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Effector and memory CD8T cells have an intrinsic difference in the way they must

approach antigen; effector cells need to address the pathogen at hand and therefore

favor outgrowth of only high-affinity clones. In contrast, the memory pool benefits from

greater clonal diversity to recognize and eliminate pathogens with mutations in their

immunogenic epitopes. Effector and memory fates are ultimately the result of the same

three signals that control T cell activation; T cell receptor (TCR) engagement together

with co-stimulation and cytokines. Great progress has been made in our understanding

of the transcriptional programs that drive effector or memory differentiation. However,

how these two different programs result from the same initial cues is still a matter of

debate. An emerging image is that not only the classical three signals determine T cell

differentiation, but also the ability of cells to access these signals relative to that of other

activated clones. Inter-clonal competition is therefore not only a selective force, but also

a mediator of CD8T cell fate. How this is regulated on a transcriptional level, especially

in the context of a selective “hunger game” based on antigen-affinity in which only cells

of high-affinity are supposed to survive, is still poorly defined. In this review, we discuss

recent literature that illustrates how antigen-affinity dependent inter-clonal competition

shapes effector and memory populations in an environment of antigen affinity-driven

selection. We argue that fine-tuning of TCR signal intensity presents an attractive target

for regulating the scope of CD8T cell vaccines.
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INTRODUCTION

CD8T cells play a critical role in the protection of our body from the occurrence and recurrence
of intracellular pathogens and tumors. To recognize the large number of potential threats, the
naïve CD8T cell pool consists of millions of clones, each unique based on its antigen receptor.
To prevent an excessive use of resources for the maintenance of these cells, each clone is present
at low frequency. Only upon activation do antigen-specific clones expand to form the effector
and memory pools (1–4). Naïve CD8T cells need three separate signals for optimal effector and
memory generation: (1) antigen recognition by the T cell receptor (TCR), (2) co-stimulation, and
(3) cytokines (5). These three signals are not hierarchically equal. Generally, only in case of TCR
engagement do co-stimulation and cytokines contribute to T cell activation. Moreover, the affinity
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of the TCR determines the capacity of an activated cell to
access vital co-stimulatory molecules, cytokines and nutrients
(6). Considering the vast diversity of the naïve CD8T cell pool,
statistical probability dictates that for any given antigen, many
more low- than high-affinity clones exist. To mount an efficient
CD8T cell response, selection of activated clones based on
antigen-specificity must take place (6, 7). We have therefore
proposed a fourth factor that controls effector and memory T
cell formation: “competitive fitness”—the ability to compete for
extracellular signals with other activated T cell clones based on
antigen affinity (8).

The parameters that determine competitive fitness differ
between effector and memory cells, because of the difference
in the way that these pools must approach antigen. Upon
infection, the effector pool is faced with an actively replicating
pathogen and therefore only the most efficient, high-affinity
clones are selected into its ranks (6, 9). Immunological memory
must protect the host against re-infection with a previously
encountered pathogen. Due to selective pressure on the original
pathogen as it moves through its host population, re-infections
are more likely to occur with a variant carrying mutations in
its immunogenic epitopes (10–12). Hence, selection of memory
clones is a trade-off between specificity and diversity. Too
much specificity restricts antigen-recognition, which precludes
responsiveness against mutated pathogens. Too much diversity
impairs efficiency of recall responses. In both mice and humans
increasing the diversity of the memory pool enables recognition
of a larger fraction of the potential pathogen-carried sequence
space resulting in a higher probability of recognizing mutated
pathogens (13, 14). How clonal selection within the effector and
memory cell populations is regulated is only partially understood.
Here, we propose a crucial role of TCR signaling in an affinity-
based inter-clonal competition which shapes clonal diversity and
regulates effector and memory differentiation.

THE IMPACT OF SIGNAL INTENSITY ON
CD8T CELL DIFFERENTIATION

The initiating event for CD8T cell activation is recognition of
an antigen embedded in the major histocompatibility complex
(pMHC) on an antigen-presenting cell (APC) by the TCR. This
results in the activation of a network of signaling cascades
that mediate differentiation, proliferation, and survival (15, 16).
Upon activation, a single naïve CD8T cell has the potential to
give rise to various effector and memory CD8T cell subsets
(17, 18). Divergent cell fates depend on the intensity of the
cumulative signal activating an individual CD8T cell (19). This
signal strength represents the sum of different factors such as the
affinity and avidity of TCR binding to antigen-pMHC complexes,
co-stimulation, and cytokines (8, 20–22).

Initially, it was proposed that only a cumulative signal of high
overall strength allows T cell activation and formation of effector
and memory cells (23). This was based on the observation that
only cells of high-affinity vigorously expand upon activation (24).
The model was challenged by the finding that even very weak
TCR-pMHC interactions promote proliferation and generation

of functional memory (25, 26). In addition, even a brief 2 h
priming phase was shown to be sufficient to induce the complete
diversity of effector and memory CD8T cell subsets (27–29). To
analyze these processes more directly, SIINFEKL (Ova)-specific
OT-1 cells were transferred to naïve recipient mice, which were
subsequently infected with L. monocytogenes (LM) expressing
Ova or altered peptide ligands (APL) that bind the OT-1 TCR
with lower affinity. This revealed that even weak ligands are
sufficient to activate naïve cells and mediate formation of both
effector and memory T cells (30). This raised the question how
the immune system prevents that clones of low specificity and
efficiency expand and exhaust the limited amount of available
resources. The answer came from the observation that the
potency to induce effector cell proliferation positively correlates
with the intensity of the TCR signal (24, 30–32). Decreasing the
cumulative signal strength by pretreating mice with antibiotics
before L. monocytogenes infection and thus lowering antigenic
load resulted in reduced expansion of antigen specific effector
T cells (33, 34). In addition to a proliferative advantage of
high-affinity cells, activated effector CD8T cells were shown
to undergo negative selection of low-affinity clones based on a
reduced capacity of these cells to access and thus outcompete
other clones for limited resources (8). Upon activation T cells
induce expression of the IL-2 receptor in an antigen-affinity
dependent manner (6, 30). IL-2 mediates survival by triggering
the PI3K signaling cascade and sustaining the pro-survival
protein Mcl-1 (Figure 1). High-affinity effector cells therefore
have a competitive survival advantage over low-affinity cells in
their ability to access IL-2. This selection process narrows clonal
diversity, since only highly specific clones are allowed to generate
progeny and create an almost monoclonal effector CD8T cell
pool (6, 8). Animals lacking Noxa, a pro-apoptotic antagonist
of Mcl-1, have a reduced survival threshold for effector cells and
therefore showed reduced dependency on IL-2. As a result, these
mice had an increased number of low-affinity clones contributing
to the effector pool, which was of reduced anti-viral potential (6).

Co-stimulation and cytokines greatly contribute to the
cumulative activating signal intensity and therefore have a major
impact on TCR-affinity mediated selection of CD8T cell clones.
CD28-driven co-stimulation is essential for proper CD8T cell
responses after weak TCR-pMHC interactions. Conversely, high
antigen doses and prolonged antigen stimulation can compensate
for a lack of CD28 co-stimulation in vivo (35, 36). CD27-
driven co-stimulation promotes production of IL-2 in activated
T cells (37). Animals deficient for CD27 therefore have reduced
access to IL-2, resulting in a less clonally diverse effector
response of increased overall affinity (13). Notably, expression
of CD70, the ligand of CD27, is regulated by antigen avidity
(13, 38–40), but whether this contributes to the diversity of the
effector response is unknown. Similarly, cytokines impact cell fate
decisions and clonal selection mechanisms. CD8T cells activated
in the presence of high levels of IL-2 or IL-12 exhibit increased
proliferation rates and superior effector functions (23, 30, 33, 41–
43). Exogenous addition of IL-2 rescued survival of low-affinity
cells (6), indicating that stronger inflammatory responses will
allow for more clones to contribute to the effector response,
though this does not necessarily promote their dominance.
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FIGURE 1 | Model for inter-clonal competition between effector cells based on antigen-affinity. For efficient activation and optimal effector CD8T cell formation 3

signals are required (1) antigen recognition by the TCR, (2) co-stimulation, and (3) cytokines. We proposed as a fourth factor “competitive fitness”—the ability to

compete for these signals with other activated T cell clones. Cumulative signal strenght (visualized by a graded yellow halo) is the main factor controling the capacity of

activated lymphocytes to access vital co-stimulatory molecules, cytokines and nutrients (e.g., glucose, amino acids). Thus, high-affinity effector cells have a

competitive advantage over low-affinity cells in their ability to access these signals. In addition, high-affinity cells take-up more IL-2 which in turn mediates survival of

high-affinity clones by triggering the PI3K signaling cascade and sustaining pro-survival proteins such as Mcl-1. Hence, low-affinity clones undergo negative selection

through apoptosis to ensure that only the fittest, high-affinity clones contribute to the antiviral response.

In summary, TCR signaling is not an on/off switch. Rather,
it enables integration of signals with different intensities, which
are further amplified by the right cytokines and co-stimulatory
molecules. Fine-tuning of TCR signal intensity shapes T cell
differentiation and clonal selection.

INTER-CLONAL COMPETITION IN THE
CONTEXT OF EFFECTOR AND MEMORY
FORMATION

Even though a naïve cell can generate both effector and memory
cells (44), memory potential is associated with weaker activating
signals. Very low affinity antigens are still able to induce memory
formation but have a strongly reduced capacity to induce effector
differentiation (30, 45). Exogenous factors such as IL-2, IL-12,
or CD28 co-stimulation add to the cumulative activating signal
and help activated cells to obtain an effector phenotype (43, 46).
Very high levels of stimulation, in contrast, push T cells “beyond”
an effector stage into exhaustion (47, 48). Various models have
been proposed how activating signal strength regulates CD8
memory formation. The “decreasing potential” model suggests
that memory formation is the “default” state of activated T
cells and that effector memory or effector cell differentiation is
only possible if a certain level of activation is reached(49, 50).
Whether this level represents a binary threshold, or whether
effector potential is gradually increased in response to increasing
signal strength is a matter debate and appears to depend on the
molecules that are used to determine threshold values(43, 51–55).

Mostly, the impact of affinity on effector and memory
potential has been interrogated by presenting a single (TCR-
transgenic) T cell clone, with high- or low-affinity ligands (30,
45). However, a biologically more relevant question is how
signal strength is linked to memory formation, not at the level
of a single clone but in the context of the entire antigen-
responsive population. Statistical probability dictates that for a
given antigen, many more high-affinity than low-affinity cells
exist within the naïve T cell pool. Hence, molecular mechanisms
are in place to ensure that preferentially cells of high-efficiency
are selected into both the effector and memory cell pools (6–
8, 13). The impact of cumulative signal intensity is therefore
not only a checkpoint controlling effector vs. memory fate
decisions, but also controls the competitive fitness of cells in
a selective environment that regulates the diversity of antigen-
experienced T cell populations. To shed more light on this
concept, experiments were performed in which a pool of
individually labeled OT-1 cells was transferred to a host which
was subsequently infected with LM-Ova. Analysis of donor cells
revealed that even within a monoclonal high-affinity population,
a relatively small fraction of clones dominates the effector
response (17, 18). This would suggest that only a small number
of cells reaches the cumulative signaling threshold required
for CD8T cell expansion. When a sufficiently high number of
monoclonal cells is transferred, stochastic effects are negated,
which ensures that in experimental settings donor cells usually
make a significant contribution to the effector response (18).
However, in a physiological setting, each clone is present at very
low frequency (3). This indicates that inter-clonal competition
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becomes an important factor that controls shaping of the antigen-
specific cell pool. Indeed, when mice were transferred with only a
single OT-1 cell, in less than one third of animals these cells could
be recovered after infection with LM-Ova (18). The recruitment
of antigen-specific cells into the immune response is highly
efficient and nearly complete (56), excluding limited antigen-
exposure as a determining factor. Thus, considering the fact that
effector cells are derived from a small number of precursors
that is able to generate exponential expansion (17, 18), small
differences in competitive fitness will ensure highly selective
outgrowth of clones.

In the cell-tracing experiment, cells that did not undergo
massive expansion generally adopted a memory-like phenotype
(18). Together with the observation that low-affinity cells
preferentially form memory, the question arises whether only
the effector pool is selected for high-affinity clones and that
the memory pool allows contribution of all activated cells.
Studies in which the clonal diversity of effector and memory
cells was directly compared showed that the effector cell pool
is much more restricted in its clonal diversity than the memory
pool directed against the same antigen (7, 13, 57). However,
clones that dominate the effector pool are also dominant in
the memory population, albeit to a lower degree (7, 13, 57).
Low cumulative signal strength favors memory formation and
is associated with reduced proliferation (30, 31). Why then,
is the memory response not completely dominated by low-
affinity cells? One possibility is that high-affinity cells have a
selective advantage also during memory formation. Another
option is that they preferentially use a different mechanism
to form memory than low-affinity cells. These models are
not mutually exclusive and experimental evidence for both
exist (Figure 2). Mice deficient for the co-stimulatory molecule
CD27 generate a memory pool of comparable size as wild
type controls yet is almost devoid of low-affinity clones (13).
Similarly, low-affinity cells have a higher dependence on TNF
receptor signaling during recall (58). This indicates that low-
affinity memory precursors have increased dependence on
factors that contribute to the cumulative activating signal and
thus have a survival disadvantage when competing for these
factors.

Antigen-experienced cells can be subdivided based on
different parameters, but a common segregation uses IL-7Rα

(CD127) and KLRG1. Memory precursors (MPECs) are defined
as CD127+KLRG1− whereas short lived effectors (SLECs) have
the converse phenotype. A recent study indicates, however,
that with the CD127+KLRG1+ cell pool and even among
SLECs, cells exist that form “exKLRG1+” memory after clearance
of a pathogen (59). Even though the frequency of cells
with memory potential in these pools is much lower than
amongst MPECs, the high number of KLRG1+ cells formed
during an immune response ensures that in absolute numbers
exKLRG1+ cells make a significant contribution to the memory
pool (59). High-affinity cells preferentially form cells with
a SLEC phenotype, whereas low-affinity cells more rapidly
become MPECs (30, 45). Even though direct experimental
evidence is still lacking, these findings indicate that low-
affinity memory cells are formed directly, whereas high-affinity

memory is also derived from exKLRG1+ effector type cells
(Figure 2).

Maintenance of CD8 memory cells is independent of antigen
and predominantly depends on cytokines such as IL-15 and
IL-7 (60, 61). Whereas expression of cytokine receptors differs
between cells of high- and low-affinity early after activation, at
later time-points these differences are lost (6, 30). In the first
weeks after clearance of a pathogen, the avidity of the antigen-
specific pool therefore still changes as long-lived effector cells
undergo apoptosis (62). However, once the clonal composition
of the memory pool is established it remains stable for months
to years after initial infection, both in humans and mice (63–66).
Thus, clonal diversity of the memory CD8T cell pool appears to
be a long-term investment of the immune system to counter viral
mutants.

An open question is how memory cell formation is influenced
by inter-clonal competition on a molecular level. Various factors
important for effector cell formation are induced in a way that
directly correlates with antigen affinity, such as T-bet, IRF4, and
Blimp-1 and these suppress expression of memory-associated
molecules, such as Eomes and Tcf7 (54, 67, 68). The transcription
factor IRF4 was found to regulate expansion of effector cells by
promoting the metabolic switch to aerobic glycolysis in a TCR
affinity–dependent manner. IRF4 expression was higher in high-
affinity clones, ensuring their preferential expansion and effector
differentiation over low-affinity clones (69, 70). Surprisingly,
both Eomes and Tcf7 are induced upon activation of T cells
(71, 72) and expression of Eomes can even be higher in high-
than in low-affinity cells, dependent on the level of stimulation
(45, 70). Notably, both T-bet and Eomes are essential for CD8T
cells to obtain a normal effector cell phenotype (72). The ratio
between these molecules, rather than their expression level
therefore appears to determine whether a cell obtains a memory
or effector cell phenotype (46). How this dynamic regulation
of transcription factors is regulated in the context of affinity-
based selection in effector and memory cell pools remains to be
elucidated.

In summary, the impact of cumulative signal intensity on
effector vs. memory cell differentiation should be viewed in the
context of clonal selection strategies that shape the antigen-
specific cell pools. The impact of affinity on cell fate decisions
appears to have evolved in order to ensure selection of only highly
specific cells in the effector cell pool, whilst allowing sufficient
diversity of CD8T cell memory in a pool that is still dominated
by high-affinity cells.

THERAPEUTIC POTENTIAL OF CLONAL
DIVERSITY

Enhanced diversity within the memory CD8T cell pool is of
particular benefit against re-infections with rapidly mutating
viruses (73). For example, HIV patients appear to benefit from
greater clonal diversity of their virus-specific T cell response
(13, 14, 73–77). As an effective vaccine against HIV remains
elusive, future strategies may involve manipulation of IL-2 levels
and/or co-stimulatory molecules during priming to broaden the
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FIGURE 2 | Model for affinity selection within the effector and memory pools. Antigen encounter will activate a small number of high affinity cells and a much larger

number of cells with lower affinity. The effector pool is stringently selected for cells of the highest affinity both through negative selection of low-affinity cells and

through a proliferative advantage of high- over low-affinity cells. In contrast, affinity-based selection of early memory is less strong, since differences in proliferation

between high- and low-affinity cells is less pronounced. Selection of high-affinity cells will therefore primarily occur due to competition for survival factors such as

CD27 co-stimulation and cytokines. Late memory is supplemented by exKLRG1 cells, which are predominantly of high-affinity, thus increasing the overall affinity of the

memory pool.

scope of the immune response. Evolutionary, increased clonal
diversity of the memory pool compared to the effector pool is
an acceptable strategy, as it does not appear to greatly reduce
recall capacity against the original antigen. Cd27−/− mice, which
generate a memory CD8T cell pool that almost exclusively
consists of high-affinity cells do not show an increased recall
response following re-infection with a pathogen carrying
high-affinity ligands (13). Similarly, co-transfer of high- and
low-affinity memory cells directed against the same antigen does
not result in a reduced ability of high-affinity cells to expand
upon antigen re-encounter (45). In fact, re-encounter of the
same antigen further skews the secondary effector pool in favor
of high-affinity clones. In addition, re-infection with pathogens
carrying a mutated immuno-dominant epitope promotes
selective outgrowth of previously low-frequency clones that have
now become of high-affinity (13, 65). Thus, clonal selection
plays an important role both during primary and secondary
responses, but does not affect functionality of subdominant
clones. Increasing memory diversity of a vaccine against
pathogens is therefore unlikely to reduce the overall effectiveness
of protection.

Vaccination against tumors should target only transformed
cells while avoiding unnecessary damage of healthy tissue.
Reducing the number of targeted epitopes included in a
vaccine lowers chances of off-target effects, but also limits the
effectiveness of a vaccine and allows for more rapid outgrowth of
cells with mutations in their immunogenic epitopes. Rather, anti-
tumor vaccination in combination with a strategy that narrows
the scope of the immune response per epitope holds promise for
a more efficient and specific treatment. A better understanding of

the molecular mechanisms that control the diversity of the T cell
response are therefore of crucial importance (8, 78, 79).

The degree of heterogeneity within the CD8T cell response
depends on the ability of activated clones to integrate signals
from the TCR, co-stimulatory molecules and cytokines, but also
their relative fitness in an environment of rapidly expanding cells
competing for the same resources. Recent studies demonstrate
the importance TCR signal strength in regulating T cell
differentiation, but much remains unknown about the molecular
mechanisms that control the clonal selection strategies that shape
the diversity of the effector and memory pools. Deeper insight
in the transcriptional network underlying affinity-based clonal
selection therefore holds great promise for the development
of novel, more efficient CD8T cell vaccines with an altered
scope.
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