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Background: Over the past two decades, various novel disease-modifying drugs for

multiple sclerosis (MS) have been approved. However, there is high variability in the

patient response to the available medications, which is hypothesized to be partly

attributed to genetics.

Objectives: To conduct a systematic review of the current literature on the

pharmacogenomics of MS therapy.

Methods: A systematic literature search was conducted using PubMed/MEDLINE

database searching for articles investigating a role of genetic variation in response to

disease-modifying MS treatments, published in the English language up to October 9th,

2018. PRISMA guidelines for systematic reviews were applied. Studies were included if

they investigated response or nonresponse to MS treatment defined as relapse rate, by

expanded disability status scale score or based on magnetic resonance imaging. The

following data were extracted: first author’s last name, year of publication, PMID number,

sample size, ethnicity of patients, method, genes, and polymorphisms tested, outcome,

significant associations with corresponding P-values and confidence intervals, response

criteria, and duration of the follow-up period.

Results: Overall, 48 articles published up to October 2018, evaluating response to

interferon-beta, glatiramer acetate, mitoxantrone, and natalizumab, met our inclusion

criteria and were included in this review. Among those, we identified 42 (87.5%)

candidate gene studies and 6 (12.5%) genome-wide association studies. Existing

pharmacogenomic evidence is mainly based on the results of individual studies, or on

results of multiple studies, which often lack consistency. In recent years, hypothesis-free

approaches identified novel candidate genes that remain to be validated. Various study

designs, including the definition of clinical response, duration of the follow-up period,

and methodology as well as moderate sample sizes, likely contributed to discordances

between studies. However, some of the significant associations were identified in the

same genes, or in the genes involved in the same biological pathways.

Conclusions: At the moment, there is no available clinically actionable

pharmacogenomic biomarker that would enable more personalized treatment of
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MS. More large-scale studies with uniform design are needed to identify novel

and validate existing pharmacogenomics findings. Furthermore, studies investigating

associations between rare variants and treatment response in MS patients, using

next-generation sequencing technologies are warranted.

Keywords: Systematic review, multiple sclerosis, pharmacogenomics, treatment response, personalized

treatment

INTRODUCTION

Multiple sclerosis (MS) is a chronic autoimmune disease
characterized by the progressive infiltration of inflammatory cells
to the central nervous system (CNS), demyelination and axonal
damage. Although MS is affecting nearly 2.5 million individuals
worldwide (1), its etiology remains largely unexplained. The
clinical course of MS is highly heterogeneous, with current
evidence suggesting that the combination of environmental
and genetic risk factors is involved (1, 2). In general, three
types of MS have been characterized, including a relapsing-
remitting form of multiple sclerosis (RRMS) (80-85% of MS
patients), which might evolve into secondary progressive MS
(SPMS), and primary progressive MS (PPMS) manifesting
in 15% of patients (3). Also, the response to the existing
therapies largely varies between individuals, with estimated non-
responder rates ranging up to 50% for interferon beta (IFN-
beta) and glatiramer acetate (GA) (4, 5). Although the reasons
for that variability remain unclear, several previous studies have
implicated the role of genetics in response to MS treatment (6, 7).
While RRMS is the main focus of current pharmacogenomic
research, as it is the most common and the most responsive
to current treatment options, only a few treatments are
licensed to slow the progressive form of the disease (3, 8).
Approved medicines for MS include immunomodulatory and
immunosuppressive drugs andmonoclonal antibodies, including
subcutaneous and intramuscular interferons, subcutaneous GA,
intravenous (iv) natalizumab, oral fingolimod, teriflunomide and
dimethyl fumarate, iv mitoxantrone, iv alemtuzumab, and iv
ocrelizumab, most of them clinically proven to be effective
mainly in reducing annualized relapse rate (ARR) in the early
stages of the disease (9). Among most widely prescribed first-
line treatments worldwide remain IFN-beta and GA (10),
which reduce frequency and severity of relapses in RRMS
patients, decrease disease progression rate and improve magnetic
resonance imaging outcomes withminimal side effects. Those are
the characteristics that are beneficial; however, these drugs are
only partially effective, and the response of individual patients

Abbreviations: ARR, annualized relapse rate; BBB, blood-brain barrier; CNS,
central nervous system; CPIC, Clinical Pharmacogenetics Implementation
Consortium; EDSS, expanded disability status scale; GA, glatiramer acetate; GO,
gene ontology; GWAS, genome-wide association study; IFN-beta, interferon beta;
MHC, major histocompatibility complex; MRI, magnetic resonance imaging;
MS, multiple sclerosis; Nabs, neutralizing antibodies; PBMCs, peripheral blood
mononuclear cells; PharmGKB, The Pharmacogenomics Knowledgebase; PPMS,
primary progressive multiple sclerosis; PRISMA, Preferred Reporting Items for
Systematic Reviews and Meta-Analyses; RRMS, relapsing-remitting multiple
sclerosis; SPMS, secondary progressive MS.

to these therapies is highly unpredictable. Current literature
suggests that approximately 30-50% of patients do not respond
well to first-line therapies (depending on the response criteria
used) (5), which is hypothesized to be in part attributed to
inter-individual genetic variability. In clinical practice it is often
the case that patients should fail to respond to beta-interferons
or GA before receiving a second-line treatment (9); moreover,
clinical evaluation of response to the therapy requires 1-2 year
follow-up (11). It has previously been shown that there is a
limited time window for effective intervention, during which
the development of early brain atrophy, and thus cognitive
and physical deficits, can be minimized more effectively (12).
Therefore, the biomarkers that would predict the responsiveness
to therapy are indispensable to reduce adverse events and provide
the maximized efficacy and safety early in the disease course.

Although pharmacogenomics in clinical practice is
increasingly available, there is currently no established genetic
or any other clinical biomarker that would reliably predict a
response of an individual to selected MS therapy. However, with
a growing number of approved treatment options forMS patients
in recent years and rapid advances in genomic technologies,
personalized medicine has an opportunity to optimize treatment
for an individual.

In the present article, we report the results of the
conducted systematic review of currently published data on
the pharmacogenomics of MS to review the current status
of potential pharmacogenomic biomarkers and discuss their
future potential in providing the most effective treatment for
an individual.

METHODS

The systematic review was conducted according to Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) Statement guidelines1

Search Strategy
Articles on the pharmacogenomics of MS therapy published up
to October 9th, 2018 were searched in the PubMed/MEDLINE
database using the combinations of following keywords:
multiple sclerosis, pharmacogenomics, pharmacogenetics,
therapy response, genome-wide association study (GWAS),
genome-wide, gene association study, candidate gene study,
polymorphism/s, allele/s, and genetic variants. Search details are
given in the Box 1. The search was limited to articles published
in the English language. Firstly, articles were screened by title

1http://www.prisma-statement.org/.
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BOX 1 | Search details using PubMed database

((“multiple sclerosis”[All Fields] OR “interferon beta”[All Fields] OR “glatiramer acetate”[All Fields] OR “natalizumab”[All Fields] OR “fingolimod”[All Fields]

OR “teriflunomide”[All Fields] OR “dimethyl fumarate”[All Fields] OR “mitoxantrone”[All Fields] OR “alemtuzumab”[All Fields] OR “ocrelizumab”[All Fields]) AND

(“pharmacogenomics”[All Fields] OR “pharmacogenetics”[All Fields] OR “pharmacogenetic”[All Fields] OR “pharmacogenomic”[All Fields]))

OR

((“multiple sclerosis”[All Fields] OR “interferon beta”[All Fields] OR “glatiramer acetate”[All Fields] OR “natalizumab”[All Fields] OR “fingolimod”[All Fields] OR

“teriflunomide”[All Fields] OR “dimethyl fumarate”[All Fields] OR “mitoxantrone”[All Fields] OR “alemtuzumab”[All Fields] OR “ocrelizumab”[All Fields]) AND (“GWAS”[All

Fields] OR “genome-wide”[All Fields] OR “gene association study”[All Fields] OR “polymorphism”[All Fields] OR “polymorphisms”[All Fields] OR “allele”[All Fields]

OR "gene variant"[All Fields] OR “alleles”[All Fields]) AND (“treatment response”[All Fields] OR “therapy response”[All Fields] OR “response to therap”[All Fields] OR

(response[All Fields] AND ("interferon-beta"[MeSH Terms] OR “interferon-beta”[All Fields] OR ("interferon"[All Fields] AND “beta”[All Fields]) OR “interferon beta”[All

Fields])) OR (response[All Fields] AND ("glatiramer acetate"[MeSH Terms] OR (“glatiramer”[All Fields] AND "acetate"[All Fields]) OR "glatiramer acetate"[All Fields]))

OR (response[All Fields] AND (“mitoxantrone”[MeSH Terms] OR “mitoxantrone”[All Fields])) OR (response[All Fields] AND ("teriflunomide"[Supplementary Concept]

OR “teriflunomide”[All Fields])) OR (response[All Fields] AND (“fingolimod hydrochloride”[MeSH Terms] OR (“fingolimod”[All Fields] AND “hydrochloride”[All Fields])

OR “fingolimod hydrochloride”[All Fields] OR “fingolimod”[All Fields])) OR (response[All Fields] AND (“dimethyl fumarate”[MeSH Terms] OR (“dimethyl”[All Fields] AND

“fumarate”[All Fields]) OR “dimethyl fumarate”[All Fields])) OR (response[All Fields] AND (“natalizumab”[MeSH Terms] OR “natalizumab”[All Fields])))).

and abstract, next the full content was evaluated for their
eligibility. The selection of articles and eligibility evaluation
were carried out independently by the first two authors (KH and
SR). We discussed discrepancies between authors and reached
an agreement on the selection of articles for systematic review.
Finally, the main review articles were screened for possible
additional publications.

Inclusion and Exclusion Criteria
Studies were included if they investigated response or
nonresponse to treatment, defined as relapse rate, by expanded
disability status scale (EDSS) score or the definition was based on
magnetic resonance imaging (MRI), in the association to genetic
variability. We included available studies investigating the
pharmacogenomics of all currently approved disease-modifying
treatment options for MS patients. We excluded articles that:
(1) were not written in the English language, (2) were article
evaluations, case reports, reviews, study protocols, (3) were
using animal model, cell lines, in silico studies, (4) investigated
response by measuring NAbs/IFN-beta antibodies or studies
evaluating therapeutic response by other biochemical tests, (5)
were gene expression studies, and (6) investigated adverse drug
reactions, such as liver and cardiac injury, acute leukemia and
progressive multifocal leukoencephalopathy.

Data Collection
Two authors (KH and SR) independently extracted the following
data from articles: first author’s last name, year of publication,
PMID number, sample size, ethnic backgrounds of patients,
method, genes, and polymorphisms tested, outcome, significant
associations with corresponding P-values and confidence
intervals, response criteria, the duration of the follow-up period
and medication investigated. Finally, The Pharmacogenomics
Knowledgebase (PharmGKB) was reviewed for possible clinically
actionable variants in MS treatments and to search for the level
of evidence of the existing MS pharmacogenomic biomarkers.
Genes with detected significant associations were annotated for
Gene Ontology (GO) molecular functions and biological process
using the online PANTHERTM tool version 13.1 (13).

RESULTS

In the primary search, we identified a total of 297 articles in
the PubMed database. After reviewing titles and abstracts, 229
articles were excluded for the reasons presented in Figure 1.
Additional 20 studies were excluded after full-length review,
because they investigated treatment response by gene expression
(n=9), by measuring Nab/IFN-beta antibodies or by other
biochemical tests (n=6), investigated adverse drug reactions
(n=3), the sample size was small (less than 20) (n=1), and
investigated response to intravenous immunoglobulin (IVIG)
(n=1). In total, 48 publications investigating the association
between genetic variation and treatment response met our
inclusion criteria and were included in the systematic review:
40 (83 %) studies investigated treatment response to IFN-
beta (5 GWAS and 35 candidate gene studies), 9 (19 %)
studies investigated treatment response to GA (one GWAS
and 8 candidate gene studies). Among them, four studies
investigated the response to both medications; IFN-beta and
GA. In addition, we identified two candidate gene studies
investigating the response to mitoxantrone and one response to
natalizumab. No studies on the pharmacogenomics of newest
classes of agents, such as dimethyl fumarate, teriflunomide or
fingolimod were identified. Eleven variants with the level of
evidence 3 and influence on treatment efficacy were found in the
PharmGKB database. Results from candidate gene studies were
mostly not replicated, and studies were performed in different
populations. Furthermore, genes previously assessed in candidate
gene studies showed very little overlap with the significant GWAS
associations. Nevertheless, few consistent significant findings
(P<0.05) were reported in the candidate gene studies.

IFN-beta
Interferon-beta 1 is one of the most commonly prescribed
disease-modifying therapies for patients with MS. Interferons
are endogenous regulatory cytokines that bind to specific IFN
alpha/beta receptors found on the surface of the cells of the
immune system and consequently change the expression of
many genes, depending on cell type - the inflammatory cytokine
synthesis is inhibited (IL-12, IL-17, IL-23), while the production
of anti-inflammatory cytokines (IL-4, IL-10) increases, which
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FIGURE 1 | Flow diagram of identification and selection of studies.

provokes differentiation toward a CD4+ T helper cell type
phenotype -Th2 immune response (14). Additionally, interferon
reduces the expression of matrix metalloproteases, affects the
expression of cell adhesion molecules located on the endothelial
surface and on the activated T-cell surface, which results in
reduced T-cell activation and reduced lymphocyte migration
across the blood-brain barrier (BBB). The potential antiviral
activity of IFN-beta has also been proposed (15).

Candidate Gene Studies IFN-beta
We identified 35 studies investigating the association between
genetic variability and response to IFN-beta, four of them also
investigating the response to GA. The details of the included
studies are presented in Supplementary Table 1. The selection
of candidate genes in these studies was mainly based on the
proposed mechanisms of action of IFN-beta, and in recent years,

studies have also been designed to validate the significant results
obtained from genome-wide studies. Some examples of candidate
genes investigated were: HLA class II genes, MXA, genes coding
for interferon receptors IFNAR1, IFNAR2 and other interferon-
stimulated response elements (ISREs), interferon gamma IFNG,
chemokine receptor CCR5, genes related to the type I IFN
and TLR pathways, genes coding for GABA and glutamate
receptors, genes encoding cytokines and their receptors, innate
pattern recognition receptors, antigens CD46 and CD58, CTLA4,
HAPLN1, ACE and APOE gene.

There are a limited number of studies conducted on the
same polymorphisms. Furthermore, among those, the results
were largely inconsistent. Sixteen (46%) of included IFN-
beta candidate gene studies failed to identify any significant
association comparing genetic variation between responders to
non-responders. Non-significant associations were repeatedly
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reported within the HLA locus of class I and/or II (six times)
(4, 16–20), in IFNAR1 and INFAR2 genes (two times) (21, 22),
in APOE gene (two times) (23, 24), in IRF5 gene (25, 26), and
NLRP3 gene (27, 28). Other non-significant associations included
MXA (29), HAPLN (30), IFNL3 (31), IRF8 (26), and GPC5
(26) genes. However, some reproducible significant associations
between IFN-beta response and genetic variability have also
been detected.

Despite the negative association results between
polymorphisms located in the promoter region of theMXA gene
and IFN-beta response reported by Weinstock-Guttman et al.
(29), the significant association was repeatedly demonstrated
by two independent studies, which together comprised three
different SNPs inMXA gene, including rs464138 AA (P<0.0001,
OR= 6.23 [95% CI, 2.77–14.03]), rs2071430G allele (P=0.015,
OR=3.4 [95% CI, 1.1-11.4]), and rs17000900 GG (P=0.018,
OR= 2.4 [95% CI, 1.1-5.4]) (32, 33). One of those studies,
which investigated 100 ISREs-containing genes in association
to IFN-beta response heterogeneity, additionally identified
significant associations between IFNAR1 rs55884088 (GT)n
repeat (P=0.036), LMP7 rs2071543C allele (P=0.002, OR=6.4
[95% CI, 1.8-24.1]), and CTSS rs1136774C allele (P=0.02, OR=
0.4 [95% CI, 0.2-0.8]) (32). Another SNP located in the third
intron of the IFNAR1 gene was additionally associated with
response to IFN-beta in the study of Sriram et al. (21), suggesting
a modest association of rs1012334A allele with relapse-free
status (P=0.030, OR=0.9 [95% CI, 0.2-1.2]). Furthermore,
IFNAR1 rs1012335G allele was associated with positive IFN-
beta treatment response (34) and was additionally, in allelic
combinations, suggested as a marker of choice for IFN-beta
treatment over GA (6).

Another repeatedly studied variation is a 32-base pair (bp)
deletion of the CCR5 gene (CCR5∗d, rs333). A significant
association between CCR5 deletion allele and IFN-beta treatment
response in MS patients was confirmed by three independent
analyses. In the study of Kulakova et al. (6), CCR5∗d was more
frequently found in Russian MS patients with optimal response
to IFN-beta and GA non-responders, while CCR5∗w/w was
enriched in IFN-beta non-responders and GA responders. In the
related study, allelic combinations of (CCR5∗d + IFNAR1∗G +

IFNB1∗T/T) or (CCR5∗d + IFNAR1∗G + IFNG∗T) were proven
to be beneficial for IFN-beta treatment efficacy (34). A significant
association between CCR5∗d and IFN-beta treatment response
in MS patients was also detected in the Egyptian population by
Karam et al. (35) (P=0.01, OR= 3.2 [95%-CI, 1.1–8.8]).

Certain genotypes of IRF5 gene polymorphisms (rs2004640
TT, P=0.0006, and rs47281420 AA, P=0.0023) were reported to
exert a poor pharmacological response to IFN-beta, with more
T2 lesions detected (36). In terms of particular polymorphic loci,
the finding IRF5 rs2004640 was replicated in an independent
population within the same study (P=0.037). The study of
Vandenbroeck et al. (25) identified the trend toward a greater T
allele frequency for the variant of IRF5 rs3807306 polymorphism
in responders (P=0.09), whereas no evidence of an association
for IRF5 rs4728142 was detected. Evidence that an AA genotype
of IRF8 rs17445836 polymorphism influences event-free survival
in IFN-beta treated subjects was also found (P=0.017, OR=0.45

[95% CI, 0.2-0.9]) (19). Contrary, the study conducted in a
Danish cohort of patients by Sellebjerg et al. (26), failed to
identify any association between polymorphisms located in IRF5
(rs2004640, rs3807306, rs4728142) and in IRF8 (rs13333054 and
rs17445836) genes.

The number of studies attempting to validate or further
investigate the results of GWAS studies is limited. Polymorphous
loci in the GPC5 gene were reproducible with candidate-gene
study of Cénit et al. (rs10492503 AA, P=0.018, OR=3.0 [95%
CI, 1.3-6.6]; rs1411751 GG, P=0.012, OR=3.7 [95% CI, 1.5-
9.4]), and GWAS by Byun et al. (rs10492503, rs9301789) (37),
while the candidate gene study conducted by Sellebjerg et al. (26)
yielded non-significant result. The aim of the study conducted by
Bustamante et al. (38) was to further investigate the results of two
GWAS studies that highlighted the importance of genes playing
role in toll-like receptor (TLR) pathways, type I interferon (IFN)-
induced genes, and genes coding for GABA and glutamate
receptors. An investigation of 384 polymorphisms located
in those genes, detected only two significant polymorphisms
(rs2277302 in PELI3 gene, P=0.008, and rs832032 in GABRR3,
P=0.006 gene). Overall association of polymorphisms located in
these pathways was therefore not confirmed (38).

As the evidence of polygenic nature of IFN-beta treatment
response, allelic combinations (JAK2-IL10RB-GBP1-PIAS1 and
JAK2-IL10-CASP3) were detected as significant, while no
significant association of tested individual polymorphisms was
found (39). In another study, MS patients with non-GCC
haplotypes (rs1800896, rs1800871, rs1800872) of the IL10 gene
experienced fewer new MRI T1-contrast enhancing lesions than
patients with the GCC haplotype (40).

Other positive associations included: intronic polymorphism
rs2542109 of the USP18 gene, TGFB1 rs1800469, TRAILR-1
rs20576, CD46 rs2724385, GPC5 rs10492503 and rs1411751
polymorphisms, polymorphic microsatellite located in the first
intron of the IFNG gene, and CD58 rs12044852 polymorphism.

Significant associations (P<0.05) between treatment response
and IFN-beta, identified in at least one study, are presented
in Table 1.

GWAS Studies and IFN-beta
Currently, five GWAS studies investigating an association
between IFN-beta treatment response and genetic variation were
carried out. GWAS study, which investigated SNPs in HLA-
and non-HLA genes in association with the development of
antibodies to IFN-beta therapy, was excluded from this review
(48). None of the GWAS studies reported similar results, but they
uniquely suggested that multiple genes influence the treatment
response to IFN-beta. Furthermore, on the level of genes, most
of the results were in deviation with previously conducted
candidate-gene studies, thus providing novel candidate genes
that might be involved in response to IFN-beta treatment.
However, it is important to note that some potential candidate
genes reported by independent GWAS studies were involved in
the same biological pathways.

In the first GWAS study, conducted in 2008 by Byun et al. (37),
authors found out that many of the detected differences between
responders and non-responders were located in genes involved
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TABLE 1 | Significant associations from candidate gene studies and IFN-beta MS treatment response along with selected gene ontology (GO) annotations. Pperm,

P-value permutation test; Pf , P-value exact Fisher’s test.

Gene symbol Full gene name dbSNP ID; P-value; OR, 95-CI GO molecular function GO biological processes

MXA promoter

region (32), (33)

Myxovirus resistance

protein

rs464138

AA genotype, P < 0.0001, OR = 6.23

[2.77–14.03]

rs2071430

G allele, P = 0.015, OR = 3.4 [1.1–11.4]

rs17000900

GG genotype, P = 0.018, OR = 2.4

[1.1–5.4]

– –

ACE (41) Angiotensin-

converting

enzyme

I/D

D allele, P = 0.022, OR = 2.43 [1.13–5.20]

Carboxypeptidase activity

Endopeptidase activity

Metallopeptidase activity

peptidyl-dipeptidase activity

Regulation of vasoconstriction

Regulation of blood pressure

Neutrophil mediated immunity

Antigen processing and presentation

of peptide antigen via MHC class I

Angiotensin maturation

Mononuclear cell proliferation

CCR5, (6), (34), (35) C-C motif chemokine

receptor 5

rs333/ CCR5*d

P = 0.01, OR = 3.2 [1.1–8.8]

Another study, Pf = 0.036, OR = 1.9

In allelic combinations:

CCR5*d+IFNAR1*G+IFNB1*T/T

Pperm = 0.017, OR = 14.3 [1.7–119.4]

CCR5*d+IFNAR1*G+IFNG*T

Pperm = 0.035, OR = 2.8 [1.3–6.0]

Comparative to GA:

CCR5*d+IFNAR1*G+DRB1*15+TGFB1*T

Pf = 0.00054, Pperm = 0.004, OR = 13.2

[3.1–55.4]

CCR5*w/w+CTLA4*G

Pperm = 0.017

Chemokine receptor activity

Protein binding

C-c chemokine receptor

activity

Cellular defense response MAPK

cascade

Dendritic cell chemotaxis

Calcium ion transport

Immune response

Inflammatory response

Chemotaxis

CD58 (42) CD58 molecule rs12044852

CC genotype, P < 0.05

Receptor binding Immune response

Cellular response to

interferon-gamma

Leukocyte migration

PELI3 (38) Pellino E3 ubiquitin

protein ligase family

member 3

rs2277302

P = 0.008, OR = 1.29 [1.07–1.56]

Protein binding ubiquitin

protein ligase activity

Toll signaling pathway

Immune response

GABRR3 (38) Gamma-aminobutyric

acid type A receptor

rho3 subunit

(gene/pseudogene)

rs832032

P = 0.006, OR = 1.31 [1.08–1.59]

Gaba receptor activity signal

transducer activity

Regulation of biological process

Response to stimulus

IFNAR1 (6), (21),

(32), (34)

Interferon alpha and

beta receptor subunit

1

rs55884088

(GT)n repeat, P = 0.036

rs1012334

A allele, P = 0.030, OR = 0.9 [0.2–1.2]

In allelic combinations

rs1012335:

CCR5*d+IFNAR1*G+IFNB1*T/T

Pperm = 0.017, OR = 14.3 [1.7–119.4]

CCR5*d+IFNAR1*G+IFNG*T

Pperm = 0.035, OR = 2.8 [1.3–6.0]

Comparative to GA:

CCR5*d+IFNAR1*G+DRB1*15+TGFB1*T

Pf = 0.00054, Pperm = 0.004, OR = 13.2

[3.1–55.4]

Cytokine receptor activity

protein binding signal

transducer activity

Regulation of biological process

Response to stimulus

Type I interferon signaling pathway

Defense response to virus

(Continued)
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TABLE 1 | Continued

Gene symbol Full gene name dbSNP ID; P-value; OR, 95-CI GO molecular function GO biological processes

TGFB1 (6), (34) Transforming growth

factor beta 1

rs1800469

C allele, P = 0.042, OR = 9.2 [0.2–70.4]

Comparative to GA:

CCR5*d+IFNAR1*G+DRB1*15+TGFB1*T

Pf = 0.00054, Pperm = 0.004, OR = 13.2

[3.1–55.4]

Transforming growth factor

beta receptor binding

MAPK cascade apoptotic process

Biosynthetic process

Mononuclear cell proliferation

Nitrogen compound metabolic

process

Regulation of phosphate

Regulation of transcription from RNA

polymerase II promoter

Response to endogenous stimulus

Transmembrane receptor protein

Serine/threonine kinase signaling

pathway

Positive regulation of regulatory T cell

differentiation

Leukocyte migration

USP18 (43) Ubiquitin specific

peptidase 18

rs2542109

AA genotype, P = 0.041, OR = 1.8

[1.0–3.1]

Thiol-dependent ubiquitinyl

hydrolase activity

thiol-dependent

ubiquitin-specific protease

activity isg15-specific

protease activity protein

binding

Protein deubiquitination

Ubiquitin-dependent protein catabolic

process regulation of type I interferon

mediated signaling

Pathway regulation of inflammatory

response

TRAILR-1 (44) TRAIL receptor1 rs20576

CC genotype, validation cohort: P = 8.88

× 10−4, Pc = 0.048, OR = 0.30 [0.1–0.6]

Cysteine-type peptidase

activity

Protein binding

Signal transducer activity

Tumor necrosis

factor-activated receptor

activity

Apoptotic process

Cell proliferation

Cytokine-mediated signaling pathway

Immune response

Regulation of biological process

Regulation of catalytic activity

Response to biotic stimulus

Response to stress

Single-multicellular organism process

Leukocyte migration

IFNG (34), (45) Interferon gamma polymorphic microsatellites in the first

intron,

(CA)12, P = 0.013, OR = 0.5 [0.3–0.9]

(CA)13, P = 0.04, OR = 1.8 [1.0–3.1]

(CA)14, P = 0.009, OR = NA

(CA)15, P = 0.005, OR = 0 [0–0.6]

In allelic combinations rs2430561:

CCR5*d+IFNAR1*G+IFNG*T,

Pperm = 0.035, OR = 2.8 [1.3–6.0]

Cytokine activity Immune response

Cellular response to

lipopolysaccharide

Defense response to virus

IFNB1 (34) Interferon beta 1 In allelic combinations

rs1051922:

CCR5*d+IFNAR1*G+IFNB1*T/T

Pperm = 0.017, Pf = 0.0028, OR = 14.3

[1.7–119.4]

Interferon-alpha/beta

receptor binding

JAK-STAT cascade biosynthetic

process

Cell differentiation

Cell proliferation

Cytokine-mediated signaling pathway

Type I interferon signaling pathway

Hemopoiesis

Natural killer cell activation

Protein phosphorylation

Regulation of phosphate metabolic

process

Response to stress

Single-multicellular organism process

Defense response to virus

Regulation of innate immune

response

IRF5 (36) Interferon regulatory

factor 5

rs2004640

TT genotype, P = 0.0006, Preplication =

0.037

rs47281420

AA genotype, P = 0.0023

Sequence-specific dna

binding transcription factor

activity

Regulation of transcription from RNA

polymerase II promoter

Response to interferon-gamma

Defense response to virus

(Continued)
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Hočevar et al. Pharmacogenomics of Multiple Sclerosis: A Systematic Review

TABLE 1 | Continued

Gene symbol Full gene name dbSNP ID; P-value; OR, 95-CI GO molecular function GO biological processes

IRF8 (19) Interferon regulatory

factor 8

rs17445836

AA genotype, P = 0.017, OR = 0.45

[0.2–0.9]

Sequence-specific dna

binding transcription factor

activity

Regulation of transcription from RNA

polymerase II promoter

Cellular response to

interferon-gamma

Cellular response to

lipopolysaccharide

CD46 (46) CD46 molecule rs2724385

TT genotype, P = 0.006, OR = 3.5

[1.4–8.9]

AT genotype, P = 0.007, OR = 0.40

[0.20–0.79]

Endopeptidase activity

complement binding virus

receptor activity

Positive regulation of regulatory T cell

differentiation

Blood coagulation

Cell-cell adhesion

Complement activation signal

transduction

GPC5 (30) Glypican 5 rs10492503

AA genotype, P = 0.018, OR = 3.0

[1.3–6.6]

rs1411751

GG genotype, P = 0.012, OR = 3.7

[1.5–9.4]

Heparan sulfate

proteoglycan binding

Glycosaminoglycan metabolic

process

Glycosaminoglycan catabolic process

Glycosaminoglycan biosynthetic

process

Retinoid metabolic process

Il10 (39), (40) Interleukin 10 In allelic combinations,

JAK2-IL10-CASP3

Pperm = 0.001

non-GCC haplotypes (rs1800896,

rs1800871, rs1800872)

P = 0.04

Protein binding cytokine

activity

Positive regulation of endothelial cell

proliferation

Positive regulation of transcription,

DNA-templated

Negative regulation of B cell

proliferation

Negative regulation of cytokine

secretion involved in immune

response

Response to molecule of bacterial

origin

Negative regulation of myeloid

dendritic cell activation

Cellular response to

lipopolysaccharide

LMP7 (32) Proteasome subunit

beta 8

rs2071543

C allele, P = 0.002, OR = 6.4 [1.8–24.1]

Threonine-type

endopeptidase activity

Viral process

Type I interferon signaling pathway

Transmembrane transport

MAPK cascade

Protein polyubiquitination

Protein deubiquitination

CTSS (32) Cathepsin S rs1136774

C allele, P = 0.02, OR = 0.4 [0.2–0.8]

Cysteine-type peptidase

activity

Toll-like receptor signaling pathway

Antigen processing and presentation

Adaptive immune response

Proteolysis

Antigen processing and presentation

of exogenous peptide antigen via

MHC class II

HLA-DBR1,

HLA-A,

HLA-B (6), (47)

Histocompatibility

complex

HLA-DRB1*04 allele, P = 0.008

OR = 1.94 [1.19–3.17]

HLA-B*15 allele, P = 0.03

OR = 0.29 [0.10–0.84]

Comparative to GA:

CCR5*d+IFNAR1*G+DRB1*15+TGFB1*T

Pf = 0.00054, Pperm = 0.004, OR = 13.2

[3.1–55.4]

Antigen binding, receptor

binding

Antigen processing and presentation

Type I interferon signaling pathway

Regulation of immune response

in ion channels and signal transduction pathways. Additionally,
the authors also suggested that genetic variants in heparan sulfate
proteoglycan genes (HAPLN1) might be useful as possible clinical
predictors of response to MS therapy. Results of the second
GWAS study conducted by Comabella et al. (11), indicated the
importance of the glutamatergic system (GRIA3 gene) in patients

response to IFN-beta therapy. The GWAS study, conducted by
Esposito and colleagues followed in 2015 and reported candidate
intronic polymorphism rs9828519 in the SLC9A9 gene encoding
for sodium/hydrogen exchanger found in endosomes. For this
gene, a broader role in MS pathogenesis, beyond treatment with
IFN-beta, was also proposed. The gene product was functionally
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characterized to inhibit the development of pro-inflammatory
CD4+ T cells (7).

In the study of Mahurkar et al. (49), none of the SNPs reached
the level of genome-wide significance. The strongest associations
were observed for FHIT gene and followed by variants in
GAPVD1 and near ZNF697 gene. In the discovery stage of this
study, samples were individually genotyped using Illumina R©

arrays, which distinguishes it from previously published GWAS
studies where pooled genotyping was performed. A recent
GWAS study conducted by Clarelli et al. (50) investigated long-
term treatment response considering a 4-year follow-up study
period and included only patients with extreme phenotypes of
treatment responses. In contrast, all of the previous GWAS
studies have taken into account 2-year follow up period. In
summary, alterations in the genes involved in immunoregulatory
processes, the glutamatergic system (GRIK2 and GRM3), and
signal transduction (GAPVD1) reached the highest significance.

Lack of overlap between GWAS studies likely reflects the
differences in definitions of responders or non-responders,
furthermore, GWAS studies covered populations of various
ethnicities, including Italian, German, Spanish, and Australian.
Also, the methodology was based on different genotyping
platforms - first two GWAS studies used Affymetrix genotyping
platforms, covering 100 000 and 428 867 SNPs, respectively,
while Illumina arrays were used in all of the later studies
(Illumina R© Human 660-Quad platform, Illumina R© 2.5M
platform, Illumina R© OmniExpress BeadChip and Illumina R©

OMNI-5M array). However, we showed that genes identified by
GWAS studies were significantly enriched for ionotropic
glutamate receptor signaling pathway (GO:0035235).
Top-ranking results from GWAS studies are summarized
in Table 2.

Candidate Gene Studies and Glatiramer
Acetate
Glatiramer acetate is another widely prescribed disease-
modifying therapy for patients with MS, with a complex and yet
not fully understoodmechanism of action. GA is a heterogeneous
mixture of synthetic polymers made of random sequences of
four amino acids (51). It acts through immunomodulatory
actions to the cells of innate and acquired immune response.
Through binding to MHC Class II molecules, it participates in
the generation of GA-specific T-cells and shifts their phenotype
from pro-inflammatory helper-T types 1 and 17 (Th1/Th17)
to anti-inflammatory regulatory T cells (Tregs) and helper-
T type 2 (Th2) cells. Additionally, GA-specific T-cells are
able to migrate through the BBB, where they induce local
secretion of anti-inflammatory cytokines at the site of the
lesions (51).

Eight candidate gene studies investigating an association
between polymorphisms and treatment response to GA met our
inclusion criteria. Four of them were mentioned above, as they
also investigated IFN-beta treatment response. Detailed data on
studies is summarized in Supplementary Table 1. Hypothesis-
driven approaches have primarily investigated genes involved

in the mechanism of action of GA. Contrary to IFN-beta
response, the HLA class I /II genes have been repeatedly
positively associated with GA treatment response. The HLA
DRB1 ∗1501 allele was demonstrated to influence the response
to GA therapy in the cohort of 44 Italian RRMS patients
(P=0.008) (4) and in the cohort of 332 American patients, HLA-
DBR1∗1501/1501 genotype was significantly enriched among
GA-responders (rs3135388, PAG/AA=0.015, OR=2.7 [95% CI,
1.2-6.0]) (19). The related study conducted in 64 American
subjects with RRMS, showed that the presence of HLA DR15 or
DQ6 alleles or the absence of DR17 and DQ2 alleles is nominally
associated with a favorable clinical response (52). The authors
also demonstrated that the presence of the DR15-DQ6 haplotype
and the absence of the DR17-DQ2 haplotype is significantly
associated with positive treatment response (52). Furthermore,
in a cohort of 296 Russian patients, the nominally significant
association of HLA-DRB1∗4 allele with a positive response to
GA was detected comparing responders to nonresponders and
intermediate responders, Pf=0.015, OR=2.02 [95% CI, 1.11–
3.67] (53).

One of the first pharmacogenetics candidate-gene studies on
GA, reported a significant association between GA response
and two SNPs, rs71878 in a T-cell receptor beta (TCRB) gene
(P=0.015, OR= 6.85 [95% CI, 1.45–31.9]) and rs2275235 in
the cathepsin S (CTSS) (P=0.014, OR= 11.59 [95% CI, 1.6–
81.9]) (54). Nominally significant associations were shown
for additional genes MBP, CD86, FAS, IL1R1, and IL12RB2.
However, in the same experiment, no significant association for
the HLA-DRB1∗1501 allele was identified, suggesting the genetic
heterogeneity of this region among the different populations as
the possible reason (54).

Using comparative pharmacogenomics approach
investigating allelic combinations of CCR5, IFNAR1, TGFB1,
DRB, and CTLA4 genes, the CCR5∗w/w genotype was the most
enriched in GA responders compared to IFN-beta responders
(6). In the most recent study examining association between
GWAS identified MS susceptibility loci and efficacy of GA
therapy in a Russian population of 296 RRMS patients, five
SNPs were associated by themselves with event-free phenotype:
EOMES rs2371108 T allele, CLEC16A rs6498169A allele,
IL22RA2 rs202573 GG genotype, PVT1 rs2114358A allele,
and HLA-DBR1∗4 (Pf=0.032-0.00092). Authors demonstrated
increased significance levels when taking into account biallelic
and triallelic combinations of these genes with additionally
included polymorphic variants of TYK2, CD6, IL7RA and IRF8
genes (53).

Genes with at least one detected significant association
(P<0.05), along with GO biological processes and molecular
functions, are presented in Table 3.

GWAS and Glatiramer Acetate
To date, one GWAS study investigating the research question
of pharmacogenomics and GA has been published (56).
Patients with extreme phenotypes were included in the
analysis, considering a 4-year follow-up period. Genotyping
was conducted using Illumina OMNI-5M genome-wide array R©
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TABLE 2 | Genes with detected significant associations with response to IFN-beta in at least one study and top-ranking results from GWAS studies along with selected

gene ontology (GO) biological processes and molecular functions.

Gene Gene name dbSNP ID; P-value; OR, 95-CI GO molecular function GO biological procesess

GRHL3 (50) Grainyhead-like 3 rs6691722

Pmeta = 5,96 × 10−6, OR = 0.4221

Sequence-specific DNA binding

transcription factor activity

Biosynthetic process

Cellular process

Nitrogen compound metabolic

process

Regulation of transcription from RNA

polymerase II promoter

NINJ2 (50) Nerve

injury-induced

protein 2

rs7298096

Pmeta = 9.8 × 10−5, OR = 0.51

Protein binding Cellular process

Nervous system development

TBXAS1 (50) Thromboxane A

synthase 1

rs4726460

Pmeta = 7.41 × 10−5, OR = 0.4662

Heme binding monooxygenase

activity

Oxidation-reduction process

Positive regulation of vasoconstriction

GRM3 (50) Glutamate

receptor,

metabotropic, 3

rs2237562

Pmeta = 2.21 × 10−4, OR = 0.47 Binding

Glutamate receptor activity

Signal transducer activity

G-protein coupled receptor signaling

pathway

Neurological system process

Neuron-neuron synaptic transmission

Regulation of biological process

Response to stimulus

GRIK2 (50) Glutamate

receptor,

ionotropic, kainate

2

rs1475919

Pmeta = 1.89 × 10−4, OR = 2.37

Ionotropic glutamate receptor

activity

extracellular-glutamate-gated ion

channel activity

Synaptic transmission

Glutamatergic glutamate receptor

signaling pathway

Intracellular protein transport

Cellular calcium ion homeostasis

Excitatory postsynaptic potential

GAPVD1 (49) GTPase-activating

protein and vps9

domains 1

rs10819043

Pcombined (discovery&replication) =

5.83x10−5

rs10760397

Pcombined = 6.51 × 10−5

rs2291858

Pcombined = 1.67 × 10−4

Guanyl-nucleotide exchange

factor activity

Protein binding

Small GTPase regulator activity

Endocytosis

Intracellular protein transport

ZNF697 (49) Zinc finger Protein

697

rs10494227

Pcombined = 8.15 × 10−5
Molecular function

Metal ion binding

DNA binding

Biological process

Regulation of transcription,

DNA-templated

Transcription, DNA-templated

FHIT (49) Fragile histidine

triad gene

rs760316

Pcombined = 6.74 × 10−6
Nucleotide phosphatase activity –

SLC9A9 (7) Solute carrier

family 9

(sodium/hydrogen

exchanger),

member 9

rs9828519

Pdiscovery = 4.43 × 10−8

Preplication = 7.78 × 10−4

Cation transmembrane

transporter activity

Hydrogen ion transmembrane

transporter activity

Cellular process

Homeostatic process

ADAR (11) Adenosine

deaminase,

RNA-specific

rs2229857

A allele, P = 0.02, OR = 2.1 [1.1–4.0]

DNA binding

RNA binding

Deaminase activity

Hydrolase activity

Kinase activator activity

Protein binding

RNA localization

Cell cycle

Protein metabolic process

Purine nucleobase metabolic process

Response to stimulus

IFNAR2 (11) Interferon-alpha,

-beta, and -omega

receptor 2

rs2248202

C allele, P = 0.04, OR = 1.9 [1.0–3.7]

Cytokine receptor activity protein

binding signal transducer activity

Regulation of biological process

Response to stimulus

CIT (11) Citron

rho-interacting

serine/threonine

kinase

rs7308076

C allele, P = 0.006, OR = 2.4

[1.3–4.4]

Protein kinase activity Cell cycle

Intracellular signal transduction

(Continued)

Frontiers in Neurology | www.frontiersin.org 10 February 2019 | Volume 10 | Article 134

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
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TABLE 2 | Continued

Gene Gene name dbSNP ID; P-value; OR, 95-CI GO molecular function GO biological procesess

ZFAT (11) Zinc finger gene in

autoimmune

thyroid disease 1

rs733254

G allele, P = 0.02, OR = 2.1 [1.1–4.0]

DNA binding transcriptional

activator activity, RNA polymerase

II core promoter proximal region

sequence-specific binding nucleic

acid binding

Hematopoietic progenitor cell

differentiation

Transcription from RNA polymerase II

promoter

Spongiotrophoblast layer

development

Positive regulation of transcription

from RNA polymerase II promoter

ZFHX4 (11) Zinc finger

homeobox 4

rs11787532

C allele, P = 0.04, OR = 2.3 [1.0–5.2]

RNA binding

structural constituent of

cytoskeleton

Cellular component morphogenesis

Cellular defense response

Ectoderm development

Embryo development

Gamete generation

Immune system process

Mesoderm development

Muscle organ development

Negative regulation of apoptotic

process

Nervous system development

STARD13 (11) Start

domain-containing

protein 13

rs9527281

T allele, P = 0.02, OR = 2.0 [1.1–3.7]

– GTPase activator activity

Protein binding

Lipid binding

GRIA3 (11) Glutamate

receptor,

ionotropic, AMPA

3

rs12557782

G allele, P = 0.002, OR = 2.7

[1.5–5.2]

Binding

Glutamate receptor activity

Ligand-gated ion channel activity

Signal transducer activity

Cell surface receptor signaling

pathway

Ion transport

Regulation of biological process

Response to stimulus

GPC5 (37) Glypican 5 rs10492503,

Pf = 0.0070, Aa:AA: OR = 0.51

[0.29–0.89]; aa:AA: OR = 0.32

[0.13–0.81]

rs9301789,

Pf = 0.0100, aa:AA: OR = 2.83

[1.41–5.66]

Heparan sulfate proteoglycan

binding

Glycosaminoglycan metabolic

process

Glycosaminoglycan catabolic process

Glycosaminoglycan biosynthetic

process

Retinoid metabolic process

COL25A1 (37) Collagen, type xxv,

alpha-1

rs794143

Pf = 0.0370, aa:AA: OR = 2.27

[1.17–4.40]

Amyloid-beta binding

Heparin binding

Collagen catabolic process

Axonogenesis involved in innervation

HAPLN1 (37) hyaluronan and

proteoglycan link

protein 1

rs4466137

Pf = 0.0040, Aa:AA: OR = 0.50

[0.29-0.84]; aa:AA: OR = 0.22

[0.06–0.72]

Binding

Extracellular matrix structural

constituent

Cell adhesion

Cellular process

Nervous system development

Single-multicellular organism process

Skeletal system development

CAST (37) Calpastatin rs10510779

Pf = 0.0420, Aa:AA: OR = 1.95

[1.09–3.48]

Cysteine-type endopeptidase

inhibitor activity protein binding

Proteolysis

NPAS3 (37) Neuronal PAS

domain protein 3

rs4128599

Pf = 0.0240, Aa:AA: OR = 1.85

[1.07–3.17]

Sequence-specific DNA binding

RNA polymerase II transcription

factor activity

Biosynthetic process

Cellular process

Nitrogen compound metabolic

process

TAFA1 (37) Protein FAM19A1 rs4855469

Pf = 0.0100, aa:AA: OR = 3.04

[1.47–6.28]

Protein binding –

FLJ32978 (37) WD

repeat-containing

protein 64

rs952084

Pf = 0.0050, aa:AA: OR = 0.15

[0.42–0.56]

– –

covering 4301331 SNPs. Significant associations with treatment
response were identified in the following genes: UVRAG
(rs80191572), HLA-DQB2 (rs28724893), MBP (rs1789084),

and ZAK (rs139890339). Marginal association with another
polymorphism (rs470929) located in the MBP gene has
previously been reported in the candidate gene study conducted
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TABLE 3 | Genes with detected significant associations with response to GA from candidate gene studies and GWAS studies along with selected gene ontology (GO)

biological processes and molecular functions. Pperm, P-value permutation test; Pf , P-value exact Fisher’s test.

Gene Gene name dbSNP ID, P-value; OR, 95-CI GO molecular function GO biological processes

CANDIDATE GENE/ LOCUS STUDIES

IFNAR1 (6), (55) Interferon alpha and

beta receptor subunit 1

rs1012335 in allelic combination

DRB1*15+TGFB1*T+CCR5*d+IFNAR1*G

Pperm = 0.0056

DRB1*15+CCR5*d+IFNAR1*G

Pf = 0.014

DRB1*15+TGFB1*T+IFNAR1*G

Pf = 0.015

TGFB1*T+CCR5*d+IFNAR1*G

Pf = 0.025

Comparative to IFN-beta:

CCR5*d+IFNAR1*G+DRB1*15+TGFB1*T

Pf = 0.00054, Pperm = 0.004, OR = 13.2

[3.1–55.4]

Cytokine receptor activity,

protein binding, signal

transducer activity

Regulation of biological process, response to

stimulus

Type I interferon signaling pathway

Defense response to virus

CCR5 (6), (55) C-C motif chemokine

receptor 5)

rs333 in allelic combination

DRB1*15+TGFB1*T+CCR5*d+IFNAR1*G

Pperm = 0.0056

DRB1*15 +TGFB1*T+CCR5*d

Pperm = 0.013

DRB1*15+CCR5*d+IFNAR1*G

Pf = 0.014

TGFB1*T+CCR5*d+IFNAR1*G

Pf = 0.025

Comparative to IFN-beta:

CCR5*d+IFNAR1*G+DRB1*15+TGFB1*T

Pf = 0.00054, Pperm = 0.004, OR = 13.2

[3.1-55.4] CCR5*w/w+CTLA4*G

Pperm = 0.017

Chemokine receptor

activity

Protein binding

C-C chemokine receptor

activity

Cellular defense response

MAPK cascade

Dendritic cell chemotaxis

Calcium ion transport

Immune response

Inflammatory response

Chemotaxis

TGFB1 (6), (55) Transforming growth

factor beta 1

rs1800469 in allelic combination

DRB1*15+TGFB1*T+CCR5*d+IFNAR1*G

Pperm = 0.0056

DRB1*15+TGFB1*T+CCR5*d

Pperm = 0.013

DRB1*15+TGFB1*T+IFNAR1*G

Pf = 0.015

TGFB1*T+CCR5*d+IFNAR1*G

Pf = 0.025

Comparative to IFN-beta:

CCR5*d+IFNAR1*G+DRB1*15+TGFB1*T

Pf = 0.00054, Pperm = 0.004, OR = 13.2

[3.1–55.4]

Transforming growth

factor beta receptor

binding

MAPK cascade

Apoptotic process

Biosynthetic process

Cell differentiation

Mononuclear cell proliferation

Nitrogen compound metabolic process

Protein phosphorylation

Regulation of phosphate

Regulation of transcription from RNA

polymerase II promoter

Response to endogenous stimulus

Transmembrane receptor protein

Serine/threonine kinase signaling pathway

Positive regulation of regulatory T cell

differentiation

CTLA4 (6) Cytotoxic T-lymphocyte

associated protein 4

rs231775

Comparative to IFN-beta:

CCR5*w/w+CTLA4*G

Pperm = 0.017

Cytokine activity Cellular defense response cellular process

HLA-DBQ1 (52)

HLA-DBR1 (4), (6),

(19), (52), (53), (55)

Histocompatibility

complex

HLA-DBR1*1501, P = 0.008

rs3135388, PAG/AA= 0.015, OR = 2.7

[1.2-6.0]

HLA-DR17, P = 0.0077

–DR15, P = 0.0062

–DQ2, P = 0.0028

–DQ6, P = 0.0044

Haplotypes

–DR15-DQ6, P = 0.0062

–DR17-DQ2, P = 0.0077

HLA-DRB1*4, Pf = 0.015, OR = 2.02

[1.11–3.67]

Allelic combinations

DRB1*15+TGFB1*T+CCR5*d+IFNAR1*G

Pperm = 0.0056

(Continued)
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TABLE 3 | Continued

Gene Gene name dbSNP ID, P-value; OR, 95-CI GO molecular function GO biological processes

DRB1*15+TGFB1*T+CCR5*d

Pperm = 0.013

DRB1*15+CCR5*d+IFNAR1*G

Pf = 0.014

DRB1*15+TGFB1*T+IFNAR1*G

Pf = 0.015

Comparative to IFN-beta:

CCR5*d+IFNAR1*G+DRB1*15+TGFB1*T

Pf = 0.00054, Pperm = 0.004, OR = 13.2

[3.1–55.4]

– –

TCRB (54) T-cell receptor beta

locus

rs71878

P = 0.015, OR = 6.85 [1.45–31.9]

MHC protein binding

peptide antigen binding

T cell costimulation

Immune response

T cell receptor signaling pathway

Regulation of immune response

CTSS (54) Cathepsin S rs2275235

P = 0.014, OR = 11.59 [1.6–81.9]

Cysteine-type peptidase

activity

Toll-like receptor signaling pathway

Antigen processing and presentation

Adaptive immune response

Proteolysis

Antigen processing and presentation of

exogenous peptide antigen via MHC class II

EOMES (53) Eomesodermin homolog rs2371108

T allele, Pf = 0.018, OR = 2.00 [1.09–3.66]

Sequence-specific DNA

binding transcription

factor activity

Mesoderm development regulation of

transcription from RNA polymerase II

promoter

Interferon-gamma production

CD8-positive, alpha-beta T cell differentiation

involved in immune response

Adaptive immune response

Cerebral cortex neuron differentiation

CLEC16A (53) Protein CLEC16A rs6498169

A allele, Pf = 0.025, OR = 2.38 [1.08–5.27]

Protein binding Catabolic process

Cell communication

Lysosomal transport organelle organization

Regulation of biological process

Response to external stimulus

Response to stress

Regulation of TORC1 signaling

IL22RA2 (53) Interleukin-22 receptor

subunit alpha-2

rs202573

GG genotype, Pf = 0.0080, OR = 2.08

[1.18–7.41]

Cytokine receptor activity

Protein binding

Signal transducer activity

Regulation of biological process

Response to stimulus

Regulation of tyrosine phosphorylation of

STAT protein

PVT1 (53) Pvt1 oncogene

(non-protein coding)

rs2114358

A allele, Pf = 0.0050, OR = 2.77 [1.33–5.77]

– –

GWAS -GA

UVRAG (56) UV radiation resistance

associated

rs80191572

OR = 0.50 [0.35, 0.75]

Protein binding Receptor catabolic process

Regulation of cytokinesis

HLA-DQB2 (56) Histocompatibility

complex

rs28724893

OR = 0.59 [0.47, 0.75]

– Antigen processing and presentation of

peptide or polysaccharide antigen via MHC

class II

Cellular defense response

MBP (56) Myelin basic protein rs1789084

OR = 0.54 [0.38, 0.78]

Structural constituent of

myelin sheath

Biological regulation cell communication

Nervous system development

Neurological system process

ZAK (CDCA7) (56) Cell division cycle

associated 7

rs139890339

OR = 0.23 [0.10, 0.53]

– Apoptotic process

Regulation of transcription, DNA-templated

by Grossman et al. (54). The MBP gene encodes the autoantigen
myelin basic protein, which is attacked by the immune system
in MS patients. Furthermore, GA was designed as an MBP
mimetic (51). The results from the GWAS study warrant further
confirmation in independent studies. Significant results are
presented in Table 3.

Mitoxantrone
Mitoxantrone is synthetic anthracenedione – a cytotoxic agent
that inhibits DNA repair via inhibition of topoisomerase
II leading to a suppressed proliferation of T cells, B cells,
and macrophages, decreased pro-inflammatory cytokine
secretion, enhanced suppressor T cell function, and suppressed

Frontiers in Neurology | www.frontiersin.org 13 February 2019 | Volume 10 | Article 134

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
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macrophage-mediated myelin degradation (57). Two studies
investigating an association between genetic polymorphisms
and mitoxantrone were published to date, providing conflicting
results (58, 59). In the first study, authors proposed that SNPs
in ABC-transporter genes (ABCB1 and ABCG2) might serve as
pharmacogenetic markers associated with clinical response to
mitoxantrone therapy in patients with RRMS or SPMS forms of
the disease. The second study failed to confirm the association in
PPMS form of the disease (59).

Natalizumab
Natalizumab is a humanized monoclonal antibody that inhibits
the migration of lymphocytes via the BBB by inhibiting an
adhesive molecule of anti-integrin-α4 (57). Currently, only one
pharmacogenetic study in association to treatment response was
conducted (60). Authors investigated an association between
polymorphisms in NQO1 and GSTP1 genes and treatment
efficacy. In a combined analysis, it was found that patients
who carried the wild-type genotype or only one non-wild
polymorphism for either gene have possibly a better clinical
outcome after receiving the natalizumab therapy.

PharmGKB Variants
According to PharmGKB levels of evidence for variant-drug
associations, no clinically actionable variants with the level of
evidence 1A or 1B exist for MS (October 9th, 2018). We identified
eleven variant-drug combinations associated with treatment
efficacy and with the level of evidence 3, which stands for an
annotation based on a single significant (not yet replicated)
result or annotation for a variant-drug combination evaluated in
multiple studies but lacking clear evidence of an association (61).
The PharmGKB variants are presented in Table 4.

Neutralizing Antibodies (NAbs)
Part of the unresponsiveness to IFN-beta can also be explained by
the development of neutralizing antibodies (NAbs) that reduce
the drug efficacy. These develop in up to third of patients,
depending on the IFN-beta product administered (62). However,
the use of NAbs, as an early pharmacogenetic biomarker is
limited because NAbs develop only after 6-24 months from
initiation of treatment and patients may even revert to NAbs-
negative over time (63). Additionally, NAbs-positivity explains
the unresponsiveness to IFN-beta treatment only in a small
proportion of patients (64). Nevertheless, it might be useful
to include the information on NAbs in the pharmacogenetic
studies of MS. Furthermore, the genetic markers that influence
the development of NAbs have also been identified in patients
with MS (candidate gene studies and GWAS) (48, 65–68).

Transcriptomic Pharmacogenetic
Biomarkers
Although beyond the scope of this paper, several studies indicate
that gene expression signatures could prove useful in predicting
long-term treatment response in patients with MS (69–71).
These studies revealed differences in the expression of genes
related to IFN-beta signaling, TLR-4 signaling in monocytes,
as well as increased overall molecular response to IFN-beta in

non-responders (72). Recently, RNA-sequencing in whole-blood
showed that expression of a ribosomal protein S6 was reduced
in IFN-beta responders compared to non-responders (73). In
another RNA-sequencing study, the different pre-treatment
gene expression signature in peripheral blood mononuclear
cells (PBMCs) was revealed in MS patients responsive to
fingolimod compared to non-responders (74). However, most
of the currently proposed transcriptomic biomarkers have only
moderate discriminative power and have yet not been validated
(75, 76). Additionally, gene expression is more variable than
genetic status and largely depends on various environmental
factors, drugs co-administered (such as corticosteroids), specific
cell populations studied (whole blood, PBMCs, T-cells), and
differences in sampling times. Divergent findings can also be
explained by the heterogeneity of technical protocols and clinical
assessment of treatment response.

DISCUSSION

In recent years, several actionable pharmacogenomics
biomarkers have been identified, comprising many areas
of medicine. The implementation of pharmacogenomics in
clinical practice has, therefore, a great potential to enable more
personalized treatment with several benefits for patients and
society. However, despite the increasing number of treatment
options available to patients with MS and a high degree of
variability in response to these treatments, there is still no
reliable pharmacogenomic biomarker that would differentiate
between MS-treatment responders and non-responders. Since
MS is a chronic progressive disorder, which requires life-long
treatment, an early decision for the right therapy may have a high
clinical utility for MS patients. By choosing the right treatment
for a particular individual early in the disease course, we can
slow down the progression of the disease, avoid possible adverse
events and improve the efficiency of treatment.

Comprehensive systematic analysis of pharmacogenomic
studies showed that the majority of the included studies
(87.5%) are limited to candidate genes, mostly hypothesized to
be involved in pathways of drug actions. We have observed
that candidate gene studies largely lack the replication and
confirmation of the results. However, we have identified some
genes, the variability of which has been investigated repeatedly,
such as MXA, CCR5, GPC5, IFNAR1, IFNAR2, IRF5, NLRP3
genes, and HLA-region. The results of currently published
candidate gene studies were mostly inconsistent, which may in
part reflect the various study designs, including the inconsistent
approach of defining response to treatment, as well as limited
sample sizes with insufficient effect size. Nevertheless, it is evident
that biological processes defined by statistically significant
genes implicated in IFN-beta response are mostly immune-
related and include regulation of interleukins production,
positive regulation of regulatory T cell differentiation, negative
regulation of cytokine production, type I interferon signaling
pathway, mononuclear cell proliferation, cellular response
to lipopolysaccharide, cellular response to interferon-gamma,
regulation of cytokine-mediated signaling pathway, defense
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TABLE 4 | Variant/gene-drug pairs currently listed in PharmGKB database (October 9th, 2018).

Variant Gene Type Level of evidence Chemicals

rs12044852 CD58 Efficacy 3 Interferon beta-1a, interferon beta-1b

rs4278350 – Efficacy 3 Interferon beta-1a, interferon beta-1b

rs760316 FHIT Efficacy 3 Interferon beta-1a, interferon beta-1b

rs1448673 – Efficacy 3 Interferon beta-1a, interferon beta-1b

rs10819043 GAPVD1 Efficacy 3 Interferon beta-1a, interferon beta-1b

rs3133084 – Efficacy 3 Interferon beta-1a, interferon beta-1b

rs10494227 ZNF697 Efficacy 3 Interferon beta-1a, interferon beta-1b

rs2291858 GAPVD1 Efficacy 3 Interferon beta-1a, interferon beta-1b

rs10760397 GAPVD1 Efficacy 3 Interferon beta-1a, interferon beta-1b

HLA-DRB1*04:01:01 HLA-DRB1 Efficacy 3 Interferon beta-1a

HLA-B*15:01:01:01 HLA-B Efficacy 3 Interferon beta-1a

response to virus, leukocyte migration, and regulation of innate
immune response.

Despite the proposed distinct immunomodulatory
mechanisms of actions of IFN-beta and GA, we have observed
that some of the significant associations were identified in the
same genes, or in genes involved in the same biological pathways.
As an example, it has been found that the polymorphisms of
the cathepsin S (CTSS) gene are associated with a response
to the treatment of both IFN-beta and GA. Cathepsin S has
cysteine-type peptidase activity and is involved in several
biological processes, including Toll-like receptor signaling
pathway, antigen processing and presentation of exogenous
peptide antigen via MHC class II, adaptive immune response,
and proteolysis, also of human myelin basic protein (MBP)
(77). Furthermore, it has been suggested that discriminative
allelic variants of the CCR5, IFNAR1, and TGFB1 genes,
which are involved in MAPK cascade, defense response, type
I IFN signaling pathway, regulatory T cell differentiation, and
apoptotic processes, may direct the treatment decision between
IFN-beta or GA (6).

In recent years, GWAS studies identified novel candidate
genes, which remain to be validated. Moreover, there was no
overlap between the top-ranked results of GWAS studies, which
suggests that response to existing therapies is influenced by
numerous polymorphisms in multiple genes. However, among
potential candidate genes identified in GWAS studies of IFN-
beta, we detected significant enrichment for genes involved in the
glutamate receptor-signaling pathway. Therefore, in the future,
more global approaches, such as GWAS or next-generation
sequencing (NGS), are required to gain further insight into the
pharmacogenomics of MS.

It is important to acknowledge the methodological
heterogeneity between the studies included in the present
systematic review, such as variability of clinical characterization
of the patients, differently defined clinical response, the varying
duration of follow-up period among studies, and different
genotyping platforms used in GWAS studies. It has previously
been reported that the proportion of non-responders varies
depending on the definition of treatment response used (78).
The clinical criteria for phenotypic classification of patients

(responders/non-responders) included: (1) relapse rate (with
different thresholds between studies), (2) disease progression,
which was most often measured by EDSS score, and (3) changes
in MRI activity, such as increase in T2 lesion burden or T1
gadolinium (Gd) enhancing lesions on MRI. The detailed data
on the definition of responders/non-responders for each study
are presented in Supplementary Table 1. Similarly, the follow-up
period ranged from six months (in one study) to 1 year in one
study, two years in the majority of the included studies and to
four years in two recent studies.

More independent studies investigating the association
between already proposed polymorphisms in genes, such as
GRHL3, NINJ2, TBXAS1, GRM3, GRIK2, and SLC9A9 and
treatment response are warranted to establish reliable and
accurate pharmacogenomics predictors. Future studies need to
include a larger number of subjects of various ethnicities. It is
also crucial to use uniform and precise definitions of treatment
response, standardized duration of the follow-up period, and
comprehensive clinical characterization of patients.

Also, the GWAS studies are limited to common variants. Of
note, rare variants contribute a major part of pharmacogenetic
variability (79). In recent years, many important advances
in sequencing technologies have been achieved that will in
future enable a more comprehensive picture of pharmacogenetic
variability in MS patients. Further studies should also consider
rare variants obtained by NGS technologies, such as exome or
genome sequencing data. To the best of our knowledge, no study
investigating the rare variation in exome or genome sequencing
data of MS patients in association to treatment response has been
published to date.

Furthermore, we suppose that the phenotype of the response
to an immunomodulatory pleiotropic therapy, such as IFN-beta
and GA, is a sum of numerous contributing genetic factors
that were not sufficiently simultaneously and combinatorially
assessed by current study designs and methodologies. More
studies investigating cumulative effects of polymorphisms in
multiple genes (additive effects or epistatic interactions), such as
studies of Kulakova et al. (34, 53), are needed to gain a more
comprehensive insight into genetic variability in association to
the efficacy of treatment.
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Another important aspect of future pharmacogenomics,
especially for the interpretation of rare variants, are publicly
available and easily updatable databases of pharmacogenomic
variation, such as PharmGKB, CPIC, ClinVar, as well as
population-specific databases. Further standardized dosing
recommendations and guidelines based on the patient’s genomic
test results are required, ideally integrated with demographic,
phenotypic and clinical data.

Furthermore, most of the collected studies (94%) were
conducted on patients treated with IFN-beta or GA. Lack
of pharmacogenomic studies conducted on drugs approved
in recent years, such as dimethyl fumarate (Tecidifera R©),
teriflunomide (Aubagio R©), and fingolimod (Gilenya R©) limits
the implementation of personalized medicine into clinical
practice. An increasing number of new treatment options
will in future enable more personalized treatment approaches;
however, many genome-wide studies carried out on large sample
sizes and in different populations are needed to reach reliable
pharmacogenomics biomarkers for implementation into daily
clinical practice.

In conclusion, current literature data suggests that genetic
variability can significantly contribute to the response to
treatment in patients with MS. In the future, it is necessary to
systematically evaluate the polymorphisms that were previously
proposed to influence the response to treatment as well as assess
the importance of rare variants and their effects on the treatment
of MS. Additional studies and larger ethnically homogenous
cohorts are necessary to provide new insides and optimized use of
MS drugs. More combinatorial study designs are needed to assess

the effect of several combinations of polymorphisms in various
genes simultaneously to provide more relevant information
for the clinical use of pharmacogenomics. Studies investigating
the pharmacogenomics of newer medicines for MS are also
necessary, using the clear and uniform criteria of defining
treatment response. We believe that all of the above, along with
the rapid development of new medications and advances in
genomic technologies, will in future enable a more personalized
approach to MS treatment.
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