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Francisella is a gram-negative bacterial pathogen, which causes tularemia in humans

and animals. A crucial step of Francisella infection is its invasion of macrophage cells.

Biogenesis of the Francisella-containing phagosome (FCP) is arrested for ∼15min at

the endosomal stage, followed by gradual bacterial escape into the cytosol, where the

microbe proliferates. The crucial step in pathogenesis of tularemia is short and transient

presence of the bacterium within phagosome. Isolation of FCPs for further studies

has been challenging due to the short period of time of bacterial residence in it and

the characteristics of the FCP. Here, we will for the first time present the method for

isolation of the FCPs from infected human monocytes-derived macrophages (hMDMs).

For elimination of lysosomal compartment these organelles were pre-loaded with dextran

coated colloidal iron particles prior infection and eliminated by magnetic separation of the

post-nuclear supernatant (PNS). We encountered the challenge that mitochondria has

similar density to the FCP. To separate the FCP in the PNS from mitochondria, we utilized

iodophenylnitrophenyltetrazolium, which is converted by the mitochondrial succinate

dehydrogenase into formazan, leading to increased density of the mitochondria and

allowing separation by the discontinuous sucrose density gradient ultracentrifugation.

The purity of the FCP preparation and its acquisition of early endosomal markers

was confirmed by Western blots, confocal and transmission electron microscopy. Our

strategy to isolate highly pure FCPs from macrophages should facilitate studies on the

FCP and its biogenesis.

Keywords: phagocytosis, organelle purification, pathogen-containing phagosomes, Francisella, human

macrophages

INTRODUCTION

Intracellular bacteria invade eukaryotic cells, followed by subversion of endocytic pathway, which
results in formation of membrane-bound phagosomes. They are cable to modulate the membrane
protein and lipid composition of phagosomes. This modulation is crucial for bacterial survival
within the host cell because it either promotes the establishment of an intact replicative niche
or allow the pathogen to escape to replication-permissive cytosol. Many intracellular bacterial
pathogens have unique life cycles. Cytosolic bacteria, like Shigella (Ray et al., 2010) and Listeria
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(Camejo et al., 2011) modulate the endosomal-lysosomal
membrane-bound compartments and escape into the cytosol,
which provides environment rich in nutrients. Intracellular
bacteria, Salmonella (Steele-Mortimer, 2008; Malik-Kale et al.,
2011), Legionella (Kagan and Roy, 2002; Shin and Roy, 2008;
Isberg et al., 2009), andMycobacterium spp. (Vergne et al., 2004)
are intracellular bacterial pathogens that reside and replicate
within host endomembrane system. These bacteria overcome the
stressful conditions in membrane-bound vacuoles.

Francisella tularensis is a gram-negative, highly infectious
bacterium. The bacterium causes the zoonotic disease tularemia.
F. tularensis type A is a dangerous pathogen that constantly raises
attention due to potential use as biological weapon. Interestingly,
Francisella novicida shares many similarities to type A strain due
to genome sequence, intracellular life cycle and infectivity.

F. tularensis can invade and multiply within a range of cell
types (Buddingh and Womack, 1941; Shepard, 1959; Anthony
L. S. et al., 1991; Ben Nasr et al., 2006; Lindemann et al.,
2007), but in vivo its primary target are macrophages (Fortier
et al., 1994). Within mammalian and arthropod-derived cells,
Francisella resides in acidic vacuole prior to escape to the cytosol,
where it replicates (Santic et al., 2009; Llewellyn et al., 2011). In
contrast, within amoeba cells bacterium resides and replicates
within non-acidified, membrane-bound vacuoles (Lauriano et al.,
2004; Santic et al., 2008).

After entry, it is enclosed within a unique compartment.
Intracellular proliferation is essential for Francisella virulence,
and a lot of effort has been made on understanding of specific
steps in the intracellular cycle of this bacterium. Francisella
survival and proliferation strategies rely on entering in the initial
phagosome along the endocytic pathway and physical escape to
the cell cytosol, making this bacterium a typical cytosol-dwelling
pathogen (Celli and Zahrt, 2013). Despite the fact that Francisella
replicates in the cytosol of infected cells, short presence of
the Francisella in the phagosome is necessary for productive
multiplication.

Macrophage infection by Francisella begins with initial
bacterial recognition at the cell membrane (Clemens et al., 2005).
Francisella enters into macrophages by looping phagocytosis
through cholesterol-rich membrane domains called “lipid rafts”
with caveolin-1 (Clemens et al., 2004; Tamilselvam and Daefler,
2008; Moreau and Mann, 2013). Following uptake, Francisella
resides within an initial vacuolar compartment, the Francisella-
containing phagosome (FCP). Lipid raft-associated components
are incorporated into the FCP during entry and the initial
phase of intracellular infection of host cells (Tamilselvam and
Daefler, 2008). Cholesterol, as a key structural and regulatory
element for the integrity of lipid rafts, has an important role in
Francisella internalization into macrophages (Tamilselvam and
Daefler, 2008). FCPmatures to an early endosome state regulated
by Rab5, a protein that is critical for endosome-phagosome
tethering and fusion (Alvarez-Dominguez et al., 1996; Jahraus
et al., 1998; Duclos et al., 2000). The FCP consequently acquires
late endosomal markers including CD63, LAMP-1, LAMP-2, and
Rab7 (Clemens et al., 2004, 2009; Santic et al., 2005; Checroun
et al., 2006; Chong et al., 2008; Wehrly et al., 2009). Eventually
the late endosome becomes acidified upon acquisition of the

proton vATPase pump that imports hydrogen protons into the
vacuole (Chong et al., 2008; Santic et al., 2008). The FCP does
not accumulate any lysosomal markers, such as Cathepsin D,
or lysosomal tracers (Anthony L. D. et al., 1991; Clemens et al.,
2004; Santic et al., 2005; Bonquist et al., 2008). In order to evade
lysosome-mediated killing, Francisella escapes from the FCP to
the cytosol. Vacuolar escape by various strains of F. tularensis
and F. novicida in macrophages and other cells types has been
described (Golovliov et al., 2003; Clemens et al., 2004; Santic
et al., 2005, 2008; Chong et al., 2008). However, the study of
Francisella vacuolar escape kinetics has brought controversy to
the field varying from the 15 min to 8 h post-infection (Golovliov
et al., 2003; Clemens et al., 2004; Santic et al., 2005, 2008;
Checroun et al., 2006; McCaffrey and Allen, 2006). However,
these differences are likely due to variation in the host cells used,
the Francisella species and the methodological approaches used
by various studies (Golovliov et al., 2003; Clemens et al., 2004;
Santic et al., 2005, 2008; Checroun et al., 2006; McCaffrey and
Allen, 2006).

The survival and replication of Francisella in host cells
depends on the expression of the Francisella pathogenicity island
(FPI) proteins. FPI-deficient mutants fail in formation and
maturation of FCP (Nano et al., 2004; Telepnev et al., 2005;
McCaffrey and Allen, 2006; Qin and Mann, 2006; Chong et al.,
2008, 2013; Broms et al., 2010; Napier et al., 2012; Steele et al.,
2013). Moreover, inactivated F. tularensis, as well as FPI mutants
iglC and pdpC are not capable to avoid the FCP suggesting
that vacuolar escape is a Francisella mediated process. This was
clearly demonstrated when vacuolar escape deficient mutant
pdpC was paired on magnetic bead with wild type bacteria.
Wild type F. novicida secreted effector proteins, which allowed
both wild type and pdpC to escape the phagosome. Studies have
shown that pathogen secrete the IglA-J, PdpA, C, E, DotU, and
VgrG into the macrophage cytosol during the infection (Hare
and Hueffer, 2014). However, another study shown that IglC,
IglI and PdpE, but not IglA and IglG are secreted in a T6SS-
dependentmanner during infection (Broms et al., 2012). Another
importance of phagosome formation is shown by the reduced
ability of Francisella LVS (live vaccine strain) strain to grow in
host cell cytosol after microinjection (Meyer et al., 2015). The
brief time spent in the phagosome is a dynamic step during
which Francisellamust actively evade host antimicrobial defenses
(Jones et al., 2012). Francisella phagosomal escape is requisite
to intracellular proliferation and its essential in the Francisella
intracellular life cycle (Lindgren et al., 2004; Santic et al., 2005;
Bonquist et al., 2008; Barker et al., 2009; Wehrly et al., 2009;
Broms et al., 2012).

Techniques for the isolation and analysis of phagosomes
are important experimental tools in endocytosis and apoptosis
research. Since 1969, most of the available methods are based
on density gradient ultracentrifugation (Wetzel and Korn,
1969). Here we present a method for isolation of FCP from
infected human monocyte-derived macrophages (hMDMs).
The method is based on infection of human macrophages
with F. novicida, followed by mechanical lysis and separation
of intracellular organelles. Several adaptations of previously
described method are included (Shevchuk et al., 2009; Shevchuk
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and Steinert, 2013). For elimination of lysosomal compartment
these organelles were loaded with dextran coated colloidal iron
particles prior infection and eliminated by magnetic separation
of post nuclear supernatant (PNS). The treatment of PNS with
iodophenylnitrophenyltetrazolium (INT) salt was necessary to
increase the density of mitochondria and fractionate it from FCP
in a discontinuous sucrose density gradient.

MATERIALS AND METHODS

Cultivation of F. novicida
F. novicida (Birdsell et al., 2009) was grown on buffered charcoal-
yeast extract (BCYE) agar at 37◦C with 5% CO2 atmosphere for
24 h.

Preparation of hMDMs from Blood of
Healthy Human Donors
Humanmonocyte derived macrophages were differentiated from
peripheral bloodmonocytes of healthy volunteers with no history
of tularemia. Blood was diluted in ratio 1:2 with 0.9% saline,
and 15ml was applied on top of 7.5ml of Ficoll-Hypaque
(Ficoll-Paque; Pharmacia Fine Chemicals, USA). After 25 min
of centrifugation at 300 × g, at room temperature (RT) the
layer containing the mononuclear cell fraction was aspirated,
transferred to a new tubes and centrifuged for additional
10min at 300 × g at RT. Obtained monocytes were washed
twice with 25 ml of 0.9% saline, resuspended in RPMI with
glutamine (Bio Whittaker, Lonza, USA) supplemented with
20% FBS (Invitrogen, USA), and distributed in 6-well ultra-
low attachment plates (Cornig Life Sciences, USA). Serum
starvation was performed to promote monocyte differentiation
to macrophages (Santic et al., 2005; Ozanic et al., 2016). After 3
days of incubation at 37◦C in 5% CO2 the medium was replaced
with 10% FBS RPMI, followed by replacement with 5% FBS RPMI
(at day 6). At day 7 cells were scraped, collected and resuspended
to desired concentration in RPMI with 1% FBS.

Preparation of Colloidal Iron Particles
Dextran—coated colloidal iron particles were prepared as
follows. Equal volumes of 1.2M FeCl2 (10ml) and 1.8M FeCl3
(10ml) were mixed and agitated extensively while adding the
same volume (10ml) of 25% NH3 dropwise. The suspension
was divided in 5ml aliquots and placed on a magnetic unit
(Dynal, Thermo Fisher, USA). Precipitate was than collected on
the bottom of the tubes and washed once with 5% NH3, twice
with ddH2O and resuspend in 80ml of 0.3M HCl. Solution was
magnetically stirred for 30 min. Dextran (4 g, 64 to 76 kDa,
Sigma-Aldrich, USA) was added and solution was stirred for
further 30min. In study of distribution of colloidal iron particles
within endosomal compartments, small aliquot of prepared
colloidal iron was incubated with dextran-tetramethylrhodamine
(1mg/ml, 70 kDa, Sigma-Aldrich, USA) and stirred for 30min.
The samples were dialyzed against 5 l of cold water, changing
water four times during 2 days. The final suspension was filtered
through filter paper and was used immediately or stored at 4◦C
for maximum 3 months. The concentration of obtained iron
solution was∼10mg/ml (Rodriguez-Paris et al., 1993).

Preparation of OptiprepTM Density
Gradients
OptiPrep gradients were prepared by mixing of two working
solutions, 10 and 45% of OptiPrep (Sigma-Aldrich, USA) in
HB buffer (0.5mM Na2EGTA, 20mM HEPES, 250mM Sucrose)
in gradient mixer (Model #GM-40; C.B.S. Scientific Co, USA).
Gradients were poured into polyallomer centrifuge tubes (9/16
× 3-3/4′′; 14 × 95mm; Beckman Coulter, USA) and used
immediately or kept at 4◦C overnight.

Infection of hMDMs with F. novicida
A total of 5·107 hMDMs were seeded in 30ml of RPMI
supplemented with 1% FBS in 75 cm2 cell culture flasks (TPP,
Switzerland). Colloidal iron particles were added to a final
concentration of 1mg/ml, gently distributed 15 min before
infection and left in the medium. The cells were infected with
F. novicida at a multiplicity of infection (MOI) 10. In order
to achieve synchronized infection, the cells were centrifuged
immediately after infection at 100 × g for 3min at RT. After
15min of incubation at 37◦C the cells were scraped, transferred
to a 50ml tube and centrifuged at 230× g for 7min at 4◦C. Cells
were washed twice in 30ml of ice cold PBS and once in 10ml of
ice cold HB buffer.

Isolation of F. novicida-Containing
Phagosome
For the isolation of FCP pellet of infected hMDMs was
resuspended in 2ml of cold HB buffer supplemented with
EDTA-free protease inhibitor cocktail (Roche Diagnostic,
Penzberg, Germany) according to manufacture protocol
and with 5mg/ml INT (Sigma-Aldrich, USA). The cells
were mechanically disrupted in a Dura Grind stainless-steel
homogenizer (Dounce Dura-Grind R© Tissue Grinder; Braintree,
Scientific, Inc.), transferred to a new tube and incubated with
Benzonase (50 units/ml, Sigma-Aldrich, USA) for 7 min at 37◦C.
The nuclear and cell debris were removed by centrifugation at
110× g for 5min at 4◦C. Obtained PNS was transferred to a new
tubes and additional 2ml of HB buffer with protease inhibitor
cocktail was added to remaining pellet, carefully mixed and
centrifuged at 100× g for 3 min at 4◦C. PNS was run through the
MiniMACS column (OctoMACSTM Separation Unit; Miltenyi
Biotec, Germany) to eliminate the lysosomal compartments
loaded with colloidal iron. The flow through fraction was
carefully applied on top of 8ml of 10 to 45% OptiPrep gradient
and centrifuged for 2 h in SW40 swing Rotor (Beckman Coulter,
USA) at 100,000 × g at 4◦C. After centrifugation, about 800µl
fractions were carefully collected from the top of gradient with
cutted 1ml tip. To analyze distribution of bacteria in gradient
fractions, 10µl of each fraction was diluted in 190µl of ddH2O
and plated on BCYE square plates 120 × 120mm (Greiner,
Sigma-Aldrich, USA). After 2 days of incubation at 37◦C the
CFU of F. novicida were calculated.

Confocal Laser Scanning Microscopy
The hMDMs were infected with F. novicida at MOI 10. At 15
min after infection the cells were washed with PBS, fixed using
4% paraformaldehyde (PFA, Sigma-Aldrich, USA) for 30 min at

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3 July 2017 | Volume 7 | Article 303

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Marecic et al. Francisella Phagosome Isolated from Macrophages

4◦C and permeabilized with 0.5% Triton X-100 (Sigma-Aldrich,
USA). The coverslips were incubated with mouse monoclonal
anti Francisella antibodies (1:5,000), washed with PBS and
incubated with Alexa Fluor 555 (1:4,000, Molecular probes, USA)
secondary antibodies for 1 h at RT.

To study the integrity of isolated FCP, equal fractions of
phagosomes were seeded onto 24-well coverslips and centrifuged
at 200 × g for 10min at 4◦C, followed by fixation with 4% PFA
for 15min at RT. Prepared samples were stained with 1µl/ml of
propidium iodide (PI) (Serva, Germany) for 25min in the dark.
Control samples were permeabilized with methanol at−20◦C for
5min.

To study the labeling of endosomal compartments with
dextran-tetramethylrhodamine coated colloidal iron, the
hMDMs were seeded on coverslips. The cells were loaded with
dextran-tetramethylrhodamine colloidal iron for 15min. After
15min the colloidal iron particles were left in the medium and
the cells were additionally infected with F. novicida for 15min at
MOI 10 followed by centrifugation at 100 × g for 3min at RT.
At 15min after infection, and 30min of colloidal iron particles
load. the cells were washed, fixed and permeabilized as described
above. The coverslips were incubated with mouse monoclonal
anti Francisella antibodies (1:5,000), mouse monoclonal early
endosome antigen (EEA1,1:1,000, Bio Rad, USA), mouse
monoclonal lysosome associated membrane protein 1 (Lamp-1,
1:1,000, Bio Rad, USA) and mouse monoclonal anti Cathepsin-D
(1:1,000, BD Biosciences, USA). The coverslips were washed
with PBS and incubated with donkey anti-goat Alexa Fluor
488 and goat anti-mouse Alexa Fluor 647 (1:4,000, Molecular
probes, USA) secondary antibodies for 1 h at RT. All samples
were mounted in Mowiol 4-88 (Sigma-Aldrich, USA) and
analyses were performed on FV 1000 Olympus confocal
microscope.

SDS-PAGE and Western Blot
For Western blot analysis, equal amount of fraction proteins
was applied onto 10% SDS-PAGE. After separation, proteins
were transferred to nitrocellulose membrane in Transfer Buffer
(Tris Base, Glycine, Methanol, ddH2O) and blocked for 1 h
at room temperature in 1x Tris Buffered Saline (TBS, Sigma-
Aldrich, USA) with 0.1% (w/v) Tween-20 (TBST, Sigma-Aldrich,
USA) and 3% (m/v) Bovine Serum Albumine (BSA, Sigma-
Aldrich, USA). Monoclonal rabbit antibody against human
Rab5 (1:1,000, Cell Signaling Technology, USA), rabbit antibody
against mitochondrial apoptosis-inducing factor (AIF, 1:1,000,
Cell Signaling Technology, USA), mouse monoclonal KDEL
antibody (1:100, Santa Cruz Biotechnology, USA), antibody
against Golgi matrix protein of 130 kDa (gm130, BD Biosciences,
USA), mouse monoclonal EEA1 and Lamp-1 were used for
overnight incubation in staining buffer (3% BSA in TBST).
After washing three times for 10min in TBST, secondary
anti-rabbit IgG and anti-mouse IgG conjugated horseradish
peroxidase antibodies (1:1,000, Cell Signaling Technology, USA)
were added for 1 h at RT. Membrane was again washed
three times for 10min in TBST. Enhanced chemiluminescence
detection reagents Luminal Enhancer Solution (GE Healthcare,
UK) and Peroxide Solution (GE Healthcare, UK) were used for

visualization of the detected proteins by Bio Rad Chemi Doc
XRR+ (Bio Rad Laboratories, USA).

Transmission Electron Microscopy
For transmission electron microscopy, the samples were
transferred in 12-well cell culture plates (TPP, Switzerland). The
samples were washed with 1x Sorensen buffer (TCS Biosciences
Ltd., UK) and fixed using 2.5% glutaraldehyde (SPI Supplies,
USA) for 45min at 4◦C. The post fixation was performed with
1% OsO4 (SPI Supplies, USA) for 45min at 4◦C. The sample
was dehydrated by ethanol series with increased concentration,
embedded in epoxy resin (SPI Supplies, USA) and polymerized
for 24–48 h at 60◦C. Ultra-thin sections were cut and examined
by Phillips Morgany transmission electron microscope.

Statistics
Statistical significances were determined using two-tailed
Student’s t-test. Statistical analyses were performed using
Statistica (Statsoft) software version 12 or with GraphPad Prizm
version 6.0 software. P < 0.001 were accepted as significantly
different and were denoted by ∗.

Ethics Statement
This study was carried out in accordance with the
recommendations of Health Care Act Republic of Croatia
(NN 158/08, 71/10, 139/10, 22/11, 84/11, 12/12, 35/12, 70/12
i 82/13), Act on the Protection of Patient’s rights Republic
of Croatia (NN 169/04, 37/08), was approved by the Ethical
committee of Clinical Hospital Centre Rijeka as well as
Ethical committee of Faculty of Medicine, with written
informed consent from all subjects. All subjects gave written
informed consent in accordance with the Declaration of
Helsinki.

RESULTS

F. novicida-Containing Phagosome
Isolated from Infected hMDMs
Following phagocytic uptake, Francisella resides within special
vacuole-FCP and its formation is absolutely required for
intracytoplasmic replication of bacteria (Checroun et al., 2006).
Because of apparent importance of this organelle during
establishment of infection we optimized the method of FCP
isolation (Figure 1). Human macrophages were infected with
F. novicida at multiplicity of infection 10 resulting in 70%
of hMDMs infected with bacteria at 15 min after infection
(Figure 2). Macrophages, free of extracellular bacteria were
disrupted in a Dura Grind stainless-steel homogenizer by
optimized number of strokes. The unbroken cells and nuclei
were removed by centrifugation. Obtained PNS was treated with
Benzonase, an enzyme mixture for nucleic acid degradation,
which allows reduction of sample viscosity and allows the
separation of FCP from other organelles in PNS. The distribution
of F. novicida in the gradient after ultracentrifugation was
determined by plating fractions onto BCYE agar plates and
counting bacterial CFU/ml (Figure 3). Our results showed that
the highest number of F. novicida was in fraction 8 and it
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FIGURE 1 | Schematic illustration of the FCPs isolation procedure.

(A) hMDMs were loaded with colloidal iron particles. (B) Cells were infected

with F. novicida, centrifuged to synchronize the infection, and the infection was

allowed to proceed for 15 min. (C) Several washing steps were performed.

(D) The cells were lysed mechanically. (E) Mitochondria were labeled with INT.

(F) For reducing viscosity the suspension was treated with benzonase and

centrifuged at low speed to remove cell debris and nuclei. (G) Post nuclear

supernatant was run through a MiniMACS separation column to eliminate

lysosomes. (H) The FCP were purified by OptiPrep density gradient

ultracentrifugation.

reached 6.5 × 105 CFU/ml (Figure 3). The fractions with
highest number of bacteria were routinely proceeded for further
analysis.

FIGURE 2 | The analysis of the percentage of infected hMDMs.

Representative fluorescence microscopy images of hMDMs infected with

F. novicida at MOI 10 for 15 min. The examination of 100 hMDMs from three

different coverslips shows that around 70% of the cells were infected.

FIGURE 3 | Representative distribution of FCPs in 10–45% OptiPrep gradient

fractions. An aliquot of each OptiPrep fraction was plated onto a BCYE-agar

plate and CFU/ml of F. novicida were counted. The fraction with the highest

bacterial number corresponds to FCP fractions.

Separation of FCP from Subcellular
Organelles
During isolation of bacterial vacuole, it is crucial to minimalize
artifacts caused by other organelles. The successful separation of
FCP from subcellular organelles was assessed by Western blot
and transmission electron microscopy.

For separation of FCP from mitochondria we treated the PNS
with INT, which results in formation of formazan, a product of
activity of mitochondrial succinate dehydrogenase. This step was
necessary to increase the density of mitochondria and separate
two organelles by ultracentrifugation. The distribution of early
endosome markers Rab5 and EEA1, lysosomal marker Lamp-
1 as well and mitochondrial marker AIF, Golgi marker gm130
and ER marker KDEL were assessed by WB. Rab5 and EEA1
were enriched in fractions with the highest number of bacteria
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of the OptiPrep gradient, consistent with the accumulation of
FCP in this fraction (Figure 4). AIF was enriched in fraction 10 of
the OptiPrep gradient, confirming the presence of mitochondria
in these fractions (Figure 4). Obtained results confirmed the
separation of FCP from mitochondria by ultracentrifugation.
Additionally, in gradient fractions formazan was visible after
ultracentrifugation, and could be used as a marker for estimation
of localization of bacterial fractions that were above this
formazan circle (Figure 1). Further, our results showed that Golgi
apparatus and endoplasmic reticulum are eliminated during
the purification of the FCP and are not present in gradient
fractions (Figure 4). The distribution of Lamp-1 in PNS before
and after the magnetic separation, as well as in gradient fractions,
was tested by Western blot (Figure 4). The results showed that
lysosomes were present in PNS before magnetic separation and
eliminated with this procedure.

To investigate the trafficking of the dextran coated colloidal
iron particles within the endocytic pathways after infection
of hMDMs with F. novicida the confocal microscopy was
used. Our results showed that around 30% of dextran-
tetramethylrhodamine colloidal iron particles colocolized with
Lamp-1 and ∼65% with Cathepsin-D (Figure 5B). In contrast,
F. novicida colocalized with EEA1 (Figure 5A), indicating that
most of colloidal iron does not interfere with early F. novicida
phagosome.

In addition, human macrophages infected with F. novicida at
MOI 10 at 15 min after infection and FCP within fractions were
analyzed by transmission electron microscopy. At 15 min after
infection bacteria were enclosed in intact phagosomes of infected
hMDMs (Figure 6A). Low magnification TEM image of the FCP
enriched fraction demonstrate the purity and small vesicle free
fraction (Figure 6B). High magnification TEM image of the FCP
enriched fraction revealed that single bacteria surrounded by per
one-layer membrane were present (Figure 6C).

Integrity of the FCP Membrane after
Isolation
The integrity of phagosomal membrane of isolated FCP was
tested using PI by fluorescence microscopy. The fractions with
the highest number of bacteria were used for this study.
As a control sample, the isolated phagosomal fraction was
permeabilized in order to allow the PI to penetrate inside the
phagosome and stain the bacteria. This was considered as 100%
of stained bacteria. Three coverslips were analyzed and the total
stained bacteria in each sample were counted. This approach
provided valuable information about the quality of the isolated
FCP. Our results show that FCP membrane is intact on ∼70% of
the isolated phagosomal fractions (P = 0.000001; Figure 7).

DISCUSSION

It is essential for Francisella to replicate within host cells to
successfully establish an infection and cause disease. Escape
from the phagosome is an important step in Francisella life
cycle since mutants deficient in escape are unable to cause
productive infection (Chong et al., 2012). After invasion of
the host cell, Francisella forms an endocytic membrane-bound
phagosome. Bacteria must disrupt this phagosome and dislocate
to the cytosol in order to replicate and spread from cell to cell
(Clemens et al., 2004; Santic et al., 2005). However, these short-
lived vacuoles can interact with the host vesicular trafficking,
and can have important role for virulence and pathogenesis of
Francisella. Due to importance of the phagosome in pathogenesis
of tularemia we established a method for purification of
FCP from infected human monocyte derived macrophages. To
perform the separation of phagosome from infected cells, large
cell number is necessary, making it challenging to use these
approaches with human primary cells. For that reason, we

FIGURE 4 | Western blot analysis of OptiPrep fractions. Fractions 3 to 12 as well as PNS before and after magnetic separation were tested using the markers for the

following compartments: early endosome (Rab5 and EEA1), lysosomes (Lamp-1), Golgi (gm130), mitochondria (AIF) and ER (KDEL). hMDMs lysate was used as a

control.
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FIGURE 5 | The distribution of dextran-tetramethylrhodamine iron particles within the endocytic pathway in F. novicida infection (A). Representative confocal laser

scanning microscopy images of colocalization of dextran-tetramethylrhodamine iron particles with Lamp-1, Cathepsin-D, and EEA1 in F. novicida infected hMDMs. The

images are representatives of 100 infected cells examined from three different cover slips. (B) Quantification of colocalization of the colloidal iron particles with EEA1,

Lamp-1, and Cathepsin D. The results shown are representative of three independed experiments, and error bars represent standard deviation of triplicate samples.

FIGURE 6 | TEM analyses of hMDMs infected with F. novicida at MOI 10 at 15 min after infection (A) and isolated FCP (B,C). Samples were washed and fixed with

glutaraldehyde and post-fixed using osmium tetroxide. Ultra-thin sections were cut and observed using TEM. The white arrows show vacuolar membrane and black

arrows indicate bacteria. One representative micrographs out of three independent preparations.

pulled together the blood from different donors to obtain the
necessary number of human macrophages. To ensure that we do
not co-isolate the extracellular bacteria, intensive washing steps
were included. In contrast to previously published protocols,
the dextran coated iron particle were used for elimination
of lysosomal and endosomal compartments prior infection
(Shevchuk et al., 2009; Shevchuk and Steinert, 2013). With
the use of confocal microscopy, we followed the trafficking of
dextran-tetramethylrhodamine iron particles within hMDMs.
The markers for early and late endosomes as well as lysosomes
were used to document which endosomal compartments are
labeled by colloidal iron. This is due to the specificity and rapidity
of infection in comparison to other intracellular pathogens
(Chong and Celli, 2010; Santic et al., 2010). Some of the most

interesting aspects of phagosome maturation depend on the
ability of intracellular pathogens to bypass the normalmaturation
process. Attempts to purify these compartments represents a
challenge when classical organelle enrichment techniques are
used. To resolve this problem a combination of classical and
improvedmethods for enrichment and pre-fractionationmust be
used. In previous published methods for isolation of Legionella-
containing vacuole the 5–30% OptiPrep gradient was used
(Shevchuk et al., 2009; Shevchuk and Steinert, 2013). During
the establishment of phagosome isolation from Dictyostelium
discoideum cells infected with F. novicida, different concentration
of OptiPrep were tested (5–30, 5–35, 10–40, and 10–45%, data
not shown). Optimization of OptiPrep gradient for successful
isolation of FCP showed that the best separation of FCPwas when
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FIGURE 7 | The analysis of FCP membrane integrity. Quantification of integrity

of phagosomal membrane in the fraction with the highest number of bacteria.

The percent of bacteria after staining with PI and analyses by fluorescence

microscopy. Three coverslips were analyzed per fraction and STDEV were

calculated. Student’s t-test was used to determine statistical significance with

*P < 0.001.

OptiPrep gradient 10–45% was used. In addition, the efficient
removal of contaminants in the method of vacuole isolation is
very important to achieve. Therefore, in order to separate two
organelles with close density, mitochondria and FCP, we utilized
an enzyme of the citrate cycle, the succinate dehydrogenase,
located in the inner mitochondrial membrane. The INT added
to the PNS is converted to formazan and increased the density
of those organelles (Munujos et al., 1993). This phenomenon was
used for separation of mitochondria from FCPs by discontinues
ultracentrifugation method. In addition, Rab5 and EEA1, as
markers for early endosomal compartment, were used to indicate
the presence of FCP in OptiPrep fractions that was void of
mitochondrial marker, AIF.

Isolation of bacteria-containing vacuoles (BCV) is of key
importance for the understanding of these compartments,
but technically is very challenging. During recent years,
different groups have developed different protocols for isolation
of BCV (reviewed in Herweg et al., 2015). The bacteria
subvert endomembrane trafficking around the BCV and the
communication around BCV and other host cell organelles has
been described (Gagnon et al., 2002; Touret et al., 2005; Santos
et al., 2015; Santos and Enninga, 2016).

Protocols for isolation of pathogen-containing vacuoles
are based on subcellular/organelle fractionation based on
physicochemical properties (Howe and Heinzen, 2008; He
et al., 2012; Cheng et al., 2014). These protocols combine
confocal fluorescence microscopy, Western blot and electron
microscopy techniques providing the characterization of host
cell compartments after infection with different intracellular
pathogens. In addition, isolation of BCV can be based on
immuno-affinity purification (Urwyler et al., 2010; Hoffmann
et al., 2013; Vorwerk et al., 2015) or on FACS single cell
enrichment by sorting bacteria and lysed host cells organelles
(Becker et al., 2006; Pfortner et al., 2013; Surmann et al., 2014).
Separation principles have been applied for isolation of latex

bead-phagosomes from macrophages (Desjardins et al., 1994)
and Dictyostelium (Gotthardt et al., 2002). In the protocol
for purification of Legionella-containing vacuole (LCV) from
infected D. discoideum (Shevchuk et al., 2009; Urwyler et al.,
2010; Finsel et al., 2013; Shevchuk and Steinert, 2013), or
murine macrophage-like RAW 264.7 (Hoffmann et al., 2014)
the immuno-magnetic separation using an anti-SidC antibody
was performed, followed by 10–35% Histodenz density gradient
centrifugation. Others established protocol for LCV isolation
from U937 macrophages using 55–65% gradient (Bruckert and
Abu Kwaik, 2015). Others and our studies show that the integrity
of phagosome membrane is often compromised during the early
time point of infection with Francisella (Santic et al., 2008;
Chong et al., 2012; Ozanic et al., 2015; Rowe and Huntley,
2015). Besides the electron microscopy methods, fluorescence
microscopy could be valuablemethod to check the integrity of the
phagosomal membrane after its isolation (Lonnbro et al., 2008;
Hoffmann et al., 2013, 2014; Bruckert and Abu Kwaik, 2015).
Results from this study show that the phagosomal membrane
is highly conserved 15 min after infection of hMDMs and
only 30% of the analyzed fraction show some damage of
the FCP. The FCP is presumably intact within 30 min after
infection.

Many intracellular bacteria reside and replicate inside
phagosomal compartmentmaking protocol for vacuolar isolation
easy to apply. In contrast, some intracellular pathogens show
ability to escape from phagosome to directly use the cytoplasm
as their replicative habitat (Ray et al., 2009). Francisella
resides in phagosomes ∼5–30 min after infection, making
it more challenging for isolation of the phagosome from
infected macrophages. After cytoplasmic replication, Francisella
re-enters the endocytic pathways by autophagy (Checroun
et al., 2006; Jones et al., 2012), and bacteria are found in
autophagosomes by 24 h after infection. Our established method
for isolation of FCP could be applied for the isolation of
autophagosomes as well. The protocol presented here will enable
future proteomic analyses analysis of those delicate intracellular
compartments.
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