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Summary: ß2-Microglobulin is a constituent of the class I major histocompatibility complex (MHC) molecule and
crucial for its normal function in cell recognition. It has also been isolated from bone and shown to regulate bone
metabolism and to be altered in various bone diseases. In order to further investigate the role of the immune system
in bone metabolism, we studied basic properties of bone physiology in ß2-microglobulin-deficient mice created by
the technique of gene knock-out. Ten week-old male offspring homozygous (non-functional class I MHC molecule)
or heterozygous (functional class I MHC molecule) for ß2-microglobulin knock-out gene did not differ in the
following measures of bone turnover: femur length, dry and ash weight and calcium content, serum calcium concen-
tration and alkaline phosphatase activity, total vertebral tissue area, trabecular bone volume, osteid surface, osteo-
clast surface and mineral apposition rate. These data indicate that the bone turnover in ß2-microglobulin-deficient
mice is appropriate for the stage of their skeletal maturation.

Introduction thus provide a useful model for dissecting the regulatory
0 .,. i u i- x= * j· · u · mechanisms and interactions in the immune system.ß2-Microglobulm was first discovered in human urine J

and designated according to its electrophoretic mobility ß2-Microglobulin has also been isolated as a bone-de-
(ß2), size (micro) and solubility (globulin) (1). Later it rived growth factor from fetal and adult bone (3) and
was found that it is also present in all cells as chain from bone culture medium (4); it stimulates DNA and
of class I major histocompatibility complex (MHC) collagen synthesis (5), and osteoclastic activity (6) in
molecules (1). ß2-Microglobulin is structurally homolo- bone cultures, and regulates bone metabolism (7). In
gous to an immunoglobulin constant domain containing clinical studies, ß2-microglobulin serum concentrations
a disulfide-linked loop. The interactions of ß2-micro- were found to be increased in bone diseases with high
globulin with the , 2 and 3 segments of the heavy remodeling rates, such as postmenopausal osteoporosis
chain are critical for maintaining class I MHC molecules (8) and Pagefs disease (9). Since ß2-microglobulin
in their native conformation; displacement of the ß2- seems to be crucial both for the immune and bone sys-
microglobulin results in the loss of heavy-chain native tern, we hypothesized that ß2-microglobulin-deficient
structure (1). ß2-Microglobulin-deficient mice, created mice should have altered bone turnover in vivo. The
using the technique of gene knock-out, lack functional purpose of the present study was to compare basic prop-
MHC class I molecules. Since these molecules are in- erties of bone physiology in mice homozygous for ß2-
stnunental for recognition by CDS T-lymphocytes, ß2- microglobulin knock-out gene and their heterozygous
microglobulin knock-out impairs the effector cellular littermates with normal expression of class I MHC
immune response (2). ß2-Microglobulin knock-out mice molecules.
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Materials and Methods
ß 2 -Microglobul in-def ic ient mice

,-Microglobulin-deficient (ß2m-'-) mice (129/Sv X C57B1/6, H-
2*) were kindly provided by Dr. Rudolf Jaenisch (2). Mice were
maintained in a pathogen-free environment and monitored daily.
They were fed standard rodent chow diet (Pliva Pharmaceuticals,
Zagreb, Croatia) and given water ad libitum. The ß2m~;~ genome
transmitting chimeras were mated to C57BL/6 mouse strain; 25%
of mice of the F2 generation displayed the ß2m~7~ phenotype.
Homozygous mice were then mated with their heterozygous litter-
mates to produce 50% of each genotype. Fourteen ten week-old
males homozygous for ß2m~/" genome and 9 male heterozygous
littermates from 5 such matings were included in the study.

The genotype of individual mice was determined by cytofluoromet-
ric screening of CD8+ cells in the peripheral blood (10). Briefly,
100 of tail vein blood were preserved from coagulation with
5 of 0.5 mol/1 EDTA, pH 8.0. FITC-conjugated monoclonal anti-
bodies to CDS (rat anti mouse Lyt-2 F1TC; Becton Dickinson,
Mountain View, CA, USA) were added to this suspension and incu-
bated for 30 minutes at 4 °C. After red blood cell lysis by lysis
solution (Becton Dickinson), the remaining cells were analyzed by
a FACScan cytofluorometer (Becton Dickinson). Individual ani-
mals were considered homozygous if CD8+ cells were completely
absent from the sample.

Physical and bone ash data

Body weight of mice was measured at sacrifice. Right femur from
each mouse was carefully cleansed of adherent tissue, weighed and
its length measured using a caliper. Bone volume was determined
by fluid displacement according to the Archimedes' principle (11)
and bone density calculated per gram of fresh weight. Bones were
then dried in pre-weighed ceramic vials at 110 °C overnight and
again weighed. Dried bones were ashed at 1000 °C for 24 hours
and weighed. The ash was dissolved in 1 ml 6 mol/1 HC1 and di-
luted with 1 ml of deionized water. The samples were then ana-
lyzed for calcium content using atomic absorption spectrometry
(ASS, Pye Unicam, USA).

Bone histomorphometry

For the evaluation of histomorphometric static and dynamic bone
properties of bone formation and resorption, proximal lumbar ver-
tebrae were used. Mice received calcein (15 mg/kg body weight)
injection 2 and 5 days before sacrifice. Lumbar vertebrae (LI -L3)
were dissected out and fixed in 80% ethanol at 4 °C. The bones
were dehydrated in increasing ethanol concentrations and embed-
ded undecalcified in methylmetacrylate. Midline longitudinal
3 urn-thin sections of vertebrae were cut on a Reichert-Jung micro-
tome and stained with Goldner's stain, or were mounted unstained
for fluorescent microscopy (12). Histomorphometric characteristics
were evaluated on one entire vertebra according to the system re-
commended by the American Society for Bone and Mineral Re-
search (13). The following characteristics were evaluated using au-
tomated image analysis (14): total tissue area (mm2 of one vertebra
including marrow and bone); trabecular bone volume (percent of
the vertebral sample occupied by trabecular bone); osteoid surface
(percent bone surface covered by osteid); and osteoclast surface
Opercent of the bone surface with visible osteoclasts or remnants
of their activity). Mineral apposition rats were calculated from the
distance between double calcein labels measured on unstained sec-
tions using a fluorescent microscope (14).

Biochemical analysis of the serum

Serum calcium concentrations were determined by atomic absorp-
tion spectrometry. Alkaline phosphatase activity was measured
using p-nitrophenyl phosphate as substrate (12).

Statistical analysis

Since the measured data showed normal distribution (15), the ex-
perimental groups were compared using the Student's t-test.

Results
• r

Male mice heterozygous and homozygous for the ß2-
microglobulin knock-out gene developed normally after
birth (data not shown) and had similar body weight at
ten weeks (30.6 ± 2.5 g in homozygotes and 35.1
± 4.7 g in heterozygotes). Homozygous mice had no ap-
parent abnormalities of the skeleton or other organ sys-
tems. Femur lengths were also similar in heterozygous
and homozygous male littermates (16.12 ± 0.99 mm in
homozygotes and 16.59 ± 1.02 mm in heterozygotes).
Fresh and dry bone weight, as well as the ash and bone
calcium content were comparable in the two experimen-
tal groups (tab. 1), indicating that both homozygous and
heterozygous ß2-microglobulin knock-out mice had
bones appropriate for their body size and age.

Static and dynamic bone histomorphometry showed that
the indices of bone formation and resorption did not dif-
fer in homozygous and heterozygous littermates (tab. 2).
Serum alkaline phosphatase, which reflects bone forma-
tion activity, as well as serum calcium concentration
were not changed in ß2-microglobülin-deficient mice in
comparison to the control group (tab. 3).

Discussion

The data presented in this report indicate that bone turn-
over of ß2-microglobulin-deficient mice at the tissue and

Tab. 1 Bone ash evaluation of the femurs from mice heterozy-
gous or homozygous for ß2-microglobulin knock-out gene.

Fresh weight (mg)
Dry weight (mg)
Femur density
Ash weight (% of dry bone)
Calcium (% of ash weight)

ß2-Micro-
globulin"

87.23 ± 9.81
5 1.52 ±5.42

1.38 ± 0.03
69.69 ± 2.65
28.74 ± 0.97

ß2-Micro-
globulin"1"

88.29 ± 7.19
52.59 ± 4.27

1.40 ±0.04
65.58 ± 1.84
30.51 ± 1.79l

Tab. 2 Histomorphometric evaluation of lumbar vertebrae from
mice heterozygous or homozygous for ß2-microglobulin knock-
out gene.

Total vertebral tissue area (mm2)
Trabecular bone volume (%)
Osteoid surface (%)
Osteoclast surface (%)
Mineral apposition rate ( /day)

ß2-Micro-
globulin"

2.21 ±0.18
19.35 ±2.05
0.67 ± 0.23

13.43 ± 1.07
U40 ± 0.22

ß2-Micro-
globulin"1"

2.32 ± 0.16
18.92 ± 1.19
0.71 ± 0.24

14.28 ± 0.93
1.54 ±0.43
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Tab. 3 Serum biochemical data in mice heterozygous or homozy-
gous for ß2-microglobulin knock-out gene.

Calcium
(mmol/1)

Alkaline phosphatase
(U/l)

ß2-Micro-
globulin""

2.37 ±. .0.21

239 ± 11

ß2-Micro-
globulin"1"

2.55 ±

243 ±

0.06

10

organ level do not differ from that of their littermates
with functional production of p2-microglobulin. Bone
turnover in both groups of mice was appropriate for the
stage of their skeletal maturation and comparable to
other, albeit rare reports on bone metabolism in mice
(16).

Our results are surprising in the view of the close inter-
dependence of the bone and immune systems. Many ex-
perimental and clinical studies have shown that a
number of growth factors and cytokines, first isolated
from the cells of the immune system, exert effects on
bone cells and are produced by bone cells themselves
(reviewed in I.e. (17)), indicating complex molecular
interactions between the two systems (18, 19).

However, most of the in vivo data on bone turnover
in immunodeficient animals are contradictory. Marked
decrease in bone formation rate and the number and ac-
tivity of osteoclasts have been reported in athymic mice

which lack T-lymphocytes (20). Another study showed
that athymic mice had physiological bone turnover com-
parable to that of euthymic mice (16), while we showed
that thymectomized rats, which have depression in cellu-
lar immunity, had better indices of new bone formation
induced by demineralized bone matrix in comparison to
the control animals (21). In view of this data, the finding
of normal in vivo bone metabolism in ß2-microglobulin-
deficient mice is not surprising. Even the reports on ß2-
microglobulin in bone diseases are contradictory; e.g.
both increased and normal serum ß2-microglobulin
levels have been reported for Paget's disease (9, 22).
The studies of the immune system in ß2-microglobulin-
deficient mice indicate that the disturbance in the ex-
pression of MHC class I molecules can be compensated
in several ways, so that ß2m~~/~ mice make adequate
protective immune responses to foreign antigens in vivo
(23). Such plasticity of the immune system and compen-
satory flexibility in both the immune and bone systems
may explain our finding of normal bone turnover in ß2-
microglobulin-deficient mice. Detailed and more sophis-
ticated studies of the bone metabolism in immunodefi-
cient animals is needed for a better insight into the rela-
tionships between the bone and immune systems.
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