NKG2D
system for the survival benefit gained with TMZ and IR in several immunocompetent

mouse glioma models.
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Material and Methods

Cells and materials

The human glioma cell lines LN-18 and LN-229 were kindly provided by Dr. N. de
Tribolet (Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland). LN-229-R
cells were generated by repetitive exposure to TMZ resulting in a shift of the ECs (28).
Generation of LNT-229_MGMT and LNT-229_neo (29) and LN-18_shMGMT and LN-
18_puro cells (30) has been described. SMA-560 glioma cells were obtained from Dr. D.
Bigner (Duke University Medical Center, Durham, North Carolina, USA) and GL-261
were obtained from the National Cancer Institute (Frederick, Maryland, USA). SMA-
560_Turbo650 and GL-261_NirFP were created by lentiviral transduction of GL-261 and
SMA-560 cells with plasmids encoding near-infrared fluorescent proteins Turbo650 and
NirFP (Evrogen, Moscow, Russia) and selection by fluorescence-activated cell sorting
(FACS). Adherent cell lines were maintained in Dulbecco's Modified Eagle Medium
(DMEM, Invitrogen, Basel, Switzerland), containing 2 mM L-glutamine (Gibco Life
Technologies, Paisley, UK), and 10% fetal calf serum (FCS, Biochrom KG, Zug,
Switzerland). The GIC cell lines S-24 and ZH-305 were generated from human
glioblastoma patient specimens (31). After tumor removal, tissue was dissociated using
a papain system (Worthington, New Jersey, USA) and a gentleMACS™ Dissociator
(Miltenyi Biotec, Bergisch Gladbach, Germany). These cells were then maintained as
suspension cultures in Neurobasal Medium with B-27 supplement (20 uyl/ml) and
Glutamax (10 ul/ml) from Invitrogen and fibroblast growth factor (FGF)-2, epidermal
growth factor (EGF) (20 ng/ml each; Peprotech, Rocky Hill, Pennsylvania, USA) and
heparin (32 IE/ml; Ratiopharm, Ulm, Germany). All cell lines were routinely tested for
Mycoplasma using PCR (last test in december 2016). For all experiments described

herein, the adherent cells were allowed to attach over a 24 h period. Subsequently, the
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experiments were carried out in serum-free medium. KU-60019 (Selleckchem, Houston,
Texas, USA) is a potent and specific ataxia-telangiectasia mutated (ATM) inhibitor,
concentrations < 1.5 uM ensure specificity for ATM. TMZ, kindly provided by Schering-
Plough (Kenilworth, New Jersey, USA), was prepared in stock solutions (100 mM) in
dimethylsulfoxide (DMSO). N-(2-chloroethyl)-N'-cyclohexyl-N-nitrosourea (CCNU) was
kindly provided by Medac (Wedel, Germany). Cells were irradiated using a cobalt-60
source (Sulzer, Winterthur, Switzerland) and for different fractionations the
approximative biological effective dose and dose per fraction according to the linear

quadratic model (32) were determined using the R package ‘DVHmetrics’ (https:/cran.r-

project.org/web/packages/DVHmetrics/index.html) under the assumption of an a/f ratio

of 10 for human glioma cell lines. Thiazolyl blue tetrazolium bromide (MTT) was

obtained from AxonLAb (Baden, Switzerland).

Antibodies and flow cytometry

The following monoclonal antibodies (mAbs) were used for the assessment of cell
surface expression of MICA, MICB, ULBP2, ULBP3, RAE-1, MULT-1, H60 or blocking
of NKG2D: MICA (AMO1, mouse IgG1), MICB (BMO1, mouse IgG1), ULBP2 (BUMOT,
mouse lgG1), ULBP3 (CUMO3, mouse IgG1). Their generation has been described
(33). RAE-1_FITC and MULT-1_PE and blocking anti-human NKG2D (clone 149810)
were obtained from R&D Systems Europe (Abingdon, UK). H60_PerCP was obtained
from Novus Biologicals (Littleton, Colorado, USA). Blocking but not depleting anti-
mouse NKG2D (clone C7) was obtained from eBioscience (San Diego, California,
USA). As controls, we used isotype-matched antibodies from Sigma-Aldrich (Steinheim,
Germany). The PE-conjugated goat anti-mouse IgG from Dako (Baar, Switzerland) was

used as secondary antibody where appropriate. Cells were detached with Accutase
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(Life technologies), preincubated in phosphate-buffered saline (PBS) with 2% FCS, and
stained with specific mAbs (10 pg/ml) or matched mouse Ig isotype for 30 min on ice,
followed by incubation with PE-conjugated secondary antibody for 30 min where
appropriate. After washing, flow cytometric analyses were performed using a BD
FACSVerse Analyzer (BD, Allschwil, Switzerland). In case of intracellular staining for
ATM®*"98! Fix/Perm Buffer Set from BioLegend (San Diego, California, USA) was used.
For flow cytometric assessment of tumor-infiltrating lymphocytes, live/dead staining with
FVS 510, anti-CD3_ PerCP-Cy5.5, anti-CD4_FITC, anti-CD8_APC-H7, anti-NKp46_PE,
anti-IFN-y_APC and anti-TCRy/d_ BV421 from BioLegend (San Diego, California, USA)
was used. Specific fluorescence indexes (SFl) were calculated by dividing median
fluorescence obtained with the specific antibody by median fluorescence obtained with
isotype control antibody. For in vivo experiments fluorescence intensity was expressed
as median fluorescence intensity. Data was analyzed with FlowJo software (Tree Star,

Stanford, California, USA).

Immune cell cytotoxicity assay

We used a flow cytometry-based cytotoxicity assay to determine immune-mediated
glioma cell lysis (34). Specific lysis was expressed as percentage of cell death of the
PKH-26" labeled targets. Percentage of target cell lysis was corrected for spontaneous
background lysis by subtracting the percentage of dead cells in control samples (targets
alone) from the percentage of dead cells within the test samples. As effector cells, we
used either splenocytes isolated from mice, human NK cells isolated from PBMC by
negative selection using NK cell isolation kit (Miltenyi Biotec, Bergisch Gladbach,

Germany) or NKL cells obtained from M.J. Robertson (Indiana University School of
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Medicine, Indianapolis, Indiana, USA). For blocking experiments, NKL cells were
preincubated for 2 h at 4°C with anti-NKG2D or IgG1 isotype control, and the antibody
was also present during the co-incubation of target and effector cells. All experiments

were done in triplicates.

Real-time PCR

Total RNA was isolated using the NucleoSpin RNA Il system from Macherey-Nagel
(Duren, Germany) and cDNA was prepared using the iScript cDNA Synthesis Kit from
Bio-Rad Laboratories AG (Cressier, France). For real-time PCR, gene expression was
measured in an ABI Prism 7000 Sequence Detection System (Applied Biosystems,
Foster City, California, USA) with SYBR Green Master Mix (Thermo Fisher Scientific
(Waltham, Massachusetts, USA) and primers (Microsynth AG, Balgach Switzerland) at
optimized concentrations. Primers for MICA, MICB, ULBP2 and ULBP3 have been
published (35). Primers used to detect murine NKG2DL were RAE-1 forward 5'-
TTTGGGAGCACAACCACAGAT-3', reverse 5-TAAAGTTGGCGGGCTGAAAGA-3',
MULT-1 forward 5-CTGCCAGTAACAAGGTCCTTTC-3', reverse 5'-
GCTGTTCCTATGAGCACCAATG-3', H60a forward 5™
CTGAGCTATCTGGGGACCATAC-3', and reverse 5-AGTCTTTCCATTCACTGAGCAC-
3'. As reference gene, we used human HPRT1: forward 5'-
TGAGGATTTGGAAAGGGTGT-3', reverse 5-GAGCACACAGAGGGCTACAA-3' and
mouse HPRT1: forward 5- TTGCTGACCTGCTGGATTAC-3', reverse 5'-
TTTATGTCCCCCGTTGACTG-3' respectively. The conditions were 40 cycles at
95°C/15 s and 60°C/1 min. Standard curves were generated for each gene. Relative

quantification of gene expression was determined by comparison of threshold values.
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All results were normalized to HPRT1 and calculated with the ACTT method for relative

quantification.

Determination of cytotoxicity, acute cytostatic or clonogenic effects

For determination of cytotoxicity, 5x10° cells were seeded per well in 96-well plates,
allowed to attach for 24 h (adherent cells) and irradiated or exposed to TMZ, CCNU or
staurosporine as indicated for 72 h in serum-free medium. Percentage of living cells
was determined by flow cytometry after live/dead staining with Zombie Aqua™ Fixable
Viability Kit (BioLegend, San Diego, California, USA). For acute growth inhibition
assays, we used the same experimental setting but either crystal violet staining (for
adherent cells) or MTT (for suspension cells) as read-out. Clonogenic survival assays
were performed by seeding 10 cells per well in 96-well plates. After 24 h, the cells were
irradiated or exposed to TMZ, CCNU, or staurosporine as indicated for 24 h in serum-
free medium, followed by observation for 20 days. As read-out methods, we used again

either crystal violet staining or MTT.

Immunoblot analyses

For the detection of proteins in cell lysates, cells were lysed and processed as
previously described (28). Thirty ug of protein were used per lane and visualization of
protein bands was accomplished using horseradish peroxidase (HRP)-coupled
secondary antibodies (Sigma-Aldrich) and enhanced chemiluminescence

(Pierce/Thermo Fisher, Madison, Wisconsin, USA).

10
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Immunofluorescence

Cells were cultured in chamber slides with polystyrene-treated glass (BD Biosciences),
fixed with 4% paraformaldehyde and permeabilized with 0.5% Triton X-100 (Sigma-
Aldrich). Blocking with 3% FCS was followed by incubation with anti-ATM protein kinase
pS1981 monoclonal antibody (Rockland, Gilbertsville, Pennsylvania, USA) (diluted
1:100) overnight at 4°C. Donkey anti-mouse IgG Alexa Fluor 488-labeled secondary
antibody (Life technologies, Carlsbad, California, USA) was used at 1:200. Slides were
mounted in Vectashield Mounting Media with DAPI (Burlingame, California, USA) and

images were acquired by using a Leica TCS SP5 confocal microscope.

Mice and animal experiments

All experiments were done in accordance with the guidelines of the Swiss federal law on
animal protection and they were approved by the cantonal veterinary office. C57BL/6
mice were purchased from Charles River Laboratories (Sulzfeld, Germany). VM/Dk
mice were bred in pathogen-free facilities at the University of Zurich. NKG2D™" mice
have been previously described (36) and were kindly provided by D. H. Busch (Munich,
Germany). Mice of 6 to 12 weeks of age were used in all experiments in groups of 7-10
mice. For intracranial tumor implantation SMA-560 cells (5 x 10%) or GL-261 cells (2 x
10%) were stereotactically implanted into the right striatum at day 0. Mice were observed
daily and sacrificed as indicated or in the survival experiments when developing
neurologic symptoms. If indicated, local cranial radiotherapy with a single dose of 12 Gy
was performed at day 10 after tumor implantation using a Gulmay 200 kV X-ray unit at 1
Gy/min at room temperature. If indicated, mice received TMZ (10 mg/kg/day) per oral
gavage from day 7-11 after tumor implantation. MRI was performed with a 4.7 T small

animal magnetic resonance imager (Pharmascan; Bruker Biospin, Ettlingen, Germany)

11



261  at day 13 after tumor implantation. Coronal T2-weighted images were acquired using
262 Paravision 6.0 (Bruker BioSpin). Mean +/- SD of the tumor volume in mm? from 5

263  mice/group were determined by the formula (length x width x depth)/2.

264  For in vivo blockade of NKG2D signaling, mice were injected i.p. with 100 ug of the

265  blocking but not depleting anti-NKG2D antibody (clone C7) (37) or with isotype control
266 in PBS. Antibodies were given either one day before and one day after tumor

267 implantation or at day 6 and 7 after tumor implantation and were re-injected every 7
268  days until the mice were sacrificed. Time of antibody administration is indicated in the
269  figure legends.

270  Isolation of orthotopic tumor cells was performed on day twelve after tumor implantation.
271  Brains were harvested after transcardial perfusion with ice-cold PBS to remove all

272 circulating leukocytes from the CNS. Tumor cells were separated from myelin and red
273 blood cells using a Percoll gradient suspension (Sigma-Aldrich). Cells were washed with
274  PBS and stained with Zombie Aqua™ Fixable Viability Kit and fluoro-conjugated

275 antibodies specific to indicated cell surface markers for flow cytometry.

276

277  Tissue microarray of patient samples

278  Studies were approved by the Institutional Review Board (KEK-StV-Nr.19/08) and

279  informed consent was received prior to inclusion to the study. Twenty-one pairs of

280 primary (before chemoradiation) and recurrent glioblastoma (variable timepoints after
281 chemoradiation) specimens from patients who underwent brain tumor resection

282  between 2000 and 2014 at the Department of Neurosurgery, University Hospital Zurich
283  (Zurich, Switzerland) were collected. Immunohistochemistry was performed as

284  described (31) using anti-MICA, anti-MICB, anti-ULBP2, or anti-ULBP3 antibodies from

285  Sino Biological (Lucerna-Chem AG, Luzern, Switzerland) or anti-programmed death-

12



286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

ligand 1 (PD-L1) from Cell Signaling Technology (Danvers, Massachusetts, USA).
Images were analyzed in an unsupervised and blinded fashion using TMARKER, a

software toolkit for histopathological staining estimation (38).

Statistical analysis

Data are presented as means +/- SD. Experiments were repeated at least three times, if
not indicated differently. Viability and acute and clonogenic cell growth studies were
performed at least in triplicates. Statistical analyses were performed in GraphPad Prism
(La Jolla, CA, USA) using multiple two-tailed Student’s t-tests and correction for multiple
comparisons using the Holm-Sidak method. For analysis of tissue microarray data, we
used Wilcoxon matched-pairs signed rank test. For analysis of heterogeneity of
immunohistochemically stained NKG2DL, we calculated the intraclass correlation
coefficient (ICC) (39) as a statistical measure to assess staining variation for 2 tissue
cores from each tumor sample by using the R-package ‘ICC’ ( https://cran.r-

project.org/web/packages/ICC/index.html). Kaplan Meier survival analysis was

performed to assess survival differences among the treatment groups and p values
were calculated with Gehan-Breslow-Wilcoxon test. Throughout all figures, significance

was concluded at *p < 0.05 and **p < 0.01.
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Results

TMZ induces NKG2DL expression in glioma cells independent from cytotoxic and
growth inhibitory effects

Exposure of glioma cells to TMZ has growth inhibitory as well as cytotoxic effects. To
define the sensitivity of LN-18 and LN-229 cells to TMZ, we treated these cells with a
broad range of TMZ concentrations and determined cell death, acute growth inhibition
and clonogenic cell survival (Fig. 1A). Since NKG2DL are up-regulated in response to
various stress stimuli, we explored in a next step whether TMZ induces the expression
of NKG2DL in these cells. We observed an induction of several NKG2DL on mRNA and
protein cell surface level over a wide concentration range (Fig. 1A, Suppl. Fig 1A-B)
including low concentrations with minor cytotoxic and growth inhibitory effects as well as
clinically relevant concentrations around plasma levels of 30-80 uM of TMZ that are
achieved in human patients (40). To evaluate the effect on other activating immune cell
receptor ligand systems, we assessed CD112 and CD155 as ligands of the human
DNAX accessory molecule-1 (DNAM-1, CD226) activating immune cell receptor. In
contrast to NKG2DL, the cell surface expression of CD112 and CD155 was unaffected
by TMZ (Suppl. Fig. 1C). Next, we examined the effect of TMZ on NKG2DL expression
in GIC, a subpopulation of glioma cells with stem-like properties which are associated
with resistance to chemotherapy and irradiation (41). S-24 cells were relatively resistant
to TMZ with an ECsg value of 267 uM in clonogenic survival assays whereas ZH-305
cells were more sensitive with an ECsp of 7.3 uM (Fig. 1B). TMZ induced several
NKG2DL on mRNA and cell surface protein levels in both GIC lines. Again, there was
no induction of DNAM-1 ligands (Suppl. Fig. 1D). Furthermore, we determined the

expression of NKG2DL on mouse glioma cells and their induction by TMZ. GL-261 and

14
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SMA-560 cells differed in their sensitivity to TMZ. The ECs, for clonogenic cell survival
was = 50 yM for GL-261 and >500 uM for SMA-560 (Fig. 1C). Similar to human cells,
exposure to TMZ resulted in an up-regulation of NKG2DL in both murine glioma cell
models. H60a is not expressed in C57BL/6 mice and the syngeneic GL-261 cells (42)
and was therefore not detected in this cell line.

To corroborate our findings that the upregulation of NKG2DL is not a general response
pattern of glioma cells to cell death induction but rather a specific response to alkylating
chemotherapy, we exposed LN-18 and LN-229 cells to different concentrations of
staurosporine. Despite its strong effect on glioma cell viability, none of the NKG2DL was
up-regulated by staurosporine (Suppl. Fig. 1E). However, CCNU, another alkylating
agent commonly used in patients with recurrent glioblastoma (43) also induced
NKG2DL already at low concentrations, close to those typically achieved in the plasma

of patients (3.4-3.8 uM) (44) (Suppl. Fig. 1F).

Irradiation induces NKG2DL in human and mouse glioma cells independent from
cytotoxic and cytostatic effects

Since radiotherapy belongs to the standard of care for glioma patients, we also
assessed the effect of IR on NKG2DL expression in different glioma models. LN-18
cells were more sensitive to irradiation than LN-229 cells with an ECs, value of 4 Gy vs.
11 Gy in clonogenic survival assays. In both cell lines, IR induced the expression of
several NKG2DL mRNA and cell surface protein (Fig. 2A). The induction of NKG2DL
cell surface expression following IR was also confirmed when different fractionation
schemes were applied (Suppl. Fig. 2A). Consistent with the TMZ data, there was no
induction of DNAM-1 ligands upon irradiation (Suppl. Fig. 2B). In S-24 and ZH-305 GIC,

irradiation had minor cytotoxic effects with an ECs value of > 20 Gy but clear effects on
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clonogenic survival with ECsg values = 5 Gy. A clinically relevant single fraction in the
range of 2-4 Gy increased NKG2DL mRNA and cell surface protein levels (Fig. 2B).

We also confirmed the irradiation-mediated induction of NKG2DL in GL-261 and SMA-
560 mouse glioma cells. In both cell lines, irradiation upregulated NKG2DL on mRNA as

well as on cell surface protein level (Fig. 2C).

TMZ- but not irradiation-mediated NKG2DL induction is modulated by MGMT and
both depend on ATM signaling

MGMT promoter methylation predicts benefit from alkylating chemotherapy with TMZ in
glioblastoma. To explore whether the TMZ-mediated induction of NKG2DL is influenced
by MGMT, we used sub-cell lines of LN-18 with a stably silenced MGMT gene (30) or
LNT-229 cells that stably overexpress MGMT (29). The modulation of MGMT
expression affected the sensitivity to TMZ (Fig. 3A), but not to IR (Suppl. Fig. 3A).
Furthermore, MGMT expression significantly decreased TMZ-mediated NKG2DL
induction. This was demonstrated by an increased NKG2DL induction upon shRNA-
mediated MGMT silencing in LN-18 glioma cells that naturally express MGMT and a
diminished NKG2DL induction in MGMT-overexpressing LNT-229 cells compared to
MGMT-deficient wild-type LN-229 cells (Fig. 3B). The IR-mediated upregulation of
NKG2DL was unaffected by the MGMT status (Suppl. Fig. 3B). Glioma cells can also
acquire resistance to TMZ independent from MGMT expression. Mechanistically, this is
linked, amongst others, to the down-regulation of DNA mismatch-repair proteins (28).
Because this acquired resistance is a challenge in clinical practice that needs
alternative treatment options, we assessed the induction of potentially immune-

activating NKG2DL in a glioma cell line with acquired TMZ resistance (28). Also in these
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cells, TMZ or IR induced the cell surface protein level of NKG2DL. The same effect was
observed after IR (Suppl. Fig. 3C, D).

To elucidate the molecular mechanisms mediating the treatment-induced NKG2DL
induction in glioma cells, we assessed the ATM pathway as part of the DNA damage
response to genotoxic stress induced by TMZ (45). In LN-229 and S-24 cells, we

detected an increase of active phospho-ATMSe %!

upon exposure to TMZ (Fig. 3C).
Inhibition of ATM using RNA interference (Suppl. Fig. 3E) or KU-60019, a specific ATM
inhibitor that inhibited ATM at 1.25 uM with little toxicity (Suppl. Fig. 3F), abrogated the
TMZ-induced up-regulation of MICA and MICB in LN-229, S-24 cells (Fig. 3D). We
confirmed this also for ZH-305 cells (Suppl. Fig. 3G). Furthermore, we observed this
ATM-dependency also for irradiation-mediated NKG2DL induction (Fig. 3D, Suppl. Fig.

3G).

Exposure to TMZ and IR promote glioma cell immunogenicity in a NKG2D-
dependent manner

To investigate functional effects of the TMZ- or RT-induced NKG2DL induction, we
performed cytotoxicity assays using polyclonal human NK cells or NKL cells (46) as
immune effectors. Pre-exposure of LN-229 or S-24 cells to TMZ resulted in an
enhanced immune cell-mediated cytolysis (Fig. 4A, Suppl. Fig. 4A). In contrast,
exposure of MGMT-overexpressing LNT-229 cells to TMZ at the same concentrations
did not enhance immune-cell mediated cytolysis (Suppl. Fig. 4B). Pre-incubation of
effector cells with blocking but not depleting anti-NKG2D antibodies abrogated the TMZ-
induced glioma cell susceptibility to immune cell killing (Fig. 4A). Similarly, LN-229 or S-
24 cells that were pre-irradiated with 2 Gy were more susceptible to immune cell-

mediated cytolysis in a NKG2D-dependent manner (Fig. 4B).
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NKG2DL levels are increased in vivo in syngeneic glioma models following
treatment with TMZ or IR as well as in human glioblastoma following
radiochemotherapy

To study the effect of TMZ and irradiation on glioma-associated NKG2DL in vivo, we
generated GL-261_niRP and SMA-560_TurboFP650 mouse glioma cells, which stably
express near-infrared fluorescent proteins and which are syngeneic to C57BL/6 or
VM/Dk mice. This allowed for the detection of these cells by flow cytometry (Fig. 5A)
and the specific assessment of NKG2DL protein levels on the cell surface ex vivo. After
orthotopic tumor cell injection, we treated mice either with a single dose of local IR at
day 10 or with TMZ per oral gavage for 5 consecutive days starting at day 7 after tumor
cell inoculation. At day 12, mice were euthanized and the tumors explanted. TMZ and
irradiation led to an up-regulation of NKG2DL in both orthotopic murine glioma cell
models with a more pronounced effect in the SMA-560 model (Fig. 5A).

To study the effect of chemo- and radiotherapy on glioma-associated NKG2DL in
human glioblastoma patients, we created a tissue microarray (TMA) encompassing 21
paired formalin-fixed samples of human glioblastoma specimens obtained before and
after treatment with TMZ and/or radiotherapy. From 9 of these paired samples, we could
also isolate RNA. Compared to basal expression, we detected increased levels of
several NKG2DL on mRNA as well as on cell surface protein level after treatment with
TMZ or IR or both (Fig. 5B). Based on 2 cores from each tumor, we found a
heterogeneous expression of NKG2DL within tumors, particularly for ULBP2 and
ULBP3 (Suppl. Fig. 5A). We did not observe correlations between NKG2DL and survival

or NKG2DL and the immunosuppressive ligand PD-L1 in this small patient population.
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There were also no significant differences in PD-L1 expression between primary and

recurrent human glioblastoma samples (Suppl. Fig. 5B-D).

The NKG2D system contributes to the therapeutic effects of TMZ and irradiation
in glioma

Finally, we asked whether the NKG2D system plays any role for the survival benefit
gained from TMZ or irradiation in murine glioma models. We inhibited the NKG2D
system in fully immune-competent, orthotopic SMA-560 glioma-bearing mice by
repetitive intraperitoneal injections of a blocking but not depleting anti-NKG2D antibody
(37). Its biological activity reflecting target inhibition was verified by decreased ex vivo
cytolysis of SMA-560 cells upon TMZ exposure or irradiation by immune effector cells
isolated from anti-NKG2D-treated mice (Suppl. Fig. 6A). At the treatment schedules
used, either IR or TMZ prolonged survival, but this effect was more prominent for IR.
Administration of the anti-NKG2D antibody abrogated the survival benefit conferred by
TMZ and attenuated the IR-mediated survival benefit in SMA-560 glioma-bearing mice
(Fig. 6A). This NKG2D-dependent effect of TMZ or IR in SMA-560 glioma-bearing mice
was also present when the anti-NKG2D antibody was administered at day 6 and 7 post
tumor implantation when tumors had already been established (Suppl. Fig. 6B). To
confirm the importance of an intact NKG2D system for the efficacy of TMZ and IR in
glioma in a second syngeneic setting, we used NKG2D knockout

(NKG2D™) mice, as an even more robust model. These mice were treated with the
same regimen of TMZ or IR. In addition, we also included the combination of both
treatments, reflecting the current standard of care for human glioblastoma patients.
There was no difference in median survival of glioma-bearing NKG2D™" or NKG2D-intact

mice when no treatment was administered. TMZ or irradiation prolonged the median
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survival of GL-261 tumor-bearing mice and the combination of both therapies further
increased the survival (Fig. 6B). However, the survival gain conferred by TMZ,
irradiation or the combination of both was significantly reduced in NKG2D™" mice (Fig.
6B). The survival data were corroborated by MRI. At day 6 post tumor implantation we
could not clearly delineate the tumor due to superimposing post-surgery alterations, but
at day 13 post tumor implantation, we observed reduced activity of the anti-tumor
treatments with regard to tumor growth in NKG2D-deficient mice (Fig. 6C, Suppl. Fig.
6C). Finally, we analyzed tumor-infiltrating immune cells. TMZ alone significantly
reduced NK and CD4 T cells, and IR as well as the combination of TMZ and IR reduced
NK cells within the tumor microenvironment (Fig. 6D). There was no difference in the
composition of tumor-infiltrating immune cells in NKG2D™ versus NKG2D-intact mice.
However, the activation status of infiltrating immune cells, which did not differ in
untreated NKG2D™"" or NKG2D-intact mice, was impaired in NKG2D™ mice upon
treatment. NK cells as well as CD4 and CD8 T cells produced more IFN-y in NKG2D-
intact mice following treatment with TMZ, IR or the combination of TMZ and IR, and this
induction was attenuated in NKG2D ™" mice. In NKG2D-intact mice, v T cells produced
more IFN-y upon treatment with TMZ, IR or the combination of TMZ and IR compared to
NKG2D" mice. In NKG2D" mice, we observed more IFN-y production in y8 T cells only

upon IR (Fig. 6D, Suppl. Fig. 6D-F).
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Discussion

TMZ chemotherapy and radiotherapy constitute the standard treatment modalities in
patients with newly diagnosed glioblastoma (43). The anti-glioma effects of TMZ and IR
comprise different molecular mechanisms such as induction of cell cycle arrest,
senescence and apoptosis (47, 48). Furthermore, there is increasing evidence that cell
death upon exposure to TMZ or IR can promote anti-tumor immune responses by
releasing tumor-associated antigens or damage-associated molecular pattern
molecules such as calreticulin, adenosine triphosphate or high-mobility group box 1
protein (49-51). In addition to these soluble and potentially immune-stimulating
molecules, glioma cells express membrane-bound ligands to the activating immune cell
receptor NKG2D which basically enables target cell killing without prior sensitization and
irrespective of MHC restriction.

We observed an up-regulation of several NKG2DL on mRNA and protein level upon
exposure to TMZ, CCNU or IR in several mouse and human glioma cells including
stem-like cells (Fig. 1 and 2, Suppl. Fig. 1 and 2). NKG2DL induction by TMZ has
previously been reported in four other human glioma cell lines (52). We found that the
NKG2DL induction was independent from cytotoxic or growth inhibitory effects and was
achieved at clinically relevant concentrations of chemotherapeutic agents and low
doses of IR. Furthermore, we confirmed the up-regulation of NKG2DL on glioma cells
upon treatment with TMZ or IR in vivo in two orthotopic mouse glioma models (Fig. 5A).
The use of fluorescently labeled glioma cells excluded contaminating signals from
immune cells which could also express NKG2DL (53). These findings were further
corroborated by an analysis of paired samples of human glioblastoma tissue specimens

obtained from patients during initial surgery and at tumor recurrence following radio-
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499  and/or chemotherapy. The increased NKG2DL expression levels after alkylating

500 chemotherapy or radiotherapy support our in vitro data as well as findings from the

501  mouse studies (Fig. 5B). Changes in glioma cell NKG2DL levels may be confounded by
502 other factors than treatment such as passenger mutations which occur during the

503 course of the disease (54, 55). Despite these limitations, our data strongly suggest that
504 NKG2DL expression levels are increased following radiochemotherapy. Together with
505 the observation that NKG2DL can also be induced in TMZ-resistant cells (Suppl. Fig. 3C
506 and D), this provides a rationale to investigate NKG2D-targeting therapies (27) also at
507  tumor recurrence.

508 We demonstrate that the up-regulation of NKG2DL upon TMZ or IR requires ATM (Fig.
509 3D, Suppl. Fig. 3G) which supports the concept that the DNA damage response is one
510  stimulus for the induction of NKG2DL (56). Consequently, ATM inhibitors may

511  potentially counteract NKG2D-dependent anti-tumor immune effects. This needs to be
512  considered in future trials evaluating the activity of such ATM inhibitors as

513 radiosensitizers (57).

514  Although the net effect of NKG2D ligand induction is of rather small magnitude, it has
515 important functional consequences. The induction of NKG2DL by TMZ or IR enhanced
516  the immunogenicity of glioma cells including GIC and rendered the cells more

517  susceptible to immune-mediated cytolysis (Fig. 4, Suppl. Fig. 4A). Chemotherapy and
518 radiotherapy have various effects on tumor cells and the microenvironment comprising
519  both immune-stimulatory and immune-suppressive mechanisms. Our study indicates
520 that treatment-associated NKG2DL induction constitutes a relevant immune-stimulatory
521  mechanism because inhibition of NKG2D signaling abrogated the enhanced cytolysis.

522  Furthermore, tumor-infiltrating NK, CD4, CD8 T cells and to some extent also yo T cells
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produced more IFN- y in a NKG2D-dependent manner upon treatment with TMZ and/or
irradiation (Fig. 6D). This emphasizes the relevance of the NKG2D-mediated immune-
stimulatory mechanism of TMZ and IR and adds another relevant mechanism to the
concept of immunogenic cell death.

We did not only demonstrate that TMZ- and radiotherapy-mediated NKG2DL induction
can be used as a strategy to render glioma cells more immunogenic but also that the full
efficacy of TMZ and IR against glioblastoma depends on an intact NKG2D system. The
survival benefit gained with these treatment modalities was diminished upon blockade
of NKG2D signaling with an inhibitory but non-depleting antibody or in NKG2D knockout
mice (Fig. 6A and B, Suppl. Fig. 6A-C). Inhibition or deficiency of NKG2D in mice did
not result in a significant survival difference without additional treatment, suggesting that
the basal expression levels of NKG2DL are too low to promote a relevant immune
response (7, 10, 26, 34, 58).

The NKG2DL induction upon TMZ treatment or IR could provide a rationale for future
studies investigating the synergistic application of these conventional treatment
modalities with other NKG2D-based immunotherapeutic strategies (27). So far, one
phase | study has used pure NK cells for adoptive immunotherapy in patients with
recurrent malignant gliomas (59). However, no concomitant treatment with TMZ or IR
was administered and additive or synergistic effects to this adoptive cell therapy need to
be explored in future clinical trials.

In summary, the present dataset demonstrates the relevance of a so far unrecognized
mechanism mediating anti-tumor effects of TMZ and IR that is likely to be clinically
relevant. Based on our findings, further studies evaluating the combination of
radiochemotherapy with additional NKG2D-based immunotherapeutic strategies should

be considered for the treatment of glioblastoma.
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Figure legends

Fig. 1. TMZ induces NKG2DL in human and mouse glioma cells including human
GIC independent from cell death and growth inhibition. A LN-18 or LN-229 glioma
cells were exposed to different concentrations of TMZ or DMSO control. Viability was
assessed by live/dead staining at 72 h (black dotted line), cytostatic effects were
detected by crystal violet staining at 72 h and 20 d (grey dashed and straight lines) (left
panels). Transcripts for MICA, MICB, ULBP2 or ULBP3 were assessed by real-time
PCR after 48 h (middle panels). Data represent mean values + SD from 3 independent
experiments (*p < 0.05; **p < 0.01). NKG2DL protein levels at the cell surface were
determined by flow cytometry following exposure to TMZ or DMSO control for 72 h (right
panels). Data are presented as SFI and mean values = SD from 3 independent
experiments are shown (*p < 0.05; **p < 0.01). Grey areas represent TMZ plasma
levels achieved in patients. B, C. S-24 or ZH-305 glioma-initiating cell lines (B) and GL-
261 or SMA-560 mouse glioma cells (C) were treated as indicated and human or murine

NKG2DL were analysed as in (A).

Fig. 2. IR induces NKG2DL in human and mouse glioma cells independent from
cell death and cell growth inhibition. A. LN-18 or LN-229 glioma cells were irradiated
with different doses of gamma irradiation. Viability was assessed by live/dead staining
(black dotted line), cytostatic effects were detected by crystal violet staining (grey
dashed and straight lines) (left panels). Transcripts (MICA, MICB, ULBP2 or ULBP3)
were assessed by real-time PCR after 48 h (middle). Data represent mean values £ SD

from independent experiments (*p < 0.05; **p < 0.01). NKG2DL protein levels at the cell
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surface were determined by flow cytometry 72 h after IR (right). Data are presented as
SFl and mean values + SD from 3 independent experiments are shown (*p < 0.05; **p <
0.01). B, C. S-24 or ZH-305 glioma-initiating cell lines (B) and GL-261 or SMA-560
mouse glioma cells (C) were irradiated as indicated and human or mouse NKG2DL

were assessed as in (A).

Fig. 3. NKG2DL induction is modulated by MGMT and depends on ATM. A. Whole
cell lysates of LN-18_control or LN18_shMGMT cells and LN-229_control or LN-

229 _MGMT were assessed by immunoblot for MGMT protein levels. Beta-actin was
used as a control. Acute cytostatic and clonogenic effects after exposure to TMZ were
determined by crystal violet staining at the indicated time points. B. The cells were
exposed to TMZ and cell surface expression of MICA and MICB was determined after
72 h by flow cytometry. Data are presented as SFl and mean +/- SD of 3 independent
experiments is shown (*p < 0.05; **p < 0.01). C. LN-229 (left) or S-24 (right) cells were
treated with KU-60019 or DMSOQO 4 h prior to TMZ exposure. Immunofluorescence
images were acquired following pATM®'%8 staining (red). Nuclei are stained with
DAPI (blue). D. LN-229 (left) or S-24 (right) were exposed to TMZ (upper row) or IR
(lower panel) after ATM inhibition using KU-60019 or siRNA-mediated gene silencing.
MICA and MICB cell surface expression were determined by flow cytometry. Data are
presented as SFl and mean values = SD from 2 independent experiments are shown

(*p < 0.05; **p < 0.01).
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Fig. 4. Exposure to TMZ or IR promotes glioma cell immunogenicity in a
NKG2D-dependent manner. A. Upper panel: LN-229 (left) or S-24 (right) cells, pre-
exposed to TMZ (grey line) or DMSO control (black line) for 48 h, were used as
target cells in a 3 h immune cell lysis assays using polyclonal NK (for LN-229) or
NKL (for S-24) effector cells at various effector : target (E:T) ratios. Following TMZ
treatment, viable glioma cells were counted before co-incubation with effector cells
and immune-mediated cytolysis was corrected for spontaneous background lysis.
Lower panel: NKL cells were pre-incubated with anti-NKG2D antibody or isotype
control and subsequently used as effector cells in lysis assays with LN-229 or S-24
glioma cells, either pre-exposed to TMZ or DMSO control, at an E:T ratio of 20:1. B.
LN-229 or S-24 cells were irradiated with 2 Gy prior to use as target cells in 3 h lysis
assays. The experimental setup was the same as in (A). In all figures mean +/- SD
of triplicates from 1 representative out of 2 independent experiments is shown (*p <

0.05; **p < 0.01).

Fig. 5. TMZ and IR induce NKG2DL in vivo in syngeneic glioma models and
human glioblastoma patients have increased tumor-associated NKG2DL after
radiochemotherapy. A. Orthotopic tumor-bearing mice (SMA-560_TurboFP in
VM/Dk mice (left) or GL-261_niRP in C57BL/6 mice (right)) received a single dose
of local irradiation (12 Gy) on day 10 or TMZ (10 mg/kg/day) per oral gavage from
day 7-11 after tumor implantation. Mice were sacrificed on day 12, tumors were
dissociated and cells analyzed for NKG2DL cell surface expression by flow
cytometry. Tumor cells were gated in the dot plot diagrams based on the fluorescent

signal. Histograms represent mean fluorescence intensity of RAE-1, MULT-1 and
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H60 on these cells. The diagrams summarize results of 5 mice per group. Data are
presented as mean fluorescence intensity + SD (*p < 0.05; **p < 0.01). B. NKG2DL
were assessed on mMRNA (upper panel) and surface protein level (lower panel) in
matched pairs of human primary and recurrent tumors. Positive cell surface staining
events were quantified in an unsupervised fashion with the TMARKER toolkit. (*p <

0.05; ns = non-significant).

Fig. 6. The NKG2D system contributes to the therapeutic effects of TMZ and
IR in glioma. A. SMA-560 tumor-bearing mice received injections of anti-NKG2D
or isotype control antibody one day before and one day and then every 7 days
after tumor implantation. Subsequently, the animals were treated with TMZ or
solvent control from day 7-11 or a single dose of IR at day 12. Survival data are
presented as Kaplan-Meier plots (left and center). Combined analysis of median
survival is plotted on the right. Survival differences were compared between
different treatment groups (*p < 0.05; **p < 0.01) and within a treatment group
between isotype or anti-NKG2D treatment (+p < 0.05; ++p < 0.01). B-D. GL-261
tumor-bearing C57BL/6 or NKG2D™ mice were treated with IR (single local dose of
12 Gy at day 10), TMZ (10 mg/kg p.o., day 7-11) or the combination of both. B.
Survival data are presented as Kaplan-Meier plots (left and center). Combined
analysis of median survival of the different groups is plotted on the right (*p < 0.05;
**p < 0.01 between treatment groups and +p < 0.05; ++p < 0.01 within a treatment
group for intact NKG2D vs. NKG2D™). C. T2-weigthed coronal scans were
acquired at day 13 after tumor implantation. Two representative scans for each

group are shown (left). The white arrow marks the tumor region. Mean +/- SD of
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the tumor volume in mm?® from 4 mice/group is shown (right). D. Percentage of NK,
CD4, CD8, and y5 T cells (left) and the corresponding IFN-y secretion (right) of
tumor-infiltrating lymphocytes derived from mice described in B and C were
determined at day 14 after tumor implantation. Mean +/- SD from 3 mice is shown
(*p < 0.05; **p < 0.01 between treatment groups and +p < 0.05; ++p < 0.01 within

a treatment group for intact NKG2D vs. NKG2D™).
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Fig. 5
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Supplementary Materials:

Supplementary figure 1
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Suppl. Fig. 1. Gating strategy for detection of cell surface NKG2DL.
Representative data for LN-229 cells 72 h after treatment with different
concentrations of TMZ is shown. Within the tumor cell population, we gated on
single living cells. Cell surface expression after staining with isotype control, anti-
MICA, anti-MICB, anti-ULPB2, or anti-ULBPS3 are displayed in histograms. Numbers
in the upper right corners indicate the mean fluorescence intensity, which allows
further calculation of specific fluorescence indexes (SFI) by dividing median
fluorescence obtained with the specific antibody by median fluorescence obtained

with isotype control antibody.



Supplementary figure 2
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Suppl. Fig. 2. DNAM-1 ligands are not induced upon treatment of TMZ or IR. CD112
and CD155 protein levels at the cell surface of LN-18 or LN-229 cells (A) or S-24 or ZH-305
(B) were determined by flow cytometry 72 h after exposure to TMZ or DMSO or single
irradiation of LN-18 or LN-229 cells (C). Data are shown as SFI and median+/- SD from 3

independent experiments is shown.



Supplementary figure 3
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Suppl. Fig. 3. Induction of NKG2DL is not an unspecific response to cell death induction in glioma

cells. A. LN-18 (upper panel) or LN-229 (lower panel) cells were exposed to different concentrations of

staurosporine. Viability was assessed by live/dead staining at 72 h (black line), cytostatic effects were

detected by crystal violet staining at 72 h and 20 d (grey lines) (left panels). NKG2DL protein levels at the

cell surface were determined by flow cytometry following exposure to staurosporine or DMSO control for

72 h (right panels). Data are presented as SFI and mean values + SD from 2 independent experiments ar

shown (*p < 0.05; **p < 0.01). B. Same experimental setup as in A, but the cells were exposed to differen

concentrations of CCNU.
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Suppl. Fig. 4. MGMT does not affect irradiation-induced NKG2DL expression and NKG2DL
can be induced in glioma cells with acquired TMZ resistance A. LN-18_shMGMT and the
corresponding LN-18_control cells or LN-229 MGMT and the corresponding LN-229_control
cells were irradiated with increasing doses. Cell density was assessed by crystal violet staining
after 72 h (acute cytostatic effect) or 20 days (clonogenic cell survival), respectively. B. On the
cells described in A, cell surface expression of MICA and MICB was determined after 72 h by
flow cytometry. Data are presented as SFI and mean values + SD from 2 independent
experiments are shown (*p < 0.05; **p < 0.01). C. LNT-229 cells with acquired resistance to TMZ
or parental control cells were exposed to different concentrations of TMZ (upper panel, left graph)
or doses of irradiation (upper panel, right graph). Cytostatic effects were detected by crystal violet
staining at 72 h and 20 d. D. On the cells described in C, NKG2DL protein levels at the cell
surface were determined by flow cytometry 72 h after exposure to TMZ (left graph) or irradiation
(right graph). Data are presented as SFl and mean values = SD from 2 independent experiments

are shown (*p < 0.05; **p < 0.01).



Supplementary figure 5
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Suppl. Fig. 5. Inhibition of ATM in LN-229 or S-24 cells. LN-229 or S-24 cells were
exposed to 1.25 uM of KU-60019 or siRNA oligonucleotides specific for ATM or scrambled
control. After 72 h, the cells were stained with anti-phospho-ATMSe1%81 PE antibody and
assessed by flow cytometry. Data are presented as mean fluorescence intensity (indicated

by numbers).



Supplementary figure 6
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Suppl. Fig. 6. Functional consequences of NKG2DL induction by TMZ or IR. A. Exposure
to TMZ promotes immune-cell mediated glioma cell lysis. LN-229 cells, pre-exposed to TMZ
(grey line) or DMSO control (black line) for 48 h, were used as target cells in a 3 h lysis assays
using NKL effector cells at various effector : target (E:T) ratios. B. Blocking of NKG2D
signaling with an inhibitory antibody in vivo. SMA-560 tumor-bearing mice that were treated
with vehicle ctrl. (day 7-11), TMZ (day 7-11) or local IR (10 Gy at day 10) and received
injections of anti-NKG2D or isotype control antibody one day before and every 7 days after
tumor implantation. At day 14, splenocytes from these mice were used as effector cells in
immune cell lysis assays. Target cells were SMA-560 cells pre-treated in vitro with TMZ, RT or
not. E:T was 20:1. As an additional control, splenocytes from non tumor-bearing, untreated
mice were pre-treated ex vivo with blocking anti-NKG2D antibody and used as effector cells
against the described target cells. C and D. Gating strategy for detection of tumor-infiltrating
NK, CD4 and CD8 T cells. Fourteen days after tumor implantation, tumor-infiltrating
lymphocytes were isolated after tumor dissociation and Percoll separation. NKp46+CD3" cells
were determined as percentage of NK cells (C). Numbers indicate the percentage of positive
cells. Furthermore, CD4 and CD8 positive cells were gated (D). Plots are representative for

one out of three mice.



