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Pregnancy represents a unique immunological situation. Though paternal antigens

expressed by the conceptus are recognized by the immune system of the mother, the

immune response does not harm the fetus. Progesterone and a progesterone induced

protein; PIBF are important players in re-adjusting the functioning of the maternal immune

system during pregnancy. PIBF expressed by peripheral pregnancy lymphocytes, and

other cell types, participates in the feto-maternal communication, partly, by mediating the

immunological actions of progesterone. Several splice variants of PIBF were identified

with different physiological activity. The full length 90 kD PIBF protein plays a role in

cell cycle regulation, while shorter splice variants are secreted and act as cytokines.

Aberrant production of PIBF isoforms lead to the loss of immune-regulatory functions,

resulting in and pregnancy failure. By up regulating Th2 type cytokine production and

by down-regulating NK activity, PIBF contributes to the altered attitude of the maternal

immune system. Normal pregnancy is characterized by a Th2-dominant cytokine

balance, which is partly due to the action of the smaller PIBF isoforms. These bind to

a novel form of the IL-4 receptor, and induce increased production of IL-3, IL-4, and

IL-10. The communication between the conceptus and the mother is established via

extracellular vesicles (EVs). Pre-implantation embryos produce EVs both in vitro, and in

vivo. PIBF transported by the EVs from the embryo to maternal lymphocytes induces

increased IL-10 production by the latter, this way contributing to the Th2 dominant

immune responses described during pregnancy.
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INTRODUCTION

Fifty per cent of the antigens expressed by the fetus originate from the father. Therefore, they are
recognized as foreign and should be “rejected,” yet in spite of all odds, the maternal immune system
does not attack the fetus.

The immune system of the mother must comply with two conflicting requirements, i.e., while
creating a favorable environment for the developing fetus, it has to be prepared to control possible
emerging infections. By establishing a delicate balance, the foeto-maternal unit is able to satisfy the
interests of both themother and the fetus. Progesterone, and its mediator the progesterone-induced
blocking factor (PIBF) are important players in this process. In addition to its endocrine effects,
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progesterone also acts as an “immunosteroid” (1). Progesterone
induces Th2 differentiation of established T cell clones (2) and
regulates the homing and activity of uterine NK cells (3), among
others, by upregulating HLA-G gene expression (4), which is the
ligand for both NK inhibitory and activating receptors. Many of
the immunological effects of progesterone are mediated by PIBF.

This review aims to give an overview on the diverse roles of
progesterone and PIBF in re-setting the functions of the maternal
immune system, and on extracellular vesicles (EVs) as means
of establishing the communication between the two sides of the
feto-maternal unit.

PROGESTERONE RECEPTORS

The biological activity of progesterone is mediated by genomic
and non-genomic pathways. The former depends on two nuclear
progesterone receptor (PR) isoforms, PRA, and PRB (5, 6).
Both isoforms are the products of the same gene, but their
transcription is controlled by two distinct promoters (7).

Mice lacking PRA are infertile (8, 9), while the PRB
isoform mediates the effects of progesterone on mammary
gland development (10). The reproductive tissue responses to
progesterone depend on the relative expression of the two
isoforms (11). Progesterone can also signal through membrane-
bound PRs or via the MAPK or PI3K/Akt pathway. The latter
entirely bypasses the classical PR pathway, signaling either
through the JNK pathway or by increasing cAMP (12).

Studies on PR knock out mice revealed, that PRs are required
not only for endometrial receptivity and decidualization (13), but
also for establishing an appropriate immune environment in the
endometrium (14) (Figure 1). Several studies using nuclear and
cytosol binding assays and immunohistochemistry—indicate,
that in certain conditions lymphoid cells might express PRs
(15–20).

Peripheral lymphocytes of pregnant women, but not those
of non-pregnant individuals express PRs (21, 22). Earlier we
demonstrated an inverse relationship between progesterone
binding capacity and cytotoxic activity of peripheral human
lymphocytes (23). The cytotoxic activity of pregnancy

FIGURE 1 | The effects of progesterone on endometrial development and on

the immune system in early pregnancy.

lymphocytes was significantly reduced by progesterone at
concentrations comparable to those, present in pregnancy
serum, while 100-fold higher progesterone concentrations were
required to alter the cytotoxic activity of lymphocytes from
non-pregnant individuals (24). These findings already suggested
that pregnancy lymphocytes might contain progesterone binding
sites, which enable them to respond to progesterone.

The number of PR positive cells increases throughout normal
gestation. In women with recurrent miscarriage, or in those,
showing clinical symptoms of threatened pre-term delivery, the
% of PR expressing cells among peripheral lymphocytes, is
significantly lower than in women with uneventful pregnancies
(21, 22). These findings suggest, that the presence of PR positive
lymphocytes is required for a normally progressing pregnancy.

PR expression in peripheral lymphocytes or lymphoid cell
lines has been confirmed by several studies (15–17, 25, 26).
Both classical PR isoforms are present in peripheral blood
NK cells (18), however, PR expression in decidual NK cells is
controversial. Van den Heuvel et al. (3) demonstrated PRs in
murine decidual NK cells, while Henderson et al. (27) failed to
detect of PRs in purified decidual NK cells. Nevertheless, the
majority of decidual NK cells are PIBF positive (28).

Both in vitro and in vivo activation of human non-pregnancy
lymphocytes result in increased PR expression (29, 30). Paternal
leukocyte immunization of women with recurrent miscarriage
also increases the number of PR expressing lymphocytes (31).

These data indicate that PR expression is a characteristic
feature of activated immune cells (Figure 2).

FIGURE 2 | The induction and biological significance of lymphocyte

progesterone receptors. Following recognition of fetal antigens, maternal

lymphocytes become activated and express progesterone receptors (PR). The

presence of PRs enables the cells, to respond to progesterone (P), e.g., by

PIBF production.
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PROGESTERONE-REGULATED GENES

Among the progesterone-regulated genes, the transcription
factors Hox-A10, Hox-A11, and the glican binding protein
galectin-1 (Gal-1) are the most relevant for the feto- maternal
immunological interaction (32). Hox-A10 deficient mice are
characterized by a polyclonal T cell proliferation (33), and
impaired decidual NK cell differentiation (24, 25, 34, 35).

Gal-1 expression in the female reproductive system was
described in the nineties, and recently, many functional aspects of
this lectin during pregnancy have been discovered (36–38). Gal-1
gene expression in the mouse uterine tissues has been shown to
be regulated by ovarian steroids during implantation (39). In line
with this, Than et al. (40) identified an estrogen response element
in the Gal-1 gene.

Altered Gal-1 expression in the placenta has been implicated
in several pregnancy pathologies.

Proteomic studies showed that Gal-1 expression is reduced
in placental villous tissues from patients with spontaneous
miscarriages (41). On the other hand, placental Gal-1 expression
was found to be increased in severe preeclampsia (42) as well as
in chorioamnionitis (43), possibly representing a fetal response
to an exaggerated systemic maternal inflammation.

In pregnant mice, stress-induced Gal-1-deficiency results in
an increased rate of fetal loss, which is corrected by progesterone
exposure. Gal-1 treatment on the other hand, prevents the stress-
induced decrease of progesterone as well as PIBF levels, and
restores the resorption rates to a normal level (44). These data
suggest a cross-regulation between progesterone and Gal-1 at the
foeto-maternal interface.

PIBF is another progesterone-regulated gene. The mouse
PIBF1 gene, is transcribed to 16 different mRNAs, the longest
of which is 3,677 bp long and includes 18 exons. The predicted
protein is a 90 kDa molecule, composed of 756 amino acids (45).
The full-length PIBF protein shows a peri-nuclear localization,
(46) and has been identified as a component of the peri-
centriolar satellite (47), suggesting its role in cell cycle regulation.
Alternative splicing produces several smaller isoforms, which
are localized in the cytoplasm (45) and are accountable for the
immunological effects of PIBF.

In murine pregnancy, embryo resorption as well as term
delivery are associated with the absence or lower expression of the
N terminal PIBF exons, which might have important functional
consequences (48).

The loss of the N-terminal exons results in a significantly
reduced production of the full length protein, and also prevents
the synthesis of the smaller protein isoforms, which act on the
cytokine pattern and NK activity (45).

THE IMMUNO-MODULATING EFFECTS OF
PIBF AND THE MAINTENANCE OF
PREGNANCY

PIBF was first described as a 34 kDa protein produced by
activated pregnancy lymphocytes (30). It has become evident
since, that PIBF might be expressed by various reproductive

tissues as well as malignant tumors (49–51). A human study
illustrated that trophoblast cells in the placenta could express
PIBF proteins of 30, 50, and 90 kDa in first trimester (52).

Several human studies suggest an association between
PIBF levels and the outcome of pregnancy. In a prospective
cohort study attempting to identify early risk factors for
miscarriage, PIBF was one of the factors showing a strong
association with miscarriage risk (53). In normal human
pregnancy, both serum-and urinary PIBF concentrations
increase during gestation, while in women, with miscarriage,
or preterm labor, urinary PIBF levels fail to increase (54).
Preterm birth was predictable by lower than normal pregnancy
PIBF values mesaured at 24–28gestational week (55), but not
at 11–13 weeks of gestation (56), suggesting, that predictive
value of PIBF determination depends on the interval,
between sampling and the onset of labor. In line with this,
progestogen-treatment of women with threatened miscarriage
corrected the initially low PIBF levels, and in parallel, reduced
the miscarriage rate to a similar level of healthy controls
(57).

While the full length PIBF has been shown to regulate
trophoblast and tumor cell invasiveness (58–60), the smaller
isoforms are secreted, bind to the PIBF receptor (39, 61)
and via their cytokine-like functions, play a role in the
materno-fetal relationship, both in animal models and in
humans.

Some of the immunological effects of progesterone, e.g., that
on NK activity and cytokine balance, are mediated by PIBF.

Earlier studies showed that in mice PIBF protects pregnancy
by controlling NK activity (62). Anti-PIBF treatment of pregnant
mice results in increased resorption, which are corrected by
simultaneously neutralizing NK activity with anti-NK antibodies
(62).

Decidual NK cells, are functionally different from their
circulating counterparts. Though decidual NK cells selectively
overexpress perforin and granzymes A and B (41, 63), their
cytotoxic activity is low. In normal pregnancy decidual NK
cells contribute to creating a favorable environment for
placentation, implantation and embryo development (64), yet
they are equipped with cytotoxic molecules, to fight intrauterine
infections (65, 66).

In the day 12 mouse decidua, there is an abundance of
PIBF positive granulated cells. These cells are missing from the
deciduae of alymphoid mice, but when alymphoid mice are
reconstituted of with bone marrow from male BALB/c mice, the
PIBF positive granulated cells re-appear in the decidua. These
data suggest that the PIBF+ cells belong to the lymphoid lineage,
and based on their DBA lectin reactivity, to the group of NK
cells.

PIBF+ NK cells contain perforin, which co-localizes with
PIBF in the cytoplasmic granules. In day 12.5 normal mouse
pregnancy only 54% of the PIBF + decidual NK cells contain
perforin, whereas in PIBF deficient mice of the same gestational
age, not only do most of the PIBF+NK cells disappear, but all of
the remaining ones are perforin positive (28).

This implies that in mice PIBF exerts a pregnancy protective
effect by keeping NK activity under restraint.
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The local mechanism of the protective action of PIBF is less
easily studied in humans, than in animal models. Nevertheless, a
recent study showed that the otherwise scarcely studied decidual
B cells produce PIBF under the effect of IL-33, and that these
PIBF + B cells are missing from the choriodecidual area of
women with pre-term labor (67) (Nature).

In spite of their high perforin content, spontaneous cytotoxic
activity of human decidual NK cells is moderate (68).
Progesterone inhibits human NK cytolytic activity in vitro (19),
and upregulates HLA-G gene expression (4). Because HLA-G is a
ligand for NK inhibitory and activating receptors, upregulation of
HLA-G by progesteronemight be one of the pathways accounting
for the low cytotoxic activity of decidual NK cells.

Decidual NK activity appears to be affected by PIBF. PIBF
inhibits upregulation of perforin expression in activated human
decidual NK cells and prevents degranulation (69, 70).

Though there is no evidence that NK cells directly attack
the trophoblast, recurrent miscarriage is often accompanied by
increased decidual NK activity (71–75), suggesting that this
mechanism might be a factor in the underlying pathology of
repeated pregnancy loss.

It is well-established, that while normally progressing
pregnancies are characterized by a Th2 dominant cytokine
pattern, an excess of Th1-associated cytokines leads to pregnancy
termination (76, 77). In humans, recurrent miscarriages are
associated with a Thl-dominant peripheral cytokine profile (78–
82).

Both progesterone and PIBF play a role in the induction of
the Th2 biased cytokine balance. In the presence of progesterone
resting human peripheral blood T cells differentiate into Th2-like
clones, furthermore, progesterone treatment of Th1-like T cell
clones shifts the cytokine production of these cells toward Th2
(2). Neutralization of endogenous PIBF activity in pregnant mice
by specific anti-PIBF antibody terminates pregnancy, reduces the
synthesis of IL-10, and increases that of IFN-γ (83).

The PIBF receptor is a glycosylphosphatidylinositol (GPI)-
anchored protein, which, for signaling, temporarily associates
with the alpha chain of the IL-4 receptor (39, 61). Engagement
of the PIBF receptor results in immediate STAT6 activation,
whereas, a 24 h incubation with progesterone is needed to
phosphorylate STAT6, indicating, that the effect of progesterone
on Th2 cytokine production is mediated by PIBF (61) (Figure 3).

By signaling via this novel form of the IL-4 receptor (39, 61),
PIBF induces increased production of IL-3, IL-4, and IL-10 by
activated murine lymphocytes (84).

Raghupathy et al. (78, 79) investigated the production of
Th1 and Th2 cytokines by progesterone treated peripheral blood
lymphocytes isolated from women with recurrent miscarriage.
They showed that progestogen induced PIBF production down-
regulates the production of Thl-type cytokines and stimulates
the production of Th2-type cytokines. Furthermore, progestogen
treatment of women with pre-term delivery induces a Th2
dominant cytokine pattern (78, 79).

Taken together, these data suggest, that by up regulating Th2
type cytokine production and by down-regulating NK activity
PIBF affects the immune response in a way, which might have
an impact on the foeto-maternal relationship.

FIGURE 3 | The structure of the PIBF receptor. The receptor for PIBF is a GPI

anchored protein. After PIBF binding the receptor associates with the alpha

chain of the IL-4 receptor. This initiates intracellular signaling, via the Jak/STAT

pathway.

THE PERI-IMPLANTATION EMBRYO
COMMUNICATES WITH THE MATERNAL
IMMUNE SYSTEM VIA EXTRACELLULAR
VESICLES

Earlier studies described a communication between the embryo
and the maternal immune system. Embryo culture media were
shown to exert an immunosuppressive activity (84). In line
with this, incubation of human peripheral lymphocytes with the
culture media of fertilized eggs, but not with follicular fluid
resulted in increased IL-10mRNA expression by the lymphocytes
(85).

These data suggest that embryo derived signals, can influence
the maternal immune response, however, the mechanism of
signal transport has not been thoroughly investigated.

In recent years EVs have received much attention. These
membrane-coated structures may express phosphatidylserine
(PS) in their membrane (86), which reacts with Annexin V.
EVs are categorized by their origin and size (87). Exosomes are
30–100 nm, and originate from internalized endocytic vesicles.
Microvesicles (100 nm−1

µm in diameter), are shed from the
plasma membrane by budding, and apoptotic vesicles (1–5µm
in diameter) are released from cells undergoing apoptosis (88).

All types of cells produce EVs which transport various cargos,
(including proteins, nucleic acids, and lipids) from one cell to the
other. Proteins, e.g., cytokines carried and released by EVs could
initiate signaling pathways, and thus alter the biological functions
of the target cells (89, 90).

Frontiers in Immunology | www.frontiersin.org 4 December 2018 | Volume 9 | Article 2890

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Szekeres-Bartho et al. PIBF and Extracellular Vesicles in Pregnancy

EVs might be considered as candidates for conveying the
information from the embryo to themother. Themessage carried
by EVs has been shown to affect the reproductive process at
different points.

EVs have been demonstrated in mouse oocytes (91) as well as
in the follicular fluid (92–96) and extra villous trophoblast (97).
The tetraspanins CD9 andCD81 expressed by oocyte derived EVs
have been suggested to play a role in sperm-oocyte membrane
fusion (98–100). Follicular fluid exosomes contain miRNAs,
some of them targeting genes that regulate oocyte growth (95)
as well as different pathways of reproduction, and endocrine
functions (94).

EV—mediated interactions between the endometrium and the
blastocyst promote implantation (101). In sheep endometrium,
EV production is controlled by progesterone, and endometrium
derived EVs were shown to reach the embryo, (102).

EVs from a human uterine epithelial cells express the
extracellular matrix metalloprotease inducer (103) which induces
the expression of MMPs, thus EVs might also play a role in
endometrial remodeling (101, 103, 104).

EVs can be produced by virtually all cell types, however it has
been debated, whether a single embryo would be able to produce
a detectable amount of EVs. The more so, because the culture

medium contains serum or serum albumin, both of which could
also be a source of EVs. In a review Tannetta et al. (105) points
out the difficulty of measuring EVs in embryo culture medium.

Now there is evidence, that pre-implantation embryos
produce EVs both in vitro and in vivo (106).

Earlier we showed that spent media of in vitro cultured
human embryos contain a significantly higher number of EVs,
than empty media, and the number of nucleic acid containing
EVs in day 5 human embryo culture media, might serve
as an indicator of embryo competence (106). Other groups
have also reported the presence of EVs in embryo culture
medium. It is now obvious that embryos release EVs, which
are taken up by close by cells (90). Giacomini et al. (107)
characterized HLA-G containing EVs isolated from conditioned
media from in vitro cultured human embryos. EVs were
demonstrated in the culture medium of bovine blastocyst and
the characteristics of these EVs varied depending on embryo
competence (108). Qu et al. (109) showed that the negative effects
of culture media replacement during embryo culture are due
to the loss of embryo derived EVs, and can be corrected by
exosome supplementation. This suggests, that embryo derived
EVs do indeed carry molecules that promote normal embryo
development.

FIGURE 4 | Communication between the embryo and the maternal immune system via extracellular vesicles.
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Embryo-derived EVs might also communicate with the
maternal immune system by presenting antigens (110, 111),
carrying MHC molecules (112–115), or cytokines (116–121).
HLA-G-positive EVs isolated from the plasma from healthy term
pregnant women have been reported to bind to T lymphocytes
(122), and moderately decrease peripheral T lymphocyte STAT3
phosphorylation (122). EVs at the same time can induce pro-
inflammatory cytokines and chemokines in primary macrophage
cultures (123, 124).

EVs bind to CD8+ and–though to a lesser degree to CD4+
lymphocytes-, via the phosphatidylserine—phosphatidylserine
receptor interaction (125). CD4+ and CD8+ cells express similar
numbers of phosphatidylserine receptors, therefore, it is likely,
that in addition to the phosphatidylserine—phosphatidylserine
receptor interaction, other, yet unidentified mechanisms might
also be involved in binding of EVs to CD8+ cells. With immuno-
electron microscopy we identified PIBF in embryo-derived EVs,
and showed that these PIBF containing EVs might affect the
immune response (125).

Incubation of murine spleen cells with embryo-derived EVs,
increased the number of IL-10+ cells among peripheral CD8+
cells, but not in the CD4+ population. IL-10 producing CD8+
T lymphocytes might moderate antigen-induced inflammatory
responses, since these cells have been shown to control influenza
virus induced inflammation in the foet (126), and to prevent liver
damage during chronic hepatitis C virus infection (127).

Pre-treatment of EVs with an anti-PIBF antibody abrogates
the above described effect of the EVs. These data suggest that
PIBF transported by the EVs from the embryo to maternal
lymphocytes might induce increased IL-10 production by the
latter, this way contributing to the Th2 dominant immune
responses described during pregnancy. The finding is in line
with our earlier data, (83) showing increased IL-10 production
of murine spleen cells in the presence of PIBF.

This pathway might have its significance in reproduction.
Because embryo derived EVs transport various molecules, - PIBF,
among others-, it cannot be ruled out, that these structures act as
means of feto-maternal or materno-fetal communication in the
peri-implantation period (Figure 4).
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et al. Lower urinary and serum progesterone-induced blocking factor
in women with preterm birth. J Reprod Immunol. (2016) 117:66–69.
doi: 10.1016/j.jri.2016.07.003

56. Beta J, Szekeres-Bartho J, Skyfta E, Akolekar R, Nicolaides KH. Maternal
serum progesterone-induced blocking factor at 11-13 weeks’ gestation in
spontaneous early preterm delivery. Fetal Diagn Ther. (2011) 29:197–200.
doi: 10.1159/000322388

Frontiers in Immunology | www.frontiersin.org 7 December 2018 | Volume 9 | Article 2890

https://doi.org/10.4049/jimmunol.180.8.5746
https://doi.org/10.1016/0002-9378(92)91835-X
https://doi.org/10.1016/0165-0378(93)90039-K
https://doi.org/10.1016/0008-8749(90)90083-4
https://doi.org/10.1016/0165-0378(89)90053-3
https://doi.org/10.1016/0165-0378(83)90003-7
https://doi.org/10.1016/0165-0378(85)90066-X
https://doi.org/10.1111/j.1600-0897.1999.tb00464.x
https://doi.org/10.4049/jimmunol.168.6.2683
https://doi.org/10.1210/jc.2002-021174
https://doi.org/10.1016/j.jri.2016.12.001
https://doi.org/10.1016/0165-2478(89)90162-4
https://doi.org/10.1111/j.1600-0897.1996.tb00056.x
https://doi.org/10.1210/me.2002-0290
https://doi.org/10.1016/j.ydbio.2005.11.016
https://doi.org/10.1210/er.2005-0018
https://doi.org/10.1095/biolreprod55.3.548
https://doi.org/10.1093/humupd/dmt040
https://doi.org/10.1073/pnas.0807606105
https://doi.org/10.1095/biolreprod.105.049379
https://doi.org/10.1080/14767050802041961
https://doi.org/10.1111/j.1600-0897.2008.00624.x
https://doi.org/10.1038/nm1680
https://doi.org/10.4049/jimmunol.171.11.5956
https://doi.org/10.1002/ijc.20326
https://doi.org/10.1242/jcs.078329
https://doi.org/10.1111/aji.12183
https://doi.org/10.1080/10428190701471999
https://doi.org/10.1007/s10571-014-0031-3
https://doi.org/10.1155/2017/1295087
https://doi.org/10.1016/j.jri.2008.06.002
https://doi.org/10.1007/s10815-008-9206-5
https://doi.org/10.1095/biolreprod.104.030437
https://doi.org/10.1016/j.jri.2016.07.003
https://doi.org/10.1159/000322388
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Szekeres-Bartho et al. PIBF and Extracellular Vesicles in Pregnancy

57. Kalinka J, Szekeres-Bartho J. The impact of dydrogesterone supplementation
on hormonal profile and progesterone-induced blocking factor
concentrations in women with threatened abortion. Am J Reprod Immunol.
(2005) 53:166–71. doi: 10.1111/j.1600-0897.2005.00261.x

58. Miko E, Halasz M, Jericevic-Mulac B, Wicherek L, Arck P, Arató, G.
Progesterone-induced blocking factor (PIBF) and trophoblast invasiveness.
J Reprod Immunol. (2011) 90:50–7. doi: 10.1016/j.jri.2011.03.005

59. Halasz M, Polgar B, Berta G, Czimbalek L, Szekeres-Bartho J. Progesterone-
induced blocking factor differentially regulates trophoblast and tumor
invasion by altering matrix metalloproteinase activity. Cell Mol Life Sci.
(2013) 70:4617–30. doi: 10.1007/s00018-013-1404-3

60. Balassa T, Berta G, Jakab L, Bohonyi N, Szekeres-Bartho J. The effect of the
progesterone-induced blocking factor (PIBF) on E-cadherin expression, cell
motility and invasion of primary tumour cell lines. J Reprod Immunol. (2018)
125:8–15. doi: 10.1016/j.jri.2017.10.047

61. Kozma N, Halasz M, Polgar B, Poehlmann TG, Markert UR, Palkovics
T, et al. Progesterone-induced blocking factor activates STAT6 via
binding to a novel IL-4 receptor. J Immunol. (2006) 176:819–26.
doi: 10.4049/jimmunol.176.2.819

62. Szekeres-Bartho J, Par G, Dombay GY, Smart YC, Volgyi Z. The
antiabortive effect of progesterone-induced blocking factor in mice is
manifested by modulating NK activity. Cell Immunol. (1997) 177:194–99.
doi: 10.1006/cimm.1997.1090

63. Koopman LA, Kopcow HD, Rybalov B, Boyson JE, Orange JS, Schatz
F, et al. Human decidual natural killer cells are a unique NK cell
subset with immunomodulatory potential. J Exp Med. (2003) 198:1201–12.
doi: 10.1084/jem.20030305

64. Redhead ML, Portilho NA, Felker AM, Mohammad S, Mara DL,
Croy BA. The Transcription Factor NFIL3 is essential for normal
placental and embryonic development but not for uterine natural
killer (UNK) cell differentiation in mice. Biol Reprod. (2016) 94:101.
doi: 10.1095/biolreprod.116.138495

65. Quillay H, El Costa H, Duriez M, Marlin R, Cannou C, Madec Y, et al.
NK cells control HIV-1 infection of macrophages through soluble factors
and cellular contacts in the human decidua. Retrovirology. (2016) 13:39.
doi: 10.1186/s12977-016-0271-z

66. Barel MT, Ressing M, Pizzato N, van Leeuwen D, Le Bouteiller P, Lenfant
F, et al. Human cytomegalovirus-encoded US2 differentially affects surface
expression of MHC class I locus products and targets membrane-bound,
but not soluble HLA-G1 for degradation. J Immunol. (2003) 171:6757–65.
doi: 10.4049/jimmunol.171.12.6757

67. Huang B, Faucette AN, Pawlitz MD, Pei B, Goyert JW, Zhou JZ,
et al. Interleukin-33-induced expression of PIBF1 by decidual B cells
protects against preterm labor. Nat Med. (2017) 23:128–35. doi: 10.1038/
nm.4244

68. Crncic TB, Laskarin G, Frankovic KJ, Tokmadzic VS, Strobo N, Bedenicki
I, et al. Early pregnancy decidual lymphocytes beside perforin use Fas
ligand (FasL) mediated cytotoxicity. J Reprod Immunol. (2007) 73:108–17.
doi: 10.1016/j.jri.2006.07.001

69. Faust Z, Laskarin G, Rukavina D, Szekeres-Bartho J. Progesterone-induced
blocking factor inhibits degranulation of natural killer cells. Am J Reprod
Immunol. (1999) 42:71–5.

70. Laskarin G, Strbo N, Sotosek V, Rukavina D, Faust Z, Szekeres-
Bartho J, et al. Progesterone directly and indirectly affects perforin
expression in cytolytic cells. Am J Reprod Immunol. (1999) 42:312–20.
doi: 10.1111/j.1600-0897.1999.tb00107.x

71. Quenby S, Farquharson R. Uterine natural killer cells, implantation
failure and recurrent miscarriage. Reprod Biomed Online (2006) 13:24–8.
doi: 10.1016/S1472-6483(10)62012-3

72. Veljkovic Vujaklija D, Dominovic M, Gulic T, Mahmutefendic H, Haller H,
Saito S, et al. Granulysin expression and the interplay of granulysin and
perforin at the maternal-fetal interface. J Reprod Immunol. (2013) 97:186–96.
doi: 10.1016/j.jri.2012.11.003

73. Yamada H, Kato EH, Kobashi G, Ebina Y, Shimada S, Morikawa M,
et al. High NK cell activity in early pregnancy correlates with subsequent
abortion with normal chromosomes in women with recurrent abortion.
Am J Reprod Immunol. (2001) 46:132–6. doi: 10.1111/j.8755-8920.2001.
460203.x

74. Quenby S, Nik H, Innes B, Lash G, Turner M, Drury J, et al. Uterine natural
killer cells and angiogenesis in recurrent reproductive failure. Hum Reprod.
(2009) 24:45–54. doi: 10.1093/humrep/den348

75. Lachapelle MH, Miron P, Hemmings R, Roy DC. Endometrial TB, and NK
cells in patients with recurrent spontaneous abortion. Altered profile and
pregnancy outcome. J Immunol. (1996) 156:4027–34.

76. Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional
cytokine interactions in the maternal-fetal relationship: is successful
pregnancy a TH2 phenomenon? Immunol Today (1993) 14:353–6.
doi: 10.1016/0167-5699(93)90235-D

77. Raghupathy R. Th1-type immunity is incompatible with successful
pregnancy. Immunol Today (1997) 18:478–82.

78. Raghupathy R, Al Mutawa E, Makhseed M, Azizieh F, Szekeres-Bartho
J. Modulation of cytokine production by dydrogesterone in lymphocytes
from women with recurrent abortion. Brit J Ob Gyn. (2005) 112:1096–01.
doi: 10.1111/j.1471-0528.2005.00633.x

79. Raghupathy R, Al-Mutawa E, Al-Azemi M, Makhseed M, Azizieh F,
Szekeres-Bartho J. The progesterone-induced blocking factor (PIBF)
modulates cytokine production by lymphocytes from women with recurrent
miscarriage and with preterm delivery. J Reprod Immunol. (2009) 80:91–9.
doi: 10.1016/j.jri.2009.01.004

80. Rezaei A, Dabbagh A. T-helper (1) cytokines increase during early pregnancy
in women with a history of recurrent spontaneous abortion.Med Sci Monit.
(2002) 8:CR607–10.

81. Hossein H, Mahroo M, Abbas A, Firouzeh A, Nadia H. Cytokine production
by peripheral blood mononuclear cells in RM. Cytokine (2004) 28:83–6.
doi: 10.1016/j.cyto.2004.07.002

82. Wilson B, Moor J, Jenkins C, Miller H, Walker JJ, McLean MA, et al.
Abnormal first trimester serum interleukin 18 levels are associated with a
poor outcome in women with a history of RM.Am J Reprod Immunol. (2004)
51:156–9. doi: 10.1046/j.8755-8920.2003.00126.x

83. Szekeres-Bartho J, Faust Z, Varga P, Szereday L, Kelemen K. The
immunological pregnancy protective effect of progesterone is manifested via
controlling cytokine production. Am J Reprod Immunol. (1996) 35:348–51.
doi: 10.1111/j.1600-0897.1996.tb00492.x

84. Szekeres-Bartho J, Wegmann TG. A progesterne-dependent immuno-
modulatory protein alters the Th1/Th2 balance J. Reprod Immunol. (1996)
31:81–95. doi: 10.1016/0165-0378(96)00964-3

85. Daya S, Clark DA. Immunosuppressive factor (or factors) produced by
human embryos in vitro. N Engl. J Med. (1986) 24:1551–2.

86. Kelemen K, Paldi A, Tinneberg H, Torok A, Szekeres-Bartho J. Early
recognition of pregnancy by the maternal immune system. Am J Reprod
Immunol. (1998) 39:351–5. doi: 10.1111/j.1600-0897.1998.tb00368.x

87. Morel O, Jesel L, Freyssinet J-M, Toti F. Cellular mechanisms underlying
the formation of circulating microparticles. Arterioscler Thromb Vasc Biol.
(2011) 31:15–26. doi: 10.1161/ATVBAHA.109.200956

88. Raposo G, StoorvogelW. Extracellular vesicles: exosomes, microvesicles, and
friends. J Cell Biol. (2013) 200:373–83. doi: 10.1083/jcb.201211138

89. Desrochers LM, Bordeleau F, Reinhart-King CA, Cerione RA, Antonyak
MA. Microvesicles provide a mechanism for intercellular communication
by embryonic stem cells during embryo implantation. Nat Commun. (2016)
7:11958. doi: 10.1038/ncomms11958

90. Saadeldin IM, Kim SJ, Choi YB, Lee BC. Improvement of cloned
embryos development by co-culturing with parthenotes: a possible role
of exosomes/microvesicles for embryos paracrine communication. Cell
Reprogr. (2014) 16:223e234. doi: 10.1089/cell.2014.0003

91. Barraud-Lange V, Chalas Boissonnas C, Serres C, Auer J, Schmitt A, Lefevre
B, et al. Membrane transfer from oocyte to sperm occurs in two CD9-
independent ways that do not supply the fertilising ability of Cd9-deleted
oocytes. Reproduction (2012) 144:53–66. doi: 10.1530/REP-12-0040

92. da Silveira JC, Veeramachaneni DN, Winger QA, Carnevale EM, Bouma
GJ. Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs
and proteins: a possible new form of cell communication within the ovarian
follicle. Biol Reprod. (2012) 86:71. doi: 10.1095/biolreprod.111.093252

93. Diez-Fraile A, Lammens T, Tilleman K,WitkowskiW, Verhasselt B, de Sutter
P, et al. Age-associated differential microRNA levels in human follicular
fluid reveal pathways potentially determining fertility and success of in vitro
fertilization.HumFertil. (2014) 17:90–8. doi: 10.3109/14647273.2014.897006

Frontiers in Immunology | www.frontiersin.org 8 December 2018 | Volume 9 | Article 2890

https://doi.org/10.1111/j.1600-0897.2005.00261.x
https://doi.org/10.1016/j.jri.2011.03.005
https://doi.org/10.1007/s00018-013-1404-3
https://doi.org/10.1016/j.jri.2017.10.047
https://doi.org/10.4049/jimmunol.176.2.819
https://doi.org/10.1006/cimm.1997.1090
https://doi.org/10.1084/jem.20030305
https://doi.org/10.1095/biolreprod.116.138495
https://doi.org/10.1186/s12977-016-0271-z
https://doi.org/10.4049/jimmunol.171.12.6757
https://doi.org/10.1038/nm.4244
https://doi.org/10.1016/j.jri.2006.07.001
https://doi.org/10.1111/j.1600-0897.1999.tb00107.x
https://doi.org/10.1016/S1472-6483(10)62012-3
https://doi.org/10.1016/j.jri.2012.11.003
https://doi.org/10.1111/j.8755-8920.2001.460203.x
https://doi.org/10.1093/humrep/den348
https://doi.org/10.1016/0167-5699(93)90235-D
https://doi.org/10.1111/j.1471-0528.2005.00633.x
https://doi.org/10.1016/j.jri.2009.01.004
https://doi.org/10.1016/j.cyto.2004.07.002
https://doi.org/10.1046/j.8755-8920.2003.00126.x
https://doi.org/10.1111/j.1600-0897.1996.tb00492.x
https://doi.org/10.1016/0165-0378(96)00964-3
https://doi.org/10.1111/j.1600-0897.1998.tb00368.x
https://doi.org/10.1161/ATVBAHA.109.200956
https://doi.org/10.1083/jcb.201211138
https://doi.org/10.1038/ncomms11958
https://doi.org/10.1089/cell.2014.0003
https://doi.org/10.1530/REP-12-0040
https://doi.org/10.1095/biolreprod.111.093252
https://doi.org/10.3109/14647273.2014.897006
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Szekeres-Bartho et al. PIBF and Extracellular Vesicles in Pregnancy

94. Sang Q, Yao Z, Wang H, Feng R, Zhao X, Xing Q, et al. Identification
of microRNAs in human follicular fluid: characterization of microRNAs
that govern steroidogenesis in vitro and are associated with polycystic
ovary syndrome in vivo. J Clin Endocrinol Metab. (2013) 98:3068–79.
doi: 10.1210/jc.2013-1715

95. Sohel MM, Hoelker M, Noferesti SS, Salilew-Wondim D, Tholen E, Looft C,
et al. Exosomal and non-exosomal transport of extra-cellular microRNAs in
follicular fluid: implications for bovine oocyte developmental competence.
PLoS ONE (2013) 8:e78505. doi: 10.1371/journal.pone.0078505

96. Burns G, Brooks K, Wildung M, Navakanitworakul R, Christenson LK,
Spencer TE. Extracellular vesicles in luminal fluid of the ovine uterus. PLoS
ONE (2014) 9:e90913. doi: 10.1371/journal.pone.0090913

97. Atay S, Gercel-Taylor C, KesimerM, Taylor DD.Morphologic and proteomic
characterization of exosomes released by cultured extravillous trophoblast
cells. Exp Cell Res. (2011) 317:1192–202. doi: 10.1016/j.yexcr.2011.01.014

98. Rubinstein E, Ziyyat A, Prenant M, Wrobel E, Wolf JP, Levy S, et al.
Reduced fertility of female mice lacking CD81. Dev Biol. (2006) 290:351–8.
doi: 10.1016/j.ydbio.2005.11.031

99. Tanigawa M, Miyamoto K, Kobayashi S, Sato M, Akutsu H, Okabe M, et al.
Possible involvement of CD81 in acrosome reaction of sperm in mice. Mol
Reprod Dev. (2008) 75:150–5. doi: 10.1002/mrd.20709

100. Ohnami N, Nakamura A, Miyado M, Sato M, Kawano N, Yoshida K,
et al. CD81 and CD9 work independently as extracellular components
upon fusion of sperm and oocyte. Biol Open (2012) 1:640–7.
doi: 10.1242/bio.20121420

101. Ng YH, Rome S, Jalabert A, Forterre A, Singh H, Hincks CL, et al.
Endometrial exosomes/microvesicles in the uterine microenvironment: a
new paradigm for embryo-endometrial crosstalk at implantation. PLoS ONE
(2013) 8:e58502. doi: 10.1371/journal.pone.0058502

102. Burns GW, Brooks KE, O’Neil EV, Hagen DE, Behura SK, Spencer TE.
Progesterone effects on extracellular vesicles in the sheep uterus. Biol Reprod.
(2018) 98:612–22. doi: 10.1093/biolre/ioy011

103. Braundmeier AG, Dayger CA, Mehrotra P, Belton RJ Jr, Nowak RA.
EMMPRIN is secreted by human uterine epithelial cells in microvesicles and
stimulates metalloproteinase production by human uterine fibroblast cells.
Reprod Sci. (2012) 19:1292–301. doi: 10.1177/1933719112450332

104. Burnett LA, Light MM, Mehrotra P, Nowak RA. Stimulation of GPR30
increases release of EMMPRIN-containing microvesicles in human
uterine epithelial cells. J Clin Endocrinol Metab. (2012) 97:4613–22.
doi: 10.1210/jc.2012-2098

105. Tannetta D, Dragovic R, Alyahyaei Z, Southcombe J. Extracellular vesicles
and reproduction-promotion of successful pregnancy. Cell Mol Immunol.
(2014) 11:548–63. doi: 10.1038/cmi.2014.42

106. Pallinger E, Bognar Z, Bodis J, Csabai T, Farkas N, Godony K, et al. A simple
and rapid flow cytometry-based assay to identify a competent embryo prior
to embryo transfer. Sci Rep. (2017) 6:39927. doi: 10.1038/srep39927

107. Giacomini E, Vago R, Sanchez AM, Podini P, Zarovni N, Murdica V,
et al. Secretome of in vitro cultured human embryos contains extracellular
vesicles that are uptaken by the maternal side. Sci Rep. (2017) 7:5210.
doi: 10.1038/s41598-017-05549-w

108. Mellisho EA, Velásquez AE, Nuñez MJ, Cabezas JG, Cueto JA, Fader
C, et al. Identification and characteristics of extracellular vesicles from
bovine blastocysts produced in vitro. PLoS ONE (2017) 12:e0178306.
doi: 10.1371/journal.pone.0178306

109. Qu P, Qing S, Liu R, Qin H,WangW, Qiao F, et al. Effects of embryo-derived
exosomes on the development of bovine cloned embryos. PLoS ONE (2017).
12:e0174535. doi: 10.1371/journal.pone.0174535

110. Montecalvo A, Shufesky WJ, Stolz DB, Sullivan MG, Wang Z, Divito SJ,
et al. Exosomes as a short-range mechanism to spread alloantigen between
dendritic cells during T cell allorecognition. J Immunol. (2008) 180:3081–90.
doi: 10.4049/jimmunol.180.5.3081

111. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief
CJ, et al. B lymphocytes secrete antigen-presenting vesicles. J ExpMed. (1996)
183:1161–72. doi: 10.1084/jem.183.3.1161

112. Nolte-’t Hoen EN, Buschow SI, Anderton SM, Stoorvogel W, Wauben MH.
Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood
(2009) 113:1977–81. doi: 10.1182/blood-2008-08-174094

113. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D,
et al. Eradication of established murine tumors using a novel cell-free

vaccine: dendritic cell-derived exosomes. Nat Med. (1998) 4:594–600.
doi: 10.1038/nm0598-594

114. Admyre C, Bohle B, Johansson SM, Focke-Tejkl M, Valenta R, Scheynius
A, et al. B cell-derived exosomes can present allergen peptides and activate
allergen-specific T cells to proliferate and produce TH2-like cytokines. J
Allergy Clin Immunol. (2007) 120:1418–24. doi: 10.1016/j.jaci.2007.06.040

115. Wakim LM, Bevan MJ. Cross-dressed dendritic cells drive memory
CD8+ T-cell activation after viral infection. Nature (2011) 471:629–32.
doi: 10.1038/nature09863

116. MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Surprenant
A. Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity
(2001) 15:825–35. doi: 10.1016/S1074-7613(01)00229-1

117. Pizzirani C, Ferrari D, Chiozzi P, Adinolfi E, Sandonà D, Savaglio E,
et al. Stimulation of P2 receptors causes release of IL-1beta-loaded
microvesicles from human dendritic cells. Blood (2007) 109:3856–64.
doi: 10.1182/blood-2005-06-031377

118. Qu Y, Franchi L, Nunez G, Dubyak GR. Nonclassical IL-1 beta secretion
stimulated by P2X7 receptors is dependent on inflammasome activation and
correlated with exosome release in murine macrophages. J Immunol. (2007)
179:1913–25. doi: 10.4049/jimmunol.179.3.1913

119. Xiang X, Liu Y, Zhuang X, Zhang S, Michalek S, Taylor DD, et al. TLR2-
mediated expansion of MDSCs is dependent on the source of tumor
exosomes. Am J Pathol. (2010) 177:1606–10. doi: 10.2353/ajpath.2010.
100245

120. Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin
JP, et al. Membrane-associated Hsp72 from tumor-derived exosomes
mediates STAT3-dependent immunosuppressive function of mouse and
human myeloid-derived suppressor cells. J Clin Invest. (2010) 120:457–71.
doi: 10.1172/JCI40483

121. Liu Y, Xiang X, Zhuang X, Zhang S, Liu C, Cheng Z, et al.
Contribution of MyD88 to the tumor exosome-mediated induction
of myeloid derived suppressor cells. Am J Pathol. (2010) 176:2490–9.
doi: 10.2353/ajpath.2010.090777

122. Pap E, Pallinger E, Falus A, Kiss AA, Kittel A, Kovacs P, et al. T lymphocytes
are targets for platelet- and trophoblast-derived microvesicles during
pregnancy. Placenta (2008) 29:826–32. doi: 10.1016/j.placenta.2008.06.006

123. Atay S, Gercel-Taylor C, Suttles J, Mor G, Taylor DD. Trophoblast derived
exosomes mediate monocyte recruitment and differentiation. Am J Reprod
Immunol. (2011) 65:65–77. doi: 10.1111/j.1600-0897.2010.00880.x

124. Atay S, Gercel-Taylor C, Taylor DD. Human trophoblast-derived
exosomal fibronectin induces pro-inflammatory IL-1beta production
by macrophages. Am J Reprod Immunol. (2011) 66:259–69.
doi: 10.1111/j.1600-0897.2011.00995.x

125. Pallinger E, Bognar Z, Bogdan A, Csabai T, Abraham H, Szekeres-
Bartho J. PIBF+ extracellular vesicles from mouse embryos affect IL-10
production by CD8+ cells. Sci Rep. (2018) 8:4662. doi: 10.1038/s41598-018-
23112-z

126. Sun J, Madan R, Karp CL, Braciale TJ. Effector T cells control lung
inflammation during acute influenza virus infection by producing IL-10
NatureMedicine (2009) 15:277–84. doi: 10.1038/nm.1929

127. Abel M, Sène D, Pol S, Bourlière M, Poynard T, Charlotte F, et al.
Intrahepatic virus-specific IL-10-producing CD8T cells prevent liver
damage during chronic hepatitis C virus infection. Hepatology (2006)
44:1607–16. doi: 10.1002/hep.21438

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

The handling editor is currently co-organizing a Research Topic with one of
the authors JS-B and confirms the absence of any other collaboration.
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