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Abstract: Vertebral bone quality (VBQ) is a promising new method that can improve screening for
osteoporosis. The drawback of the current method is that it requires manual determination of the
regions of interest (ROIs) of vertebrae and cerebrospinal fluid (CSF) by a radiologist. In this work,
an automatic method for determining the VBQ is proposed, in which the ROIs are obtained using
a trained neural network model. A large, publicly available dataset of sagittal lumbar spine MRI
images with ground truth segmentations was used to train a BRAU-Net++ hybrid CNN–transformer
neural network. The performance of the trained model was evaluated using the dice similarity
coefficient (DSC), accuracy, precision, recall and intersection-over-union (IoU) metrics. The trained
model performed similarly to state-of-the-art lumbar spine segmentation models, with an average
DSC value of 0.914 ± 0.007 for the vertebrae and 0.902 for the spinal canal. Four different methods
of VBQ determination with automatic segmentation are presented and compared with one-way
ANOVA. These methods use different algorithms for CSF extraction from the segmentation of the
spinal canal using T1- and T2-weighted image data and applying erosion to the vertebral ROI to
avoid a sharp change in SI at the edge of the vertebral body.

Keywords: MRI; CNN; transformer; spine imaging; VBQ; MRI segmentation

1. Introduction

Osteoporosis is a systemic bone disease that causes degeneration of bone tissue mi-
crostructures and low bone quality [1,2]. Therefore, the assessment of bone mineral density
(BMD) in patients undergoing spinal surgery is important for clinical decision making [3,4].
BMD is determined using dual-energy X-ray absorptiometry (DEXA). This technique is
recommended by the World Health Organization (WHO) as the diagnostic tool of choice
for osteoporosis screening [5]. The main problem with DEXA and BMD assessment is the
relatively low screening rate in the majority of patient groups. Some surveys found that
only 44% of spine surgeons routinely obtained DEXA results prior to instrumental fusion,
although DEXA screening prior to surgical instrumentation is generally advocated for [6,7].

The importance of assessing bone quality in the preoperative treatment of patients is
recognized as a prerequisite for a positive outcome of vertebrosynthesis procedures and the
avoidance of postoperative complications. The gold standard for BMD assessment is DEXA.
However, it overestimates BMD in patients with degenerative changes in the spine and
in patients with excess body weight [8]. In view of this, there are alternative radiological
methods to measure BMD using MRI as a non-invasive routine examination prior to
surgical procedures. Recent research has shown that it is possible to calculate BMD values
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obtained through MRI examination. However, the correlation of BMD obtained by MRI
examinations with the values obtained by DEXA needs to be confirmed so that this method
can be included in the preoperative treatment of patients undergoing vertebrosynthesis.
Deformities of the spine, atherosclerotic changes in the aorta and previous compression
fractures of the vertebrae lead to increased X-ray absorption and falsely increase the T
value [9,10]. Recent studies show that measuring the fat content in the cancellous bone
on a T1-weighted image using MRI is a more sensitive method of assessing BMD and can
predict the occurrence of vertebral fracture much more accurately than DEXA [6,11].

The vertebral bone quality (VBQ) score is a new scoring method in magnetic resonance
imaging (MRI) that can be used to improve screening for osteoporosis [6,12]. The VBQ
score can be determined from standard clinical, non-contrast T1-weighted MR images
without additional software. The advantage of this method is that it does not require
ionizing radiation, is easy to use, and does not require additional equipment or special
clinical protocols. The proposed method measures the signal intensity (SI) of vertebrae
and cerebrospinal fluid (CSF) in specific regions of interest (ROIs). The ROIs are usually
drawn manually by the radiologist, which can jeopardize the consistency of the results
obtained. This can be improved by automating the ROI determination. Therefore, automat-
ing the VBQ determination may drastically reduce the time required to yield plausible
results. Furthermore, it does not require any additional work from a radiologist, except for
final monitoring.

Although the automatic segmentation of anatomical features can be performed using
analytical algorithms such as connected threshold or region growing, most of these meth-
ods require user input in addition to the medical images. Usually, this input consists of
the coordinates of initial seed points from which the algorithm starts the calculation. An
advanced method is the use of a trained neural network model for the semantic segmen-
tation of medical images. The use of machine learning and deep learning in conjunction
with computer vision has improved the interpretation of medical images and made these
techniques an important tool in healthcare [13]. Currently, the segmentation model-based
convolutional neural network (CNN) is used for most medical image segmentation applica-
tions, with U-Net being one of the most widely used models. The encoder–decoder design
of U-Net combines information at multiple scales and improves the performance of the
segmentation model. CNN excels at capturing local features but is unable to capture long
distance dependencies. After the successful application of transformer-only architecture in
the field of medical image segmentation, more and more transformer-based models have
been developed to optimize semantic segmentation approaches [14]. MRI segmentation of
the lumbar spine has been the subject of intensive research in recent years, with numerous
approaches being proposed. The reliable detection of vertebrae from a variety of different
MRI protocols and sequences remains a challenge, but at the same time, is crucial for the
localization of spinal disease and subsequent treatment planning [15]. The challenge arises
from the fact that different vertebrae are similar to each other, while the same vertebrae
can look drastically different due to pathological deformities. Recently, reviews of different
state-of-the-art methods have become available, allowing researchers to compare different
neural network architectures and solutions for the segmentation of lumbar spine images,
even across different imaging modalities such as CT, X-ray and MRI [16].

The use of deep learning in spinal imaging has led to many practical solutions and
could have a potential future impact on research in the field of spinal imaging. These
include image acquisition and reconstruction, image quality enhancement, quantitative
image analysis and image interpretation [17]. Quantitative image analysis often employs
the localization, labeling and segmentation of spinal structures. Image interpretation and
pattern recognition have been used to detect and classify a variety of disorders, namely
degenerative diseases of the lumbar spine, scoliosis, spinal tumors, spinal cord compres-
sion, cervical spondylosis and osteoporosis [17]. Recent examples of developments in
spine image segmentation, detection and classification focus on lumbar spine stenosis
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using a CNN-based deep learning model or a CNN integrated with multiple attention
mechanisms [18,19].

To follow recent advances in neural network architecture and to test a transformer-
based neural network for a medical image segmentation task, a hybrid CNN–transformer
network BRAU-Net++ was used for this research [20]. Training a neural network model for
medical image segmentation requires a large amount of image data with corresponding
semantic segmentation masks. A large, publicly available dataset was used to train the
BRAU-Net++ network for vertebral and spinal canal segmentation from sagittal MR images
of the lumbar spine [21]. To evaluate the statistical significance of the different VBQ
determination methods, 166 image series from 83 studies were randomly selected from the
database of the resident hospital.

The main objective of this study is to provide a method for automatic VBQ determi-
nation from T1-weighted sagittal MRI images of the lumbar spine. The second aim is to
compare different methods of post-processing vertebral and CSF ROI and to determine
whether changing the shape of the measured ROI has a statistically significant effect on
the overall VBQ score. The advantage of an automated method for VBQ scoring is its ease
of application to a large amount of data, making validation and comparison studies more
accessible. This is particularly important as the diagnostic value of the VBQ is not well doc-
umented and the complementary role of the VBQ score in the assessment of osteoporosis
remains to be evaluated [22].

The use of the VBQ score may provide exceptional health benefits by reducing patient
disability and shortening the rehabilitation time of patients following surgery. It is well
known that osteoporosis leads to poor surgical outcomes and that fragility fractures in
orthopedic surgery are more incident in osteoporotic bone. Postoperatively, osteoporosis is
associated with an increased risk of implementation failures, extended hospitalization, a
higher rate of revision surgery and higher patient mortality. Many patients with undiag-
nosed osteoporosis have been deprived of treatment, and in this sense, early diagnosis and
timely treatment can prevent fragility fractures [23].

2. Materials and Methods

In order to achieve an automatic VBQ determination, semantic segmentation of the
required anatomical regions (vertebrae and spinal canal) must first be performed. This can
be achieved by training a neural network for the segmentation task using a large dataset
of annotated MRI data. First, a large, publicly available dataset is presented along with
the required image preprocessing steps. Then, BRAU-Net++, a hybrid CNN–transformer
architecture selected for this task, is briefly described and the relevant metrics to evaluate
the performance of the neural network are explained. Finally, the original manual method
for determining the VBQ and four new automatic methods are presented. Each of these
methods uses the segmentation obtained with the trained neural network model and
an additional algorithm that separates the CSF from the spinal canal, together with the
vertebral body erosion segmentation algorithm.

2.1. Dataset and Preprocessing

A large publicly available dataset was selected to train the BRAU-Net++ neural net-
work for the segmentation task required for automatic VBQ determination. The dataset
consists of 447 sagittal T1 and T2 MRI series from 218 studies of 218 patients acquired
at four different hospitals. All patients had a history of low back pain. The quality
and dimensions of these images vary between series, with voxel sizes ranging from
3.15 × 0.24 × 0.24 mm to 9.63 × 1.06 × 1.23 mm. Segmentation of the visible verte-
brae (except the sacrum), intervertebral disks (IVDs) and spinal canal was performed using
a semi-automated segmentation method. First, 20 randomly selected high-resolution series
were chosen for manual segmentation. For the other image series, the segmentations were
performed using an iterative automatic segmentation method. The first segmentations
were performed using an automatic method that was trained with data from manually
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segmented image series. New segmentations (annotations) were then manually corrected
and added to the training dataset. This process was repeated four times. Figure 1 shows a
diagram of the annotation process [21].
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Figure 1. Diagram of the iterative annotation process [21].

Before this dataset was used to train the BRAU-Net++ neural network, several prepro-
cessing steps were carried out. Since the signal intensity of the IVDs was not required for
VBQ determination, all segmentations of the IVDs were removed from the segmentation
masks in the dataset to improve the training performance of the network and shorten
the training time. The segmentation masks were left with 9 classes: the L1–L5 vertebrae
(numbered 1 to 5), the Th10–Th12 vertebrae (numbered 6 to 8) and the spinal canal (num-
bered 9). Figure 2 shows an example of a mid-sagittal slice image from a series and the
corresponding segmentation mask.
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Figure 2. (a) Mid-sagittal slice of T1-weighted lumbar spine image series; (b) corresponding segmen-
tation mask with pixel values ranging from 0 to 9.

The intensity values of the MR images were then rescaled to values between 0 and 1 in
order to obtain uniform value ranges for the different series. All images and segmentation
masks were rescaled to a size of 224 × 224 pixels. From the dataset, 20% of the randomly
selected series were used as test data and 10% were randomly selected as validation data.
The data used for training were saved in .npz format from the Numpy package for scientific
computing in Python. The test and validation datasets were saved in HDF5 format from the
h5py Python package. This was carried out to adapt the dataset to the form of the Synapse
dataset used in the original BRAU-Net++ training, which facilitates the process of neural
network training [20]. All preprocessing steps were coded in the Python (version 3.9.12.)
programming language. Although only T1-weighted image series are required for VBQ
determination, the neural network was trained with both T2- and T1-weighted data. T2-
weighted images of the spine have a hyperintense signal in the spinal canal where the CSF
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is located in relation to the neural tissue. In contrast, T1-weighted images of the spine tend
to have lower signal intensity differences between the CSF and neural tissue in the spinal
canal. For this reason, T2-weighted images may be useful for segmenting the CSF from
the spinal canal masks. Another MRI dataset was randomly selected from the database of
the University Hospital Rijeka, Croatia. It consists of 166 image series, 83 T1-weighted and
83 T2-weighted lumbar spine MRI data from 83 studies of 83 patients, all acquired using a
1.5T MRI device (Siemens Magnetom Aera, Siemens Healthineers, Erlangen, Germany).
The T1- and T2-weighted data are available in pairs for each study (each patient). This
dataset was selected to determine whether four different methods of VBQ determination
showed statistically significant differences from each other. To be usable for the trained
model, this dataset was subjected to the same preprocessing steps as the public dataset
used for neural network training.

2.2. Neural Network and Training

The BRAU-Net++ neural network architecture was chosen for the segmentation
task required for automatic VBQ determination. This u-shaped architecture is a hy-
brid CNN–transformer network that uses bi-level routing attention (BRA) as the core
building block for its encoder–decoder structure. It also uses skip connection channel–
spatial attention (SCCSA) which adopts convolution operations, aiming to minimize
local spatial information loss and amplify the global dimension interaction of multi-
scale features [20]. The code for the BRAU-Net++ neural network can be downloaded
at: https://github.com/Caipengzhou/BRAU-Netplusplus/tree/master (accessed on 10
June 2024).

The loss function used for training the dataset was the same that used by the authors
of the original article for Synapse dataset training. It is a hybrid loss function that combines
both dice loss and cross-entropy loss. Dice loss (Ldice), cross-entropy loss (Lce) and hybrid
loss (L) are defined as follows:

Ldice = 1−
K

∑
k

2ωk∑N
i p(k, i)g(k, i)

∑N
i p2(k, i) + ∑N

i g2(k, i)
, (1)

Lce = −
1
N

N

∑
i=1

G(k, i)·log (P(k, i)) + (1− G(k, i))·log (1− p(k, i)) , (2)

L = λLdice + (1− λ)Lce , (3)

where N is the number of pixels; G(k, i) ∈ (0, 1) and P(k, i) ∈ (0, 1) indicate the ground
truth label and the produced probability for class k, respectively; K is the number of classes;
∑k ωk = 1 is the weight sum of all classes; and λ is a weighted factor that balances the impact
of Ldice and Lce. In this study, ωk and λ are empirically set at 1 K and 0.6, respectively [20].
Figure 3 shows the BRAU-Net++ architecture and SCCSA module.

To evaluate the performance of the neural network, the average dice similarity coeffi-
cient (DSC) is used, along with the precision, accuracy, recall and Jaccard index, also known
as intersection-over-union (IoU). These evaluation metrics are calculated as follows:

DSC =
2× TP

2× TP + FP + FN
, (4)

Accuracy =
TP + TN

TP + TN + FP + FN
, (5)

Precision =
TP

TP + FP
, (6)

Recall =
TP

TP + FN
, (7)

https://github.com/Caipengzhou/BRAU-Netplusplus/tree/master
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IoU =
TP

TP + FP + FN
, (8)

where TP, FP, TN and FN are true positive, false positive, true negative and false negative.
As can be seen from Equations (4) and (8), the IoU can be expressed as IoU = DSC/(2-DSC).
Nevertheless, the IoU value was calculated for the sake of completeness. Neural net-
work predictions can formally be separated into these categories using a confusion matrix
algorithm implemented in the Python programming language.
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Figure 3. The architecture of the BRAU-Net++, which is constructed based on the BiFormer block.
(a) U-shaped hybrid CNN-Transformer network architecture that uses sparse attention mechanism:
bi-level routing attention as core building idea to hierarchically design the encoder-decoder structure.
(b): The skip connection channel–spatial attention (SCCSA) module, which enhances the ability of
cross-dimension interactions from both channel and spatial aspects and compensates for the spatial
information loss caused by down-sampling [20].

These evaluation metrics can be used to compare the performance of BRAU-Net++
and other modern neural network architectures. nnU-Net, a self-configuring deep learning-
based framework for medical image segmentation, has gained acceptance in the medical
image analysis community as a state-of-the-art approach for 3D image segmentation
tasks [21,24]. Since nnU-Net was trained on the dataset used for this work, its performance
can be directly compared to the performance of the BRAU-Net++ network. The BRAU-
Net++ neural network was trained over 400 epochs with the public dataset described above.
The training was performed using an HP Z8 G4 workstation with an NVIDIA Quadro
P6000 graphics card. The trained neural network model was then used to segment the
dataset of 166 series acquired from the resident hospital.
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2.3. VBQ Determination

The VBQ score is determined from pixel intensity values of T1-weighted non-contrast
MR images using the following expression:

VBQ =
SIL1−L5

SICSF
, (9)

where SIL1–L5 is the mean pixel signal intensity (SI) value of the L1, L2, L3, L4 and L5 verte-
brae, and SICSF is the mean signal intensity value of CSF. When drawing ROIs manually,
a circular ROI was placed on the L1–L5 vertebral body, avoiding the lesion and poste-
rior venous plexus. CSF SI was measured near the L3 vertebra. If there was a complete
obstruction of the posterior CSF region, the adjacent segment CSF was chosen [12].

Four different methods of automatic VBQ determination were investigated. For each
method, the CSF region SI had to be extracted from the segmentation provided by the
neural network using an additional algorithm, since the trained neural network model
generates segmentation of the entire spinal canal and not just the CSF region. For this
purpose, a connected threshold algorithm was chosen.

In the first method (T1_VBQ), only T1-weighted data and the corresponding segmen-
tation were used. The SI value of the CSF region was extracted in the following way:
First, the point of local minimum was found in the segmentation of the spinal canal, with
coordinates restricted to the vertical axis between L1 and L5. This local minimum was used
as the starting point for the connected threshold algorithm. The lower limit of the threshold
was chosen as the local minimum SI value and the upper limit was calculated using the
following expression:

Upper boundary = SImin +
SImax − SImin

3
, (10)

where SImin and SImax are the minimum and maximum SI of the constrained spinal canal
region, respectively. The connectivity value was set to 1. This was carried out for each slice
of the segmented series where spinal canal segmentation was present.

The second method (T1_VBQ_eroded) uses the same CSF extraction algorithm, but
changes the volume of vertebral segmentation and thus the ROI used for VBQ determina-
tion. This was achieved using the erosion algorithm. In erosion, pixels that are non-zero
and have a neighboring pixel with a value of 0 are removed from the segmentation masks,
essentially removing the outer layer of pixels from each segmented region. This method of
changing the vertebral ROI volume was chosen to avoid sharp changes in SI at the edge of
the segmented vertebral body, which can negatively affect the VBQ value.

In the third method (T2_VBQ), T2-weighted images and segmentation masks are used
together with T1-weighted images. Since the T2-weighted MRI data of the spine have
hyperintense SI in the CSF region, the CSF can be easily extracted using a segmented
threshold algorithm. Similar to the first method, the local maximum point in the segmented
region of the spinal canal in the T2-weighted image was used as the initial value for the
connected threshold algorithm. The upper limit was set as the local maximum SI value
and the lower limit as the maximum SI/1.5. The connectivity value was set to 1. The
coordinates of this segmented region were then used to determine the SI in the CSF from
the T1-weighted image of the same study (patient). T1- and T2-weighted images belonging
to the same study do not necessarily match spatially, even if they were acquired sequentially
as part of the same MRI protocol. This may be due to the movement of the patient during
imaging or to the different parameter values of the T1 and T2 MR sequences, such as the
number of slices or the spatial resolution. To address this, a co-registration algorithm
implemented in the FMIRB Software Library (FSL) [25] was used together with a Python
script to resize T1- and T2-weighted images together with their segmentation masks to the
same size.
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The fourth method (T2_VBQ_eroded) uses the same CSF SI extraction algorithm as
the third method, together with erosion of the vertebral segmentation region, as used in
the second method.

Each different method of CSF extraction and vertebral ROI determination was applied
to each of the 83 study datasets from the resident hospital database. The average signal
intensities for vertebrae and CSF were calculated from the original image pixel values
without preprocessing steps using segmentation masks as ROI selections. The VBQ score
was then determined using Equation (9). For six randomly selected series from the database,
the VBQ was determined using manually drawn ROIs in addition to the first and second
methods. All methods were compared using one-way analysis of variance (or one-way
ANOVA) to determine if there were statistically significant differences between the four
methods of VBQ determination.

3. Results
3.1. Trained Network Model Evaluation

The BRAU-Net++ neural network was trained with 447 sagittal T1- and T2-weighted
MRI series with segmentation masks for nine classes over 400 epochs. The neural network
achieved convergence and produced a trained model that was later used to generate
segmentations of the vertebrae and spinal canal. The performance of the network was
evaluated using DSC, accuracy, precision, recall and IoU for each of the nine classes for
which the prediction masks were created. Table 1 shows the result of the evaluation metrics.

Table 1. The evaluation metrics of the trained model.

Class DSC Accuracy Precision Recall IoU

1–L1 0.907 0.999 0.922 0.892 0.829

2–L2 0.917 0.999 0.927 0.907 0.846

3–L3 0.917 0.999 0.928 0.906 0.847

4–L4 0.912 0.999 0.923 0.902 0.838

5–L5 0.913 0.999 0.917 0.908 0.839

6–Th10 0.915 0.999 0.907 0.923 0.843

7–Th11 0.926 0.999 0.927 0.926 0.862

8–Th12 0.904 0.999 0.905 0.904 0.825

9–Spinal canal 0.902 0.998 0.897 0.907 0.821

The performance of the BRAU-Net++ network can be directly compared with that of
the nnU-Net neural network, as both networks were trained with the same dataset. The
results of the DSC evaluation metric for nnU-Net are 0.92 ± 0.05 for the vertebrae and
0.92 for the spinal canal. The average DSC value for BRAU-Net++ for the vertebrae is
0.914 ± 0.007, which is in the range of the values reported by nnU-Net. The DSC value for
the spinal canal is 0.902 and thus below the result of the nnU-Net DSC score. Figure 4 shows
examples of original images, ground truth segmentation and predictions for individual
images from T1- and T2-weighted series.

Even though the trained model performed well according to the evaluation metrics
presented in Table 1, for some of the 166 series data chosen for VBQ determination, a
mixing of segmentation labels is present in the prediction provided by the trained model.
An example of segmentation label mixing is shown in Figure 5.
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3.2. VBQ Determination Methods’ Results

VBQ was determined for a mid-sagittal slice of six randomly selected series using
three different methods: the hand-drawn ROI method, automated segmentation from
T1-weighted images, and automated segmentation with an applied erosion algorithm.
Figure 6 shows an example of the three VBQ determination methods on the same image.
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Figure 6. (a) Hand-drawn ROIs for vertebra and CSF, shown as red circles. (b) ROIs generated by
automatic segmentation from trained neural network model and CSF extraction algorithm (T1_VBQ).
(c) Same as (b), with erosion algorithm applied to vertebrae and CSF ROIs (T1_VBQ_eroded). In (b,c),
red color represents vertebrae segmentation, while green color represents CSF segmentation.

Table 2 shows the result of VBQ score determination using Equation (9).

Table 2. Results of VBQ determination.

Series Manually Drawn ROI VBQ T1_VBQ T1_VBQ_eroded

1 3.37 2.80 3.01

2 2.60 2.69 2.86

3 3.52 3.29 3.46

4 3.58 3.09 3.27

5 4.22 3.59 3.84

6 3.61 2.67 3.02

Four different methods were compared for VBQ determination (T1_VBQ, T1_VBQ_
eroded, T2_VBQ and T2_VBQ_eroded). Examples of the segmentation with each method
and the segmentation with the trained neural network model are shown in Figure 7 as a
3D rendering. The 3D rendering was performed with the ITK-SNAP software application
(version 4.2.0.) [26].

Table 3 shows the results of the four methods of VBQ determination, with average
values and standard deviations for VBQ score, vertebra SI, and CSF signal intensity. These
values were determined across the 83 studies randomly selected from the resident hospital
database, with 166 series of images.
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Figure 7. (a) Upper: T1-weighted segmentation mask provided by trained neural network model
(vertebrae and spinal canal). Lower: T2-weighted segmentation mask provided by trained neu-
ral network model. Different colors represent each of the 9 segmentation classes, which are la-
beled 1 – 9 in the segmentation masks. (b) Upper: T1_VBQ method. Lower: T2_VBQ method.
(c) Upper: T1_VBQ_eroded method. Lower: T2_VBQ_eroded method. In (b,c) green regions repre-
sent segmented CSF, while red colored regions represent segmented vertebrae.

Table 3. Results of VBQ determination.

T1_VBQ T1_VBQ_eroded T2_VBQ T2_VBQ_eroded

VBQ score 2.60 ± 0.56 2.73 ± 0.58 2.21 ± 0.54 2.33 ± 0.57

Vertebra SI 127.50 ± 31.84 133.94 ± 34.48 124.68 ± 30.52 131.61 ± 33.19

CSF SI 50.39 ± 14.48 50.39 ± 14.48 59.05 ± 22.39 59.05 ± 22.39

Each set of VBQ scores obtained using one of the four different methods was com-
pared using a one-way ANOVA statistic to determine if there were statistically significant
differences between the four methods. The resulting p-value is p = 0.00001 < 0.05, which
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means that there is a significant statistical difference between the datasets. A post hoc
Tukey’s Honest Significant Difference (HSD) test was applied to the same data to assess the
significance of differences between pairs of VBQ scores obtained by the different methods.
The results show that there is a statistically significant difference between the T1_VBQ and
T2_VBQ methods (p = 0.00006), the T1_VBQ and T2_VBQ_eroded methods (p = 0.00907),
the T1_VBQ_eroded and T2_VBQ methods (p = 0.000001), and the T1_VBQ_eroded and
T2_VBQ_eroded methods (p = 0.00004).

4. Discussion

Automatic segmentation of vertebrae and the spinal canal from T1- and T2-weighted
MRI data was achieved by training a hybrid CNN–transformer neural network, BRAU-
Net++, using a publicly available dataset. The resulting model achieved good accuracy,
precision and DSC values. Compared to the DSC scores of the state-of-the-art nnU-Net
neural network, BRAU-Net++ achieves comparable results for vertebral segmentation and
poorer results for spinal canal segmentation. This is also in line with a review of modern
deep learning architectures for lumbar spine imaging, which reports DSC values between
84.9 and 93 for different U-Net-based architectures [27]. The accuracy values approach 99%
for each class, which can be explained by the relative number of TP and TN pixels in the
segmentation images [27]. As is common in medical image segmentation, the segmented
area comprises only a small part of the image, while the background contains all other
pixels. For this reason, the number of TP pixels is much smaller than the number of TN
pixels. Consequently, the accuracy of Equation (5) yields large values for each segmentation
class [27].

The spinal canal class has the lowest DSC and accuracy values, which can be explained
by the different pixel intensities of the CSF in T1-weighted and T2-weighted images. In
T1-weighted images, the CSF is dark and has low intensity values. Conversely, the CSF in
T2-weighted images is bright, i.e., it contains high pixel intensity values. Since the network
was trained simultaneously with T1- and T2-weighted image data, the difference in pixel
values in only one part of the segmented region (spinal canal) could influence the training
and the resulting neural network model.

Although the evaluation metrics obtain good results, in some of the 166 data series
selected for VBQ determination, label mixing is present in the resulting segmentation. The
cause of this is not apparent, but should be investigated further. Fortunately, the mixing of
labels does not affect the VBQ determination, as this only requires a mean vertebral ROI SI
across all lumbar vertebrae.

Automatic VBQ determination was successfully achieved by using the segmentations
from the trained neural network model with the addition of analytical CSF segmentation
using a connected threshold algorithm. Four different VBQ determination methods were
presented. Interestingly, the mean and standard deviation of the VBQ score for each of the
four methods appear to be relatively close to each other. However, the result of the one-way
ANOVA shows that there is a significant statistical difference between the datasets, which
means that the choice of VBQ determination method is not straightforward. The results
of the post hoc Tukey’s HSD test show statistically significant differences between the
methods using T1-weighted images and those using T2-weighted images for segmentation.
The average VBQ scores of all four methods are in the range reported in [12]. The results of
the manually drawn ROI method are also in the range cited by [12], except for the VBQ
score for series 5, as shown in Table 2. The automatic VBQ determination method obtained
plausible results for the same series, which, although only a single data point is involved,
illustrates how useful a consistent automatic method can be. The main difficulty in the
practical implementation of this method is the co-registration of T1- and T2-weighted
images, which is required for two of the four proposed methods as it uses an additional
program, FSL. The challenges of neural network training, data curation and preparation do
not affect the practical implementation, as once a neural network model is trained, it can be
easily shared and used for the segmentation task.
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5. Conclusions

Four different methods of automatic VBQ determination using a trained neural net-
work model for semantic segmentation were created and tested on a dataset of 83 MRI
studies of the lumbar spine. A one-way ANOVA statistic with a post hoc Tukey’s HSD test
showed that there is a significant statistical difference between the results of the different
VBQ determination methods. The main limitation of this study is the lack of BMD data for
the 83 patients whose lumbar spine MRI data were used to test and compare the different
methods. BMD data would allow a direct comparison of the VBQ score with the gold
standard used in clinical settings. Nevertheless, this work is novel in its way of automating
VBQ score determination, which could prove useful for further testing and validation of the
VBQ score as a diagnostic tool for osteoporosis. For future work, the proposed automated
VBQ determination methods could be used with MRI data from patients for whom BMD
values are also available to evaluate the correlation coefficient and determine the best of
the four methods. While the original hand-drawn VBQ score determination method was
designed to be simple and easy to use, automating the segmentation process opens up new
possibilities for assessing bone quality. For example, hyperintense signal intensity regions
of vertebrae in T1-weighted images, often referred to as “bone islands”, can be isolated
from the final VBQ determination, potentially improving the consistency of the results.
One could also use other methods to determine the properties of vertebral bone tissue, such
as the heterogeneity equation in combination with proton density, perhaps creating a new
radiomic parameter.
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VBQ Vertebral bone quality
MRI Magnetic resonance imaging
CNN Convolutional neural network
ROI Region of interest
CSF Cerebrospinal fluid
DSC Dice similarity coefficient
IoU Intersection-over-union
ANOVA Analysis of variance
BMD Bone mineral density
DEXA Dual-energy X-ray absorptiometry
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SI Signal intensity
IVD Intervertebral disk
SCSSA Skip connection channel–spatial attention
TP True positive
FP False positive
TN True negative
FN False negative
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