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SUMMARY

Objectives: To determine the influence of global cerebral ischemia on the
activation of extracellular-regulated kinases (ERK) and c-Jun N-terminal kinases
(JNK) in optic nerves of rats exposed to different reperfusion periods.

Materials and methods: Transient global cerebral ischemia (20-min duration)
was induced by the four-vessel occlusion method. After different reperfusion periods
(5 and 10 min; 1; 6 and 12 h after ischemia), optic nerves were extracted and ERK
and JNK activation signals were determined by Western immunoblot analyses.

Results: The activation signals of ERK and JNK were detected within first 10
min of reperfusion, but striking activation for both enzymes was found 1 h after
ischemia. After a transient decrease, the activation of ERK returned to peak level
after 12 h of reperfusion in the second wave of kinase activation. In that period, a
slight increase of JNK activation was registered.

Conclusion: Our results demonstrated for the first time that ERK and JNK were
activated in rat optic nerves during early and later periods of reperfusion,
suggesting their potential active role in the response of cerebral white matter tissue
to ischemic injury.
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INTRODUCTION

Extracellular-regulated kinases (ERK) and c-Jun N-terminal kinases or stress-activated protein kinases
(JNK/SAPK) are members of the mitogen-activated protein (MAP) kinase family. They participate in
intracellular signaling pathways that can initiate reparative processes or cell death (Irving et al. 2002,
Lennmyr et al. 2002, Hwang et al. 2007). Activation of ERK is generally associated with cell survival,
proliferation and differentiation (Shackelford et al. 2003) while activation of JNK is often correlated with
cellular degeneration and apoptosis (Bonny et al. 2005, Guan et al. 2005). Recently, the effect of cerebral
ischemia on MAP kinases has been reported in vitro and in vivo. According to these reports, ERK and JNK
are activated during focal and global cerebral ischemia in neurons and microglia and are responsible for
tissue injury after ischemia/ reperfusion (Aharon et al. 2004, Wang et al. 2004, Ho et al. 2007). The majority
of studies have so far concentrated on the mechanisms of cerebral ischemic damage in gray matter since
cerebral white matter was generally considered less vulnerable (Goldberg et al. 2003, Mrsic-Pelcic et al.
2004). Recent animal studies suggest that axons and oligodendroglia in white matter can be damaged even
by brief ischemia (Schabitz et al. 2000). Despite recognized importance of the white matter damage caused
by ischemia in different clinical conditions including some psychiatric disorders, little is known of the
underlying mechanisms.



The objective of the present study was to determine the influence of 20-min global cerebral ischemia on
activation of ERK and JNK in optic nerves of rats exposed to different reperfusion periods. To our
knowledge, changes in activation of these kinases in optic nerves after global cerebral ischemia have not
been reported.

MATERIALS AND METHODS

Animals

The study was carried out on Hannover-Wistar rats, weighing 200-250 g. Several experimental groups
were included in the experiments, consisting of at least three animals randomly assigned to each group. With
the exception of the control group (sham-operated animals), animals in all other experimental groups were
exposed to global brain ischemia of 20-min duration. Following different reperfusion periods (5 or 10 min
and 1; 6 or 12 h),the animals were sacrificed by decapitation and the optic nerves were rapidly excised and
frozen at -80°C.

Procedure

Global cerebral ischemia was induced by the four-vessel occlusion method (Mrsic-Pelcic et al. 2004).
Briefly, rat vertebral arteries were cauterized bilaterally and after 24 h of recovery, their common carotid
arteries were occluded for 20 min. Rats that had lost their righting reflexes during the period of ischemia
were assigned to the ischemic group. In the control group, the same surgical procedure was performed
without interruption of blood flow.

Western blot analyses were performed as described in details elsewhere (Cerovac et al. 1999). Total
protein (35 ug) (Bio Rad protein assay kit) was loaded for each sample onto a 12% polyacrylamide gel and
run at 100 V. Transfer onto nitrocellulose (Bio-Rad, Canada) was conducted at 250 mA for 90 min.
Membranes were incubated with primary polyclonal antibodies against ERK and JNK (Santa Cruz, CA) or
antibodies against phosphorylated (active) MAPK (Promega, WI), and were used as recommended by the
manufacturer. A horseradish peroxidase-conjugated secondary antibody (Amersham, UK) was utilized to
allow detection of the appropriate bands using enhanced chemiluminescence reagent and film (Amersham,
UK). All experiments were conducted a minimum of three times.

The intensities of representative bands were quantified by measuring the density of the immunoblots
with Quantity One Bio Rad Image software for Windows.

RESULTS

The results of this study show moderate rise in ERK activation with two peaks occurring at 1h and 12 h
of reperfusion (Figure 1B). The expression of ERK however remained constant throughout the periods of
observation (Figure 1A).

In this study, activation of JNK was highest (three fold increase) 1 h after ischemia and was followed by
a strong decrease thereafter, although 12 h after ischemia slight recovery of enzymatic activation was
registered (Figure 2B). In contrast to ERK, the expression of JNK increased with time during the first hour of
reperfusion with striking increase in signal expression after 12 h of reperfusion (Figure 2A).



DISCUSSION

Increased ERK activation has been reported in rodents after focal and global ischemia by several authors
(Gu et al. 2001, Wang et al. 2004, Wakade et al. 2007). In most studies, maximal ERK activation was
registered between 30 min and 2 h of reperfusion, althought signals could be detected even after 6 h or
longer (Irving et al. 2002, Shackelford et al. 2003, Wang et al. 2004). The exact role of this activation in
neuronal tissue is not clearly defined. Although several studies provided evidences for neuroprotective and
antiapoptotic role of ERK in different cell lines (Gu et al. 2001, Lennmyr et al. 2002), recent observations
showed that ERK activity is transiently increased in ischemic core and perifocal region before cell death in
both focal and global ischemia (Wang et al. 2004). According to these
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Figure 1. Expression and activation of ERK in optic nerves of animals exposed to different reperfusion periods
(A) Western immunoblots of total, non-phosphorylated (ERK) and active, phosphorylated (pERK) enzyme in optic
nerve homogenates of control animals and ischemic animals exposed to different reperfusion intervals
(B) (B) Ratios between pERK and ERK were calculated as intensity of pERK divided by intensity of ERK and
expressed as a fold increases in normalized phosphorylated ERK



Fig.2.

Reperfusion time
A) control' 5 100 1h  6h  12h '

pINK - G .

B)

Ratio pJNK/JNK

Ly 1o 1h 6h 12h
Reperfusion time

Figure 2. Expression and activation of JNK in optic nerves of animals exposed to different reperfusion periods
(A) Western immunoblots of total, non-phosphorylated (JNK) and active, phosphorylated (pJNK) enzyme in optic
nerve homogenates of control animals and ischemic animals exposed to different reperfusion intervals
(B) Ratios between pJNK and JNK were calculated as intensity of pJNK divided by intensity of JNK and
expressed as a fold increases in normalized phosphorylated INK

reports elevated levels of phosphorylated ERK might be involved in the mechanisms underlying ischemia-
induced cell death by mediating activation of proinflammatory cytokine IL-18 (Wang et al. 2004) or by
regulating the generation of reactive oxygen species (Yoo et al. 2005) in neurons and glia. Prolonged
activation of ERK (up to 9 h) was found to contribute to glutamate induced oxidative stress in neuronal cell
lines (Stanciu et al. 2000). It was pointed out that in tissues where ERK activation is detrimental to cell
survival, cell death was brought about by oxidative stress. In our study the first peak of ERK activation was
registered at 1 h of reperfusion, followed by slight decrease in activation. Second wave of increase in kinase
activity was found 12 h after ischemia. Wheather such a dynamic in ERK activation represents tissue effort
to reduce toxic effects of ischemia/reperfusion or contributes to tissue injury in early and later stages of
reperfusion remains to be clarified in our further experiments.

Changes in total JNK protein could signify an increasing sensitivity of the JNK pathway to the stressful
stimuli in early and later periods of reperfusion (Hayashi et al. 2000, Colangelo et al. 2004). Activation of
JNK occurs in ischemia and it is often correlated with promotion of apoptosis and neuronal degeneration in
different cell culture experiments (Takman et al. 2004) and in vivo models (Carboni et al. 2005, Li et al.
2005, Yatsusige et al. 2007). In models of focal and global cerebral ischemia, increased activity of JNK was
detected in periods from 15 min to 24 h or even longer within tissues destined to die (Takagi et al. 2000,
Jiang et al. 2007), suggesting that its activation may play a role in the mechanisms involved in ischemia-
induced cell death. We assume that the striking increase in JNK activation registered in our study at 1h of
reperfusion indicates a relatively early and strong tissue response to the ischemic insult. The slight rise in
JNK activation 12 h after ischemia could be an indicator of JNK involvement in the tissue reaction to
ischemic stimuli in later periods of reperfusion.



CONCLUSION

The present study demonstrated for the first time that ERK and JNK were activated in rat optic nerves
during early and later periods of reperfusion, suggesting their potential active role in the response of cerebral
white matter to ischemic injury. To clarify the exact role of this activation, further studies are required.
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