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Abstract: The research in neuroimmunomodulation aims to shed light on the complex relationships
that exist between the immune and neurological systems and how they affect the human body. This
multidisciplinary field focuses on the way immune responses are influenced by brain activity and
how neural function is impacted by immunological signaling. This provides important insights into
a range of medical disorders. Targeting both brain and immunological pathways, neuroimmunomod-
ulatory approaches are used in clinical pain management to address chronic pain. Pharmacological
therapies aim to modulate neuroimmune interactions and reduce inflammation. Furthermore, bio-
electronic techniques like vagus nerve stimulation offer non-invasive control of these systems, while
neuromodulation techniques like transcranial magnetic stimulation modify immunological and
neuronal responses to reduce pain. Within the context of aging, neuroimmunomodulation analyzes
the ways in which immunological and neurological alterations brought on by aging contribute to
cognitive decline and neurodegenerative illnesses. Restoring neuroimmune homeostasis through
strategies shows promise in reducing age-related cognitive decline. Research into mood disorders
focuses on how immunological dysregulation relates to illnesses including anxiety and depression.
Immune system fluctuations are increasingly recognized for their impact on brain function, leading
to novel treatments that target these interactions. This review emphasizes how interdisciplinary
cooperation and continuous research are necessary to better understand the complex relationship
between the neurological and immune systems.

Keywords: cytokines; immune system; inflammatory illnesses; microglial cells; mood disorders;
neuroimmunomodulation; neurofeedback; vagus nerve stimulation

1. Introduction

At the vanguard of quickly developing fields in the biological sciences, neuroim-
munology bridges the critical divide between the immune and neurological systems [1].
Understanding how closely linked these two seemingly different systems are is at the core
of neuroimmunomodulation. The central nervous system and immune system have an
active communication relationship that goes beyond a simple link. This complex web of
communication affects many aspects of our lives, including illness, health, and how we
react to different environmental and psychological stimuli. A crucial component of the two
systems’ reciprocal communication is the nervous system’s regulation of immunological
responses [2]. The benefits of the capability of the nervous system to regulate immunity are
examined, as are the possible advantages resulting from the brain’s special functions, such
as its ability to integrate physiological processes, make predictions, and react quickly. The
communication channels between the brain and peripheral immune system are examined,
encompassing the endocrine, sympathetic, parasympathetic, sensory, and meningeal lym-
phatic systems. Furthermore, the processing and regulation of immune information in the
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brain regions are investigated, providing a partial map to guide the conceptual framework
for the generation of hypotheses and the study of these intricate interactions [1].

The immune system’s receptors for neurotransmitters such as acetylcholine and nore-
pinephrine, as well as the sympathetic nervous system’s (SNS’s) fibers’ attachment to
lymph nodes, enable these controls [3]. As previously indicated, situated at the nexus of
immunology and neurology, neuroimmunomodulation provides an engaging investigation
of the complex conversation between our immunological and neurological systems. This
dynamic interaction has important ramifications for understanding the dynamics of both
health and illness [4]. The relationships between the neurological system and the immune
system have mostly been studied in the context of illnesses. However, recent studies are
shedding light on the ways in which certain soluble effectors, known as cytokines, which
are made by immune cells, can influence host behavior even when there is not an active
infection. Every mechanism is most likely developed to maximize an organism’s ability to
respond to external challenges, hence raising its odds of surviving [5].

There are remarkable similarities between the neurological and immunological sys-
tems, which serve as links between the internal systems and exterior surroundings. Spe-
cialized sensors designed to detect environmental and internal inputs are present in every
system. Immune system lymphocytes, for example, display TCRs, or T-cell receptors,
and B-cell receptors, and different immune cells use pattern-recognition receptors (PRRs)
to identify pathogens [6]. Similarly, sensory neurons in the nervous system, including
nociceptors, express a variety of ligand-gated or voltage-gated channels, allowing them to
register information about noxious stimuli [7]. Additionally, immune cells feature receptors
responsive to neurotransmitters and neuropeptides, exerting influence over inflammation
and immunosuppression processes [8–12]. Functional pattern-recognition receptors, in-
cluding Toll-like receptor 3 (TLR3), TLR4, TLR7, and TLR9, as well as cytokine receptors,
are expressed by sensory neurons. This allows them to recognize pathogens and danger
signals, and it makes nociceptors more sensitive to pain and itching. These receptors’
reciprocal expression raises the possibility of communication between the neurological
and immunological systems [5,13,14]. The organism shows an extensive distribution of
both systems. While neurons use the expansion of lengthy processes, immune cells use
the circulation of blood to monitor tissue. This enables fast response propagation upon
danger signal detection and ongoing tissue surveillance. Additionally, both systems exhibit
an elevated level of flexibility that allows them to adapt to different situations. Because
of these commonalities, evolution may have an advantage in identifying and reacting to
environmental stresses [5].

Every system employs distinct strategies to ensure the host’s survival. By combining
information from the outside and within, the nervous system controls behavior. When
faced with drugs or circumstances that are thought to be hazardous, avoidance behavior is
triggered. The immune system defends the organism against harmful infection, damage, or
stress by using processes of resistance or tolerance. New research reveals that the immune
system can control behavior in addition to its usual functions, underscoring its neglected
function as a neuromodulator [5,15–17].

Tracing the Roots of Neuroimmunomodulation

Over the years of its fascinating history, neuroimmunomodulation has undergone
significant advancements that have shed light on its major consequences for human well-
being and illness. The initial focus was on brain-to-immune communication channels,
partly because of the keen interest of neuroendocrinologists and the progress made in
understanding the structure of chemicals and binding mechanisms of neuroendocrine
hormones. Over time, cells of endhothelial cells, glia, and neurons have developed complex
functional and structural relationships, and neurobiologists have come to understand the
significance of cytokines locally generated by brain cells in these interactions. It was long
thought that immune chemicals in bloodstreams functioning primarily on the brain were
what caused the brain’s connection to the nervous system.
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Early 20th-century research on psychological effects on immunity at the Institute
Pasteur in the French capital led to revolutionary discoveries that eventually shaped the
field of neuroimmunomodulation [2]. However, it was not until the 1970s that observa-
tional evidence from Ader and Cohen of the complex interaction connecting the immune
system and the central nervous system restored conditioned immunosuppression to the
mainstream [18]. This significant finding has rekindled scientific interest in understanding
the neuroimmunomodulatory pathways [19]. Hans Selye is believed to be the first scientist
to identify ‘stress’ as underpinning the nonspecific signs and symptoms of illness and the
founder of the “stress theory”. He distinguished acute stress from the total response to
chronically applied stressors, terming the latter condition ‘general adaptation syndrome’,
which is also known in the literature as Selye’s Syndrome [20].

Neuroimmunoendocrinology, neuroimmunomodulation, and psychoneuroimmunol-
ogy are names given to the diverse fields of study on neural-immune interactions, de-
pending on the dominant scientific discipline [4]. The intricate connections between the
brain system, endocrine components, and immunological system were encapsulated in
these designations. The discipline of neuroimmunomodulation developed as a result of
the finding of pathways via which the neurological and immune systems communicate.
Neuroendocrine peptide hormones had a major impact on this communication, which in
turn affected immune responses. Neurotransmitter release from both main and secondary
lymphoid organ nerve endings, including norepinephrine and adrenaline, has also been
identified as an essential system in long-range communication routes. A crucial moment
in research was the finding that immune cells could create and discharge their neuroen-
docrine hormones and neuromodulators [2]. When the focus switched from far-reaching
to short-range pathways for interaction within the neurological and immune systems,
highlighting the importance of local interactions, an essential turning point in the area of
neuroimmunomodulation was attained.

The growing amount of evidence linking immunological senescence to the develop-
ment of late-stage neurodegenerative illnesses has led to a major expansion in the field of
neuroimmunology over the last two decades. Moreover, the discovery that adult neurons
lack the complement component C1q but postnatal neurons have it in their synapses em-
phasizes the importance of the immune system in brain development [21]. Recent findings
suggest that an individual’s susceptibility to neuroinflammatory disorders may be influ-
enced by their gut microbiota and bacteria such as the resurgent Zika and Ebola viruses.

Clinical investigations have demonstrated the need for more specialized approaches
than overall immunosuppression in the treatment of neuroimmune disorders. In order
to rectify genetic mutations, methods such as gene editing, stem cell treatment, tolerance
induction, and cell loss (e.g., B cells in MS) have been gaining popularity [22]. By revealing
the course of the disease and the function of inflammation, modern imaging techniques like
optical coherence tomography, single photon emission computed tomography (CT), PET
(Positron emission tomography), ligands, and high-resolution magnetic resonance imaging
(MRI) are improving the study of neuroinflammatory diseases in patients [23,24]. In vivo
optical imaging using GFP-labeled T lymphocytes, glia, and transplanted pluripotent stem
cells induced by humans has revolutionized our understanding of the interaction among the
immune and neurological systems in animal models. Genetic modification has been shown
to be a vital technique for examining gene functionality in both natural development and
disease. It has primarily been studied in vitro and in animal investigations. This includes
the development of novel genome editing tools and gene-targeting techniques, of which
CRISPR/Cas9 is an outstanding example [25]. This gene-editing approach has made it
possible to genetically modify human iPSCs, which can now be used as tools for targeting
viral infections and as models for ALS, while its application to human illnesses is still being
studied [26].

The historical study of neuroimmunomodulation presents an intriguing journey
marked by significant discoveries that have affected our understanding of the intricate
relationship that exists between the immune and neurological systems. This journey demon-
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strates the changing landscape of a field of study that continuously produces new insights
into the mutual relationship between the nervous and immune systems. It begins with the
early investigations of immune cell neurotransmitter receptors and ends with the more
recent deciphering of complex molecular mechanisms. Figure 1 shows the most important
facts and break-through findings in the field of neuroimmunomodulation.
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Figure 1. Timeline of neuroimmunomodulation research, tracing the evolution of neuroimmunomod-
ulation from early 20th-century investigations at Institute Pasteur to contemporary advances in
clinical trials and genetic modification.

2. Techniques in Neuroimmunomodulation

The advent of novel technology has fueled recent advancements in neuroimmunol-
ogy by providing a more human-centered understanding of immunological systems [27].
These developments are particularly helpful in the study of uncommon neuroimmunology
conditions such as type 1 narcolepsy, Rasmussen encephalitis, and Susac syndrome. Under
such circumstances, these technologies facilitate the integration of data from investiga-
tions involving both humans and animals, validating pathomechanistic characteristics and
advancing the development of diagnostic and treatment approaches [28]. In the field of
multiple sclerosis (MS), a thorough understanding of neuroimmunology has been crucial
for developing novel treatments, and cutting-edge research methods offer vital diagnostic
and prognostic resources [29]. It is projected that the combination of various technology
techniques will advance our knowledge of neuroimmunological illnesses and improve
patient outcomes [27].

Rapid developments in the field of neuroimmunomodulation are bringing new ap-
proaches to modify neuronal activity and treat nervous system problems. Optogenetics is
one of these methods; it combines genetic manipulation and optics to control the activity
of particular cells [30]. Furthermore, cutting-edge approaches like transcranial magnetic
stimulation and deep brain stimulation are being researched for potential application in
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the management of neurological and mental health conditions [31]. Even though these
approaches have shown encouraging results, there are still obstacles to be addressed, such
as improving their efficacy and understanding the mechanisms of action [32]. To further
advance the subject of neuroimmunomodulation, researchers are also looking into the ap-
plication of water-dispersible carbon nanotubes and computational biology techniques [33].

2.1. Pharmacology

At the intersection of the fields of neuroscience, immunological research, and drugs,
neuroimmune pharmacology is a young field that seeks to advance our understanding of
disease mechanisms through translational research. The immunological elements of the
central nervous system (CNS) are the focus of this discipline. The CNS is greatly influenced
by both internal and external stimuli, including drugs of abuse, pathogenic microorganisms,
and beneficial medicines [34].

In the treatment of neuroimmunological disorders, particularly in neuromuscular
diseases, immunosuppressive medications play a vital role [35]. These therapeutic agents,
which encompass corticosteroids, plasma exchange, and intravenous immunoglobulin IgG,
have significantly influenced the treatment landscape for these conditions [36]. Notwith-
standing, the intricacy of determining suitable treatments is noteworthy, considering the
lack of conclusive protocols and the need to differentiate between basic neurological syn-
dromes and those linked to systemic illnesses [37]. Despite the challenges involved, the
ongoing progress in immunomodulatory drugs presents encouraging prospects for the
management of autoimmune neurological diseases [38].

Immunomodulatory drugs, including methotrexate, azathioprine, cyclophosphamide,
rituximab, glucocorticoids, mycophenolate, and intravenous immunoglobulins, are specifi-
cally intended to target and modify immune responses in neuroinflammatory conditions.
These pharmaceuticals aim to restore immune balance without inducing widespread im-
munosuppression, necessitating careful management due to the potential for severe adverse
effects [39]. The interplay among the immune, endocrine, and nervous systems is intri-
cate, and disruptions within this network can lead to disease [40]. Consequently, the
development and utilization of immunomodulatory medications represent a targeted ap-
proach to neuroimmunomodulation, holding the potential to enhance the treatment of
neuroinflammatory conditions.

Distinguishing between immunosuppressive and immunomodulatory drugs holds
pivotal significance when tailoring treatment approaches for neuroimmunology disor-
ders [41]. Achieving the right equilibrium is vital to counteract pathological immune
responses while safeguarding the body’s capacity to defend against infections and uphold
overall health [35]. Pharmacological interventions are essential in the field of neuroim-
munomodulation because they provide medical practitioners with exact control over
immunity, hence reducing the detrimental effects of neuroinflammatory illnesses on the
neurological system [38]. It is essential to acknowledge, however, that individuals undergo-
ing these therapies face the risk of neurologic infections, presenting challenges in diagnosis
and treatment [42].

2.2. Stimulation of the Vagus Nerve

The vagus nerve is the longest nerve in its subsection and the eleventh cranial nerve
overall. It is necessary to provide two-way communication between the internal structures
and the brain. Its origins can be traced back to its role in preserving autonomic homeostasis.
Ten to twenty percent of the nerve is made up of myelinated efferent fibers, with the re-
maining eighty to ninety percent being unmyelinated sensory afferent fibers. By promoting
interaction with the central, cardiopulmonary, as well as intestinal nervous systems, the
vagal afferent and efferent nerves of the parasympathetic autonomic nerve system have
two distinct roles that impact immunomodulation, enteroendocrine functions, and mental
and emotional processes, which are summarized in Figure 2 [43].
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response to trauma. Specialized pro-resolving mediators (SPMs), which have anti-inflammatory
properties, are released by the central nervous system as a result of afferent impulses from the vagus
nerve (Afferent n.Vagus). These SPMs coordinate a coordinated response that includes neurons, glial
cells, and immune cells, ultimately leading to the clearance of inflammation. The splenic nerve and
spleen are impacted by the modulation of celiac ganglion activity by the efferent arm of the vagus
nerve (Efferent n.Vagus). When this route is activated, acetylcholine is released, which affects the
immune cells in the spleen and reduces the synthesis of cytokines.

A contemporary method of stimulating the vagus nerve using electrical signals is
called vagus nerve stimulation (VNS) which can be carried out in an invasive or non-
invasive manner. An electrode cuff is placed into the left cervical vagus nerve during
conventional VNS. Additionally, visible in the subcutaneous region of the left anterior chest
is an embedded electrical generator. The FDA has approved the use of traditional VNS as
an adjuvant therapy for depression and drug-resistant epilepsy [44]. On the other hand,
extracorporeally delivering electrical stimulation using transcutaneous or percutaneous
techniques targets the cervical or auricular vagus nerve segments in non-invasive vagus
nerve stimulation (VNS). This approach has been studied through research on treating a
range of illnesses in both people and animals [45].

Though the exact mode of action of VNS is still unknown, theories indicate that it acts
by stimulating vagal afferents and efferents, which stretch to internal organs and up to the
brain. Vagal afferents influence brain activity, neurotransmitters, and endocrine functions
connected to the hypothalamic–pituitary–adrenal axis by signaling the stimulation of brain-
stem nuclei and relayed cortical projections. Vagal efferent fibers are widely distributed
throughout internal organs and function as a communication channel between the nervous
system and the immune system, primarily through the cholinergic anti-inflammatory axis.
The therapeutic advantages of vagus nerve stimulation are assumed to be based on alter-
ations of neuronal circuits, neuroendocrine processes, and neuroimmune reactions; they are
mediated by cholinergic anti-inflammatory pathway-mediated neuroimmunomodulation [43].

The vagal efferent route, a crucial part of the cholinergic anti-inflammatory process,
regulates inflammatory responses. When this pathway is activated by the brain, the vagus
nerve terminals produce acetylcholine (ACh). ACh, in turn, binds to α7 nicotinic acetyl-
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choline receptors (α7nAChRs), which are present in a range of cell types, including liver
Kupffer cells and splenic macrophages, to prevent the generation of inflammatory cytokines
like TNF-α [46,47]. ACh also has the power to stop CD4+ T-cell maturation [48]. This
method has been suggested as a potential therapeutic option for neurological diseases [49].
It has been demonstrated that it plays a part in how infectious diseases and inflammatory
disorders regulate inflammation [50].

In particular, the gastrointestinal (GI) tract is where inflammation is mostly controlled
by the cholinergic anti-inflammatory system. This route, which is triggered by the vagus
nerve, interacts with enteric neurons and causes splenic macrophages to produce less
TNF-α [51]. Oral NaHCO3 consumption is another method of stimulation; this initiates a
splenic anti-inflammatory response that is conveyed to the spleen via a new mesothelial cell
function resembling a neuron [52]. In this context, splenic macrophages with α7 nicotinic
ACh receptors are stimulated by cholinergic T cells in the spleen, which serve as the
initial source of acetylcholine [53]. Furthermore, by encouraging macrophages to perform
tissue repair, sensory neurons—especially those that express the neuropeptide TAFA4—
contribute to the anti-inflammatory reaction [54]. Research has particularly revealed that
VNS significantly reduces TNF generation in wild-type mice, and that this reduction is
lessened in animals with α7 receptor loss, emphasizing the critical roles that ACh and
α7nAChR play in VNS’s anti-inflammatory pathway [55]. In addition, VNS has shown
promise as an anti-inflammatory treatment when used in conjunction with early perinatal
hypoxic brain damage [56].

It has been demonstrated that VNS dramatically lowers the number of activated
macrophages and microglia in addition to the levels of cytokines associated with in-
flammation in the brain from mice with lipopolysaccharide-induced inflammation [57].
12/15-lipoxygenase participates in this anti-inflammatory reaction, which is mediated by
α7nAChR. In a rat model of endotoxemia, a study by Caravaca similarly found that VNS
stabilized hemodynamic responses and decreased the plasma levels of multiple cytokines.
Furthermore, VNS therapy caused a change in lipid mediators from pro-inflammatory
to pro-resolving when given to animals with peritonitis [58]. All of these results point to
the therapeutic value of VNS as a means of reducing neuroinflammation and controlling
inflammatory reactions.

2.3. Neurofeedback

As a form of treatment, neurofeedback—also known as EEG biofeedback or
neurotherapy—monitors brainwave activity in real time and provides feedback to patients
to assist them in learning how to self-regulate their brain function [59]. The fundamen-
tal idea behind neurofeedback is that people can improve their behavioral and mental
capacities by consciously controlling their brain activity. In this model, electroencephalog-
raphy is the standard technique used to measure cerebral electrical activity. Neurofeedback
techniques use attached scalp sensors to collect and capture patterns of brainwave activ-
ity. People are then exposed to this recorded data via visual or auditory stimuli, which
frequently take the shape of images, sounds, or interactive video game formats [60]. Inter-
estingly, neurofeedback shows promise in improving attentional deficiencies, especially
when applied to treat ADHD (attention deficit hyperactivity disorder). Additionally, its
benefits include lowering anxiety and stress, improving memory, learning, and abilities
to solve problems, and improving mood and emotional control. In the medical landscape,
this approach also takes on a complementary role and may be beneficial for neurological
diseases like epilepsy and migraines. Furthermore, neurofeedback is a particularly help-
ful instrument for enhancing mental clarity and efficiency, especially in the domains of
high-performance sports and high-level employment [61].

One potential treatment option for diseases like MDD that are mediated by neu-
roinflammation is real-time functional magnetic resonance imaging neurofeedback, or
rtfMRI-nf [62]. Acknowledging the importance of neuroplasticity—the continual remod-
eling of brain structure and function throughout life—is essential to comprehend the
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implications of rtfMRI-nf. Reduced hippocampus volume and changed neuroplasticity-
related gene expression have been found in MDD imaging investigations, highlighting
the need to treat these brain disorders [63,64]. An essential component of neuroplasticity,
synaptic plasticity, is greatly influenced by the immune system [65,66]. Pro-inflammatory
cytokines in particular affect alterations in the kynurenine pathway’s metabolism (KP).
This mechanism transforms tryptophan (TRP) into neuroactive compounds like quinolinic
acid (QA) and kynurenic acid (KynA). QA, renowned because of its neurotoxic impacts,
and KynA, believed to be neuroprotective, represent two competing forces in the fragile
equilibrium among glutamatergic transmission with synaptic plasticity [67,68]. In this
complex interaction, rtfMRI-nf exhibits potential as a regulator of the immune system’s
impact on neuroplasticity. rtfMRI-nf may help to rebalance the KP by giving people access
to real-time information about their brain activity, which would promote the creation of
neuroprotective KynA over neurotoxic QA. This modification may provide a biological
channel via which rtfMRI-nf ameliorates depressive symptoms by influencing glutamater-
gic transmission and synaptic plasticity [68,69]. Although there is growing evidence that
neurofeedback is successful in certain fields, it is important to recognize that the discipline
is dynamic and that more research is required to fully understand how it works and its
usefulness in a range of uses [59].

2.4. Transcranial Magnetic Stimulation

Focused magnetic fields akin to those used in magnetic resonance imaging (MRI) are
utilized in transcranial magnetic stimulation (TMS), an innovative, non-invasive neurostim-
ulation technique. Using a state-of-the-art method, precise magnetic pulses are produced
and carefully aimed to stimulate particular brain regions. Magnetic pulses generate a slight
electrical current, facilitating the opening of neural connections in that specific area [70,71].
This method has shown intriguing links with neuroimmunomodulation, particularly in
therapeutic contexts. TMS may affect the immune system by influencing the central nervous
system, according to research [72]. Within the CNS, TMS can affect glial cells, with a partic-
ular emphasis on the prominent modulation of astrocytes. Astrocytes, crucial for metabolic
support and synapse formation, show varied responses to TMS, influencing factors like
glial fibrillary acidic protein (GFAP) expression and astrocytic activation. TMS-induced
changes in synapse numbers and morphology implicate astrocytes as key mediators, im-
pacting synaptic structure and efficacy. Astrocytes likely modulate glutamate uptake and
release in response to TMS, contributing to the observed therapeutic effects. TMS may also
impact oligodendrocytes, the cells responsible for myelinating axons. While the direct effect
remains unexplored, TMS could potentially influence oligodendrogenesis by stimulating
oligodendrocyte precursor cells (OPCs) and increasing brain-derived neurotrophic factor
(BDNF), enhancing axonal ensheathing and myelin development [73].

TMS was first developed as a technique for neurological research, mainly for the study
of brain mapping and motor skills. Its uses have broadened over time to encompass thera-
peutic and diagnostic procedures like cranial and spinal neurosurgery, rehabilitation for
peripheral and central motor dysfunctions, and hemisphere dominance research. In these
situations, single-pulse and repeating TMS (rTMS) have proven to be useful methods [74].
Multiple transcranial magnetic stimulation has been shown in preclinical studies to be
beneficial in reducing depression-like symptoms, indicating that this treatment modality
may be a good fit for major depressive disorder [75]. The application of this non-invasive
therapeutic approach in treating neuropsychiatric disorders in children and adolescents has
also been investigated [76]. Targeting the medial prefrontal cortex (mPFC) in studies on the
brain, rTMS has demonstrated signs of improving symptoms in major depressive disorder,
post-traumatic stress disorder, and obsessive–compulsive disorder [77]. In addition, it has
been discovered that rTMS influences immunological markers in MDD patients, indicating
its immunomodulatory properties [78]. These results demonstrate the promise of rTMS
in the management of mental illnesses, such as MDD, and the necessity of more study to
fully comprehend its mechanisms and maximize its application. Additionally, TMS has
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exhibited promise in both diagnosing and managing dementia, particularly in primary
degenerative diseases like Alzheimer’s and vascular dementia [79]. However, its appli-
cation in secondary degenerative and inflammatory diseases is less explored. TMS, with
its measures of cortical function and plasticity—such as short-latency afferent inhibition,
short-interval intracortical inhibition, and the cortical silent period—could potentially offer
valuable insights in these less investigated cases. Additionally, TMS has been used to find
early indicators that indicate a “brain at risk” in vascular brain damage, opening up a
possible window of time for early identification and assistance for people who run the risk
of experiencing cognitive decline [80].

2.5. Biofeedback

Biofeedback, rooted in operant conditioning from psychological learning theory, is a
therapeutic method that teaches individuals to recognize and control specific physiological
functions [81]. This process enables patients to perceive and regulate their internal state or
external performance, aiding in the recovery of bodily or mental functions post-trauma and
contributing to an overall improvement in well-being. Operating within a self-contained,
self-regulatory loop, biofeedback systems gauge the individual’s physiological state, pro-
cess the gathered data, and then relay this information through instructive signals. This
process underscores the significance of reflex-triggering events and feedback connections
in molding physiological functions across diverse levels [82]. This includes information on
heart rate, muscle tension, and skin temperature. Conditions like stress, anxiety, chronic
pain, and certain neurological disorders can compromise immune responses; however,
techniques such as imagery and relaxation, administered through biofeedback-assisted
relaxation, have been proven to bolster immune function. This is particularly evident
through the increase in phagocytic activity among individuals initially experiencing high
stress and low phagocytic capacity [20,83]. Eight sessions of biofeedback therapy dramati-
cally reduced felt stress and EMG levels while enhancing academic resilience, according
to a new study involving 34 senior nursing students. These findings imply a possible
connection between stress-reduction techniques and the interaction of the immunological
and neurological systems [84]. Another study investigated the effects of biofeedback-based
progressive muscle relaxation on stress in first-year Korean nursing students in their clinical
rotation. In comparison to the control group, the experimental group exhibited significant
reductions in NK cell count stability, blood pressure levels, and stress symptoms [85]. The
effect of biofeedback-assisted methods has been investigated further: a pilot investigation
with rheumatoid arthritis patients revealed significant decreases in the rheumatoid factor,
pain behavior, and self-reported pain intensity following individual thermal biofeedback
training sessions and cognitive-behavioral group therapy, suggesting potential benefits for
autoimmune and pain-related conditions [86].

3. Therapeutic Approaches Addressing the Neuroimmune Interface in Clinical Pain
Management

A substantial health issue, chronic pain, is estimated to have affected 50 million
US individuals (20.4%) between 2016 and 2019, accounting for up to 60% of ER visits
due to pain-related issues. Wide-ranging effects of this problem include an annual loss
of productivity of roughly $61 billion along with medical expenditures for chronic pain
that exceed the total expenses of heart disease and cancer by $560 to $635 billion [87,88].
Despite these limitations, many patients with chronic pain experience poorly controlled
pain as a result of the present method it is managed with, which contributes to the ongoing
opiate issue [89]. It is important to understand the reciprocal interactions that occur
among neurons and the immune system in order to understand the origins of chronic
pain. Immunogenic inflammation causes nociception, but neurogenic inflammation can
activate both the adaptive and innate immune systems. Sustained neuroinflammation
has been connected to chronic pain syndromes, such as chronic migraines with elevated
concentrations of peptides related to the calcitonin gene (CGRP) [90].
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3.1. Modulation of the Neuroimmune Interface by Anti-Inflammatory Agents

Treatments that target specific pro-inflammatory signaling pathways have shown
promise in the therapeutic management of inflammatory pain, particularly in the context
of diseases such as ankylosing spondylitis or rheumatoid arthritis (RA)-related lower back
pain [91–94]. Inhibitors of the IL-1b/IL-1R signaling pathway, such as anakinra, riloncept,
and canakinumab, have proven efficacy and good tolerability in various inflammatory
diseases involving IL-1b deregulation [95]. Clinical trials show that patients with RA treated
with anakinra experience significant clinical benefits, reduced inflammation markers, and
slowed joint damage progression [96]. In a preliminary study treating an acute anterior
cruciate ligament injury to the knee, anakinra also demonstrated promise [97]. According
to a mice model for chronic regional pain syndrome (CRPS), neuropathic pain may be
treated with IL-1 antagonists, according to recent research [98].

Analogously, anti-TNFα antagonists such as adalimumab, etanercept, and infliximab
are used to treat inflammatory bowel disorders and RA by reducing pain and associated
symptoms [99–103]. Their combined effectiveness with methotrexate is especially strong in
treating RA. Anti-TNFα therapy is not commonly employed in routine pain management,
despite some evidence to the contrary [104–106].

Monoclonal IL-6 receptor inhibitors such as sarilumab, satralizumab, and tocilizumab,
along with the IL-6 sequestering antibody siltuximab, target IL-6, which is an additional
irregular pro-inflammatory cytokine in chronic pain syndromes [107–110]. These IL-6 antag-
onists are clinically effective, with ongoing research exploring their potential applications
in lower back pain [111–113].

Research on the efficacy of CGRP antagonists in treating other pain syndromes, like
trigeminal neuralgia and fibromyalgia, has been spurred by their success in preventing
migraine headaches [114,115]. Despite these successes, not all drugs targeting neuroim-
mune signaling have translated well into clinical practice. For instance, CCR2 antagonist
(AZD2423), TLR4-blocking antibody (NI-0101), and P2X7 purinergic receptor antagonist
(AZD9056) showed no clinical benefit in specific studies [116]. However, the potential ap-
plications of these drugs in various pain conditions, along with many other drugs targeting
the neuroimmune interface, remain to be explored.

3.2. Electrical Stimuli in Chronic Pain Management

A new discipline of neuromodulation uses electrical stimulations as a pain manage-
ment strategy for treating chronic pain [117]. The therapies include dorsal root ganglion
excitement, peripheral nerve stimulation, brain stimulation, and spinal cord stimulation
(SCS). Understanding the role of non-neuronal activity, including glial cells, helps us
comprehend the mechanisms behind neuromodulation.

SCS is a commonly used neuromodulation therapy that has been shown to be benefi-
cial in several neuropathic pain syndromes, including complicated regional pain syndrome,
diabetic neuropathy, and post-laminectomy pain syndrome [118–120]. Following a variety
of nerve lesions, rodent models receiving SCS exhibit decreased pain behavior, which is
consistent with a decrease in glial activation markers and transcriptome changes in genes
related to immunological response and neuroinflammation [121–123]. A unique SCS wave-
form that was designed based on preclinical tests to coincide with transcriptome profiles
of neuronal and glial populations is an example of a successful bench-to-bedside transla-
tion. The transcriptome characteristics that emerge are like those of undamaged, naïve
profiles. In a multicenter clinical study, this waveform performed better than conventional
waveforms, obtaining a response rate of 80% in patients with chronic back pain [124–127].

Vagal nerve stimulation has been previously discussed as a possible method in the
context of neuromodulation. By inhibiting excessive cytokine release and inflammation
through its signaling pathways, the vagal nerve, which has traditionally been used to treat
resistant depression and refractory epilepsy, leads to an inflammatory response [128,129].
Patients with epilepsy who receive vagal nerve stimulator treatment have lower periphery
TNFα, IL-1b, and IL-6 levels [130]. The non-invasive transcutaneous vagal nerve stimulator,
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which was first developed to treat acute migraines, has demonstrated efficacy in decreasing
pro-inflammatory cytokines in peripheral blood. Vagal nerve stimulation is currently a
successful treatment for a number of other inflammatory/autoimmune diseases, including
Crohn’s disease, rheumatoid arthritis, and COVID-19 [131–133].

3.3. Steroid Injections in Pain Management: Unlocking the Potential of Epidural Glucocorticoids

A key component of interventional pain therapy is the administration of steroids in or
near the sites of pain, with epidural glucocorticoid injections being a popular technique
for treating persistent spinal pain. Knowing that more than two million lumbar epidural
glucocorticoids are given yearly just to Medicare beneficiaries shows how widely used
the medication is. This method has demonstrated promise in lessening the severity of
pain, decreasing the need for opioids, enhancing function, preventing surgery, and even
controlling pain when surgical interventions are not successful [134,135]. The epidural
steroids dexamethasone, triamcinolone, methylprednisolone, and betamethasone may have
anti-inflammatory impacts on the neuroimmune interface.

In line with preclinical model findings, steroids given locally, intrathecally, or systemi-
cally prior to or during injury have shown promise in reducing inflammatory cytokines,
neuronal firing rates, and glial cell stimulation in the spinal cord. Following nerve damage,
there is a correlation between this drop and a decrease in pain behavior. Interestingly,
steroids do not affect anti-inflammatory cytokines like IL-4 and IL-10, which similarly de-
crease after injury, even if they successfully lower pro-inflammatory cytokines after injury.
This implies the presence of an anti-inflammatory mechanism independent of steroids.

Notwithstanding these advantages, the efficacy of steroids in reversing established
pain behavior in animal models is not entirely consistent. Similarly, the application of
epidural steroids to treat spinal pain is not well-supported by clinical data. Steroids have
the ability to stimulate pro-inflammatory mineralocorticoid receptors in sensory neurons
of the dorsal root ganglia (DRG). Steroids are frequently used in medical therapy. When
a mineralocorticoid receptor antagonist is administered in addition to dexamethasone
in mouse models of lower back pain, the effects are greater in reducing both evoked
and spontaneous pain responses as well as the stimulation of satellite glial cells (SGCs)
within the DRG. The variable effectiveness of steroids in clinical practice over time may
be attributed to the varied activation of steroid receptors. Given the extensive use of
mineralocorticoid receptor antagonists, such as spironolactone and eplerenone, in the
treatment of hypertension and heart failure, this presents exciting opportunities for future
clinical research [136].

3.4. Glial Inhibitors/Modulators and Their Impact on the Neuroimmune Interface

Glial cells, primarily astrocytes, microglia, and oligodendrocytes play crucial roles
in the CNS beyond just providing structural support. They are key modulators of the
neuroimmune axis that involve interactions between neurons, glial cells, and immune cells,
integrating immune responses with neuronal function. Glial inhibitors and modulators are
pharmacological agents designed to selectively target glial cell functions and, consequently,
modulate neuroimmune responses. Their aim is to suppress detrimental glial activation
(e.g., in neurodegenerative diseases, chronic pain, and neuroinflammation) or enhance
protective glial functions. Glial inhibitors and modulators represent a promising therapeutic
strategy by precisely targeting the complex roles of glial cells in the neuroimmune axis.
Their ability to inhibit detrimental glial activation or enhance protective responses can
modulate neuroinflammation, synaptic function, and overall CNS health, offering potential
benefits in various neurological and neurodegenerative conditions. Numerous medications
that were able to block glial function in preclinical research have not been shown to be
useful in clinical settings. Minocycline, a semi-synthetic tetracycline that has been widely
used for over thirty years, has anti-inflammatory, anti-apoptotic, as well as anti-angiogenic
properties in addition to its antibacterial efficiency. Perhaps most significantly, though, is
its ability to inhibit microglial activation [137–139]. Clinical data are conflicting and weak,
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despite several preclinical studies supporting minocycline’s beneficial effects in reducing
pain behavior in neuropathic pain models. Research conducted in a variety of pain contexts
revealed that minocycline either did not offer clinically significant advantages or, in some
patient populations, prolonged the duration of pain [136,140].

The hypothesis that the stimulation of microglial cells is the primary cause of patho-
genesis in different medical distress environments, the low number of participants in the
clinical studies, and the possibility that minocycline targets non-microglia could be the
reasons for the discrepancy between preclinical and clinical outcomes [139]. Propento-
fylline, a general microglia and astrocyte glial inhibitor, demonstrated promising preclinical
results in the prevention and treatment of neuropathic pain in a randomized clinical
study [141,142]. However, propentofylline did not appear to be effective in treating post-
herpetic neuralgia patients.

Ibudilast, a cyclic nucleotide phosphodiesterase (PDE) inhibitor that is non-selective
and is used as a bronchodilator for asthma, has glial inhibitory effects by inducing activated
microglia to produce IL-10 and inhibiting TNFα, IL-1β, and IL-6 production [143]. De-
spite lacking efficacy in clinical trials for CRPS, diabetic neuropathy, or chronic migraines,
ibudilast shows potential as a treatment for substance use disorders, including stimulant,
alcohol, and opioid usage [144–147]. However, in an additional analysis of PROMISE-2
patients with a combined condition of medication-overuse headaches and chronic migraine,
eptinezumab demonstrated notable efficacy, providing information about the drug’s poten-
tial advantages for this population. Furthermore, the investigation assessed the safety and
tolerability of eptinezumab in these individuals, offering significant new perspectives on
managing persistent migraines with co-occurring medication-overuse headaches [148].

3.5. The Role of Vagus Nerve Stimulation in Alleviating Chronic Pain Conditions

In recent decades, both animal and clinical investigations have indicated the potential
analgesic impact of vagus nerve stimulation (VNS) under specific parameters. A rising
corpus of research examining the function of VNS in pain management has resulted from
the increasing availability of non-invasive VNS (nVNS). Traditionally used for conditions
like epilepsy and depression, VNS is now gaining attention for its potential analgesic
effects under specific parameters. This interest has been further fueled by the increasing
availability and accessibility of nVNS devices, which provide a safer and more convenient
alternative to the surgically implanted versions. VNS, especially in its non-invasive form,
is reshaping the modality of pain management in clinical practice. By offering a novel,
effective, and patient-friendly approach to pain relief, nVNS is enhancing the quality of
care and opening new possibilities for treating chronic pain, marking a significant advance
in both clinical practice and patient empowerment [149].

3.5.1. Vagus Nerve Stimulation in Chronic Widespread Pain: Modalities and Efficacy

It has been shown that VNS can regulate nociception and treat a range of clinical pain
disorders. Conditions such as fibromyalgia, which is linked to fatigue, sleep disturbances,
depression, and cognitive dysfunction, fall under the category of chronic widespread
pain that is marked by major affective problems and dysfunction. Following 11 months
of treatment, five of the patients in Lange et al.’s original open-label research on the
effectiveness of invasive VNS (iVNS) for fibromyalgia no longer met diagnostic criteria [150].
Kutlu et al. investigated the effects of transcutaneous VNS (taVNS) in conjunction with
exercise in patients with fibromyalgia due to the intrusive nature of iVNS and found that
there was a substantial decrease in pain intensity [151]. Nevertheless, more studies with
bigger sample numbers and a range of stimulation settings are necessary to completely
comprehend how nVNS affects widespread chronic pain.

3.5.2. Chronic Trigeminal Allodynia

Sodium channel blockers are commonly used to treat trigeminal neuralgia, and surgical
and radiotherapy therapies become alternatives when non-conventional medical treatments
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fail. Oshinsky et al. examined the potential of transcutaneous vagus nerve stimulation
(tcVNS) in a rat model and found that it prevented glutamate rise and reduced sensitivity
in the trigeminal nucleus caudalis. These results open up a promising new direction, but
more clinical research is necessary to confirm that tcVNS is effective in treating trigeminal
neuralgia patients [152].

3.5.3. Chronic Musculoskeletal Pain: Integrating Physiological Modulation and Vagus
Nerve Stimulation

Chronic musculoskeletal pain, defined as persistent or recurrent discomfort originat-
ing from conditions damaging the skeleton, joints, muscle tissue, or related soft tissues,
requires a comprehensive strategy to deal with both signs and underlying conditions [153].
Rehabilitation, exercise, and interventional treatments are among the non-pharmacological
pain management approaches used to assist in alleviating pain to some extent, in addi-
tion to commonly used analgesics such as relaxation drugs, opioids, anticonvulsants, and
antidepressants. In research by Frøkjaer et al., deep breathing to boost vagal tone and tran-
scutaneous vagus nerve stimulation (taVNS) effectively reduced somatic pain sensitivity
and raised thresholds for pain in musculoskeletal areas in healthy participants [154]. The
anti-inflammatory properties of VNS help it even more effectively cure chronic muscu-
loskeletal pain.

Immune system issue preclinical data demonstrated that vagotomy-affected rats had
worsening rheumatoid arthritis, which is a chronic autoimmune inflammatory disorder that
destroys and inflames joints [155]. Preliminary research indicates that invasive stimulation
of the vagus nerve improved the way rheumatoid arthritis patients were evaluated for
pain [156]. According to studies by Venborg et al., tcVNS dramatically decreased hip pain in
individuals suffering from polymyalgia rheumatica, a disorder characterized by persistent
stiffness and pain in the muscles [157]. TaVNS therapy for systemic lupus erythematosus
considerably decreased pain and fatigue during a 12-day period [158].

Regarding osteoarthritis, in a study by Krusche-Mandl et al., electric auricular acupunc-
ture reduced pain and increased the amount of time patients could walk without experienc-
ing any pain [159]. Even after six weeks of a nonstop, small amount of electrical auricular
acupuncture, sustained effects were seen during follow-up, suggesting a potential role for
taVNS in osteoarthritis.

When it comes to medication, treating persistent back pain caused by lumbar spine
abnormalities is challenging, and non-pharmacological methods are not very effective [160,161].
Continuous auricular electroacupuncture has been shown by Sator-Katzenschlager et al. to
be a successful method of pain relief for people with persistent lower back pain [162,163].
Additionally, a pilot trial showed that the combination of mindful meditation with taVNS
reduced the intensity of back pain and raised the threshold for pressure discomfort. These
results suggest that VNS might be a helpful low-back pain treatment.

3.5.4. Challenges and Future Directions in Vagus Nerve Stimulation for Chronic Pain
Management

Virtual neural stimulation (VNS) presents itself as a potentially effective neuromod-
ulation treatment option for chronic pain syndromes, offering a non-pharmacological
alternative with fewer side effects. Nevertheless, there are certain drawbacks to the existing
research on VNS for the treatment of chronic pain, including short intervention times that
produce inconsistent outcomes, limited sample sizes, and a dearth of investigation into
the best demographics for VNS. Future research should include larger-scale, longer-term
randomized controlled studies to validate current findings in order to solve these issues.
Additionally, it ought to investigate the use of VNS in a range of chronic pain situations,
enhance stimulation settings, and pinpoint patient types who are most likely to react well.
Moreover, additional investigation is required to identify the specific neural pathways and
mechanisms responsible for the analgesic effects of VNS [164].
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4. Neuroimmunomodulation in Aging

An important environmental component of aging is its association with several neu-
rodegenerative illnesses as well as “inflammaging”, a state marked by low-grade systemic
inflammation [165]. Recurrent activation of astrocytes and microglia throughout an in-
dividual’s life causes damage from free radicals, oxidative stress, and mtDNA buildup,
ultimately resulting in a ‘primed’ phenotype [166]. An increased baseline inflammatory
state, a heightened pro-inflammatory response to stimuli, and a decreased ability to main-
tain homeostasis are the symptoms of this priming. Systemically, inflammation causes
the blood to produce inflammatory mediators at low levels, including TNF-α, CRP, and
IL-6, which exacerbates the inflammatory milieu in the central nervous system [165,167].
Additionally, studies indicate that BBB permeability is higher in older animals, which
facilitates peripheral immune cells’ entry into the central nervous system. Additionally,
studies indicate that BBB permeability is higher in older animals, which facilitates periph-
eral immune cells’ entry into the nervous system’s nerve cells. To completely comprehend
the precise molecular causes of inflammation, further research is essential. In myeloid cells
from aged mice, greater amounts of the lipid transmitter prostaglandin E2 (PGE2) were
linked to worse bioenergetics. An energy-deficient state and maladaptive pro-inflammatory
reactions follow from this. Aged mice’s cognitive function was sufficiently restored by
inhibiting peripheral myeloid PGE2 signaling, demonstrating the possibility of reprogram-
ming glucose metabolism to reverse dysregulated immunological activities. Myeloid cell
glucose metabolism has emerged as a potential target for therapy [166].

Inflammaging plays a significant role in cognitive decline and the progression of neu-
rodegenerative disorders like Alzheimer’s disease (AD) and Parkinson’s disease (PD). It is
driven by factors such as cellular senescence, where aging cells secrete pro-inflammatory
molecules known as the Senescence-Associated Secretory Phenotype (SASP). In the brain,
inflammaging causes microglia to become overactive, releasing inflammatory molecules
that damage neurons and synapses, thus accelerating cognitive decline. Additionally,
immunosenescence—the aging of the immune system—reduces its ability to combat infec-
tions while increasing chronic inflammation, further promoting neurodegeneration. This
inflammatory environment hastens neurotoxic events; in AD, it accelerates amyloid-beta
plaque and tau tangle formation, while in PD, it leads to the loss of dopaminergic neurons
in the substantia nigra, causing motor, cognitive, and mood symptoms [165–170].

4.1. Neuroimmune Communication in Adulthood and Aging: Insights and Health Implications

There is a mutual relationship among the immunity system as well as the brain and
spinal cord that lasts into maturity. As part of an illness response, peripheral immune
cells that are activated by infection frequently release cytokines that promote inflamma-
tion and other mediators. This pro-inflammatory signaling enters the central nervous
system through passive diffusion, direct neuronal transmission, and regulated passage
across the blood–brain barrier. Microglia along with other neuroimmune cells secrete
pro-inflammatory cytokines once they reach the central nervous system, which results in
transient neuroinflammation and disease-like behaviors [168]. Neuroimmune reactions in
healthy individuals are often predisposed to anti-inflammatory reactivity, which facilitates
effective immune resolution [169,170].

The BBB is one example of a CNS-immune interface. Its special properties help to
minimize excessive immune signals while promoting communication. Immune cells cannot
enter the CNS unhindered because of the BBB’s endothelial barrier, which tightly regulates
the movement of cells and solutes [171]. Nevertheless, in response to peripheral immuno-
logical signals, immune cells located in meningeal compartments, such as macrophages, T
cells, and B cells, can generate immunomodulators [5,172].

As people age, their immunological and neuroimmune systems become less effective;
this decline begins in middle age and picks up speed in later life. As the body’s immune
system matures, both adaptive and innate immune cells show decreasing sensitivity and
variety, making it more challenging to identify and eradicate infections. Seniors’ central
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nervous systems (CNSs) also show changes in immune responsiveness, with microglia ex-
hibiting neuroimmune priming that exacerbates pro-inflammatory responses. Age-related
alterations, such as elevated blood–brain barrier permeability and a pro-inflammatory slant
in meningeal immune cells, intensify immune-to-CNS communication. These changes in
neuroimmune responsiveness with aging lead to extended and hypervigorated neuroim-
mune responses, which may have long-term negative effects on behavioral and physiologi-
cal processes [170–175].

4.2. Inflammaging: The Complex Interplay of Pro-Inflammatory Mechanisms in Aging

“Inflammatory cytotoxicity”, an overall pro-inflammatory illness, is defined as an
imbalance among pro- and anti-inflammatory mechanisms that leads to increased cytokine
production. This imbalance results in a protracted state of low-grade inflammation that
raises pro-inflammatory mediators such as IL-1b, IL-6, TNF-a, IL-8, and CRP [176]. This
phenomenon is thought to be a biomarker of accelerated aging and is a characteristic
of aging [177]. Inflammation is influenced by several interconnected processes; at the
physiological level, weight gain, a lack of exercise, emotional strain, early-life adversity,
xenobiotic exposure, and chronic infections are some relevant variables that contribute
to inflammation. Inflammation is also known to be a risk factor for a wide range of
pathologies, including viral diseases, depression, cancer, sarcopenia frailty, and cardiac,
renal, and neurological disorders [177–180].

Moreover, a number of studies associate inflammation with a higher likelihood of
severe COVID-19 issues in the elderly. They attribute this to an overreaction to the virus
that results in a large-scale release of chemical mediators [177,179,181,182]. According
to new theories, inflammation-aging is an adaptive process that, depending on lifestyle,
environmental, and genetic factors, can result in either a pathological state or healthy
aging [176,180]. Research on centenarian communities supports this idea by showing
that high levels of inflammatory biomarkers interact with anti-inflammatory chemicals to
prolong life [183]. The process of inflammation is dynamic and multifaceted, involving
multiple age-related molecular pathways that go beyond a direct relationship with the
immune system [180]. For instance, oxidative stress causes age-related transcriptional
changes in genes that encode crucial components of inflammatory pathways. Senescent
cells’ pro-inflammatory secretome can paracrine affect surrounding tissues, sustaining the
inflammatory state throughout the organism [176]. The last major factor contributing to
inflammaging is the dysregulation of the microbiome; it is thought that treating age-related
dysbiosis with probiotics could reduce inflammaging [178,184].

4.3. Neuroinflammatory Landscape in Aging: A Glial Perspective

The CNS experiences significant changes in its inflammatory state with age, including
increased oxidative stress, decreased neurogenesis, a higher risk of region-specific loss
and neurodegeneration, and an overall increase in inflammatory tone. The aging brain’s
elevated inflammatory tone is caused by a variety of cell types, including neurons, glial cells
(including astrocytes, microglia, oligodendrocytes, and ependymal cells), immune cells
that have infiltrated the area, and nonglial CNS-resident cells (perivascular macrophages,
pericytes, as well as endothelial cells). Crucial to the dynamic neuroimmune milieu are glial
cells, of which age-related neuroimmune alterations include pro-inflammatory phenotypes
and neuroimmune priming. These neuroimmune alterations associated with healthy aging
could be defensive or compensating processes in response to the system’s slow deterioration.
Regrettably, CNS injury and susceptibility may also rise as a result of these aging-related
neuroimmune changes [185].

4.4. Microglial Changes in Aging: A Pro-Inflammatory Shift with Regional Variations

Microglia grow increasingly dysfunctional and pro-inflammatory as we age. The
expression of inflammatory genes such as Spp1, Itgax, Axl, Lgals3, Clec7a, Trem2, and
Cd68 rises with microglia age, while the expression of homeostatic microglia effectors
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falls. Microglia develop into diverse populations as they mature, some of which show
inflammatory markers (such as chemokines Ccl4 and Ccl3) including the pro-inflammatory
cytokine IL-1β that is specific to macrophages [185,186]. The CNS may be more easily
reached by immune cell populations thanks to this increase in chemokine communication.
Moreover, inflammatory microglia age less effectively than adult microglia and frequently
remain in a pro-inflammatory state for a significantly longer period [187].

The microglia in the aging brain show a range of functional alterations. Mice (thirteen
months old) show regional heterogeneity in the age-associated microglia phenotype starting
in middle age. Microglia proliferate in many brain regions as individuals age. The cortical,
hippocampal, CNS white matter networks and basal ganglia elements are among these
areas [188]. By the location of the brain, microglia also have different transcriptional
signatures. Microglia in elderly white matter produce cell states associated with activation
and phagocytic clearance of degenerating myelin, whereas microglia in the aged gray
region primarily operate in homeostatic cell states [189]. Regional sensitivity is further
supported by proteomic investigations. While the aging brain as a whole experiences
metabolic alterations, the extent of these changes varies depending on the region [190]. The
CNS inflammatory milieu probably has an impact on aging-related alterations in microglia
function. Aging can, in fact, change the CSF proteome, which can affect the phenotypic
and function of microglia [191,192].

4.5. Aging-Associated Transformations in Astrocytes: Implications for Neuroinflammation

The majority of glial cells in the central nervous system, known as astrocytes, perform
a variety of vital tasks for maintaining CNS homeostasis, including controlling lymphatic
function, altering synaptic transmission, fortifying the blood–brain barrier, providing
physical support, and releasing chemokines, cytokines, and neurotrophic molecules [193].
However, astrocytes undergo significant phenotypic and functional alterations as the aging
process progresses.

As we age, astrocytes proliferate, which could relate to a neuron-to-glia fate flip that
encourages astrocytic development. The age-related cognitive declines may be exacerbated
by alterations in hippocampal neurogenesis. Additionally, there are regional differences in
the vulnerability of astrocytes, with the hippocampus, hypothalamus, and cerebellum being
among the brain regions with higher reactive states [193–196]. This increased sensitivity is
more noticeable in older astrocytes (>20 months in mice), which is like characteristics seen
in conditions like Alzheimer’s [197]. Furthermore, aging astrocytes show changes in both
their morphology and functionality. They have smaller territorial domains (depending
on area), fewer processes, and lower intercellular connectivity morphologically. Aged
astrocytes function less efficiently in glutamate absorption and potassium elimination.
Impaired synaptic plasticity is correlated with a decrease in astrocyte activity in the aged
brain [198].

As we age, so do the communication patterns between astrocytes and microglia,
the central nervous system’s major immune cells. Pro-resolution phases of microglia are
disrupted by aging, and these states are critically dependent on astrocyte-derived anti-
inflammation and cholesterol synthesis pathways [187]. The complex interactions between
both kinds of cells are shown by the way that microglia induce more reactive phenotypes
in astrocytes [194]. With age, gender variations in the neuroimmune environment become
apparent, with females showing a lower phagocytic signature and a more pro-inflammatory
baseline [199,200]. These gender-specific reactions could be the cause of the differences in
neuroinflammatory disease susceptibility between both genders.

In addition to inherent changes, outside factors also stimulate inflammatory cells in the
aged central nervous system. Age-associated microglial priming is influenced by a build-
up of damage-associated molecular patterns, heightened permeability of the blood–brain
barrier, and compromised waste clearance systems [201–207].

Indeed, astrocytes undergo complex alterations as we age, which affect their quan-
tity, morphological characteristics, regional responsiveness, and functional abilities [193].
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Complex alterations in microglia–astrocyte interactions occur, contributing to the pro-
inflammatory milieu observed in the aging central nervous system. Understanding the
processes behind age-associated neuroinflammation and its consequences on the function-
ing of the brain requires deciphering these complex alterations.

4.6. Impact of Age-Related Shifts in Meningeal Immune Cells on CNS Function

Immune cells outside of the CNS substructure have a major effect on the way the
CNS functions during an organism’s life. These cells are found in regions that are outside
of the blood–brain barrier, including the meninges and choroid plexus, and they are
involved in the intricate regulation of neuroimmunity. The meningeal and choroid plexus
compartments comprise an extensive range of immunity cell types, such as monocytes,
cells known as dendritic cells, B cells, T cells, and natural killer cells, among others [171].
This is in contrast to adult animals, whose healthy parenchyma has a relatively modest
amount of immune cell types. These bone marrow-derived and refilled meningeal immune
cells in the surrounding skull and vertebral bodies can originate and spread neuroimmune
signals, which may penetrate the CNS parenchyma under pathological circumstances [166].

Peripheral immune cells in the meninges affect complex activities including social
behavior and cognition because of their significant function in neuroimmunity. CD4+
T-cell reduction impairs memory and long-term potentiation. T cells have been identified
as important modulators of learning and memory. The complex mechanisms regulating
cognitive functioning are highlighted by the interaction between T cells and GABAergic
neurons, which is mediated by IL-4-dependent signaling [208]. Moreover, T-cell signaling
from the meningeal compartment controls neuronal GABAergic activity and contributes
to changes in social behavior, especially through interferon (IFN)-γ/JAK-STAT [209]. The
significance of meningeal γδ T cells and IL-17 in short-term memory illustrates the complex
connection that exists between immune system cells and cognitive processes [18]. Age
has a major impact on the makeup and function of the meningeal compartment T-cell
population. Increased T-cell counts as well as changes to T-specific subpopulations foster a
persistent pro-inflammatory slant. This age-related shift in the meningeal T-cell landscape is
associated with aging-related CNS impairment. Studies employing Rag1-/-deficient T-cell-
deficient animals demonstrate resilience to age-related deterioration as well as reductions
in locomotor and cognitive abilities. Furthermore, behavioral changes and age-related
axon deterioration are associated with changes in the proportions of meningeal T-cell
subpopulations, specifically cytotoxic CD8+ T cells [166].

4.7. Leveraging Peripheral Immunity to Mitigate Neuroinflammation in Aging

Peripheral immunity and the central nervous system interact to provide a strategic
means of adjusting the neuroinflammatory consequences of aging. It is interesting to note
that age-related alterations in microglia are influenced by the gut microbiome. Micro-
biota transfer has been shown to modify the aged gut microbiota, reducing age-related
alterations in the neuroimmune milieu and improving cognitive function [210,211]. Fetal
microbiota transfer may enhance neuroimmune states by reducing age-related elevations in
δ-valerobetaine, a metabolite produced from gut microbiota and present within the blood
and the central nervous system. Remarkably, microglia might not be required for the bene-
ficial effects of fetal microbiota transplantation [212]. Adding commensal environmental
bacteria, such as Bifidobacterium adolescentis, has also been demonstrated to increase host
metabolism and catalase activity, as well as prolong lifespans and enhance overall health in
a range of animals. Moreover, the commensal bacteria Mycobacterium vaccae protects from
age-associated neuroinflammation and afterwards cognitive loss in aged rats that have been
vaccinated. By modifying T-cell–CNS signaling, Mycobacterium vaccae treatment may
lessen microglial priming [173,213]. Taken together, these results show the potential for
“rescuing” peripheral immunological signals during the aging process to lessen age-related
changes in the neuroimmune milieu.
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4.8. Age-Related Alterations in T- and B-Lymphocyte Function and Transcriptional Regulation

T lymphocytes have functional changes that affect their function as people age. T-
cell numbers have been shown to decline with age, and replicative senescence caused by
telomere shortening has been shown to reduce proliferation [214]. Furthermore, older
people frequently have higher numbers of T cells that are positive for beta-galactosidase
activity linked with senescence [215]. Chronic inflammation throughout aging is associated
with this buildup of immunosenescent T cells [216]. Chronic infections and worn-out, non-
functioning T cells combine to cause hyperinflammatory conditions [217]. Two essential
transcription factors, transcription factor 7 (TCF7) and thymocyte selection-associated high-
mobility group box (TOX), regulate the development of T cells from the point of exhaustion
onward. The HMG box DNA-binding protein family member TCF7 is essential to the
development and maturation of T-lineage cells. Establishing the WNT/β-catenin signaling
pathway with β-catenin, it promotes the expression of genes linked to both adult stem
cell self-renewal and embryonic development [218,219]. T lymphocytes with an exhausted
phenotype during long-term viral infections have TCF1 present, which gives them the
capacity to endure, self-renew, or multiply [220]. In contrast, persistent activation of CD8+
T cells activates TOX, which is mostly expressed in hematological and immunological
organs, especially in CD4+ T and natural killer cells [221]. Through chromatin remodeling
and the activation of T-cell inhibitory receptors, such as protein disulfide isomerase, TOX
activity facilitates CD8+ T-cell fatigue [222].

B lymphocytes, which produce antibodies and are in charge of humoral immune
responses, help to differentiate between self and non-self antigens. They also help to create
memories of past pathogen contacts, which can result in an improved response in future
host–pathogen interactions [223]. A population of atypical defective B cells, which are
incapable of differentiating into cells that produce antibodies, accumulates after long-term
viral infections. These B cells also exhibit a decreased ability to stimulate the generation of
cytokines and antibodies, as well as the activation of B-cell receptors [224,225]. On the other
hand, unlike the continuous T-cell response that eventually wears out, B-cell responses
within germinal centers continue to be strong and effective as the infection worsens [226].
An excessively pro-inflammatory milieu is created by the continuous immune response,
and B cells produce more autoantibodies in this context. The onset of immunosenescence,
which reflects alterations in B-cell aging and affects elderly people’s defenses against
infections, is substantially aided by the creation of this inflammation-feedback loop, as
presented in Figure 3 [227,228].

4.9. Therapeutic Approaches for Mitigating Immunosenescence and Inflammaging: A Multifaceted
Strategy

As we age, our immune systems become more dysfunctional and hyperactive, both
in terms of innate as well as adaptive responses. This mechanism plays a part in the
emergence of inflammatory chronic diseases that are common in elderly people [229].
In response to these challenges, an abundance of pharmacological and cellular/genetic
strategies have been developed to mitigate or even reverse the deleterious consequences
of immunosenescence on health [230]. These tactics cover a variety of methods, including
(a) using induced pluripotent stem cells (iPSC) to produce targeted immune cells and
hematopoietic cells; (b) increasing macrophage activity by administering growth factor and
cytokine cocktails; (c) bone marrow transplantation, which is a commonly used treatment
to regenerate the thymus [231]; (d) using Cdc42 and basic leucine zipper transcription factor
(BATF) inhibitors or antioxidants to increase the quantity and capacity of lymphoid-biased
hematopoietic stem cells [232,233]; (e) boosting memory CD4+ T-cell function through the
inhibition of dual-specific phosphatases 4 [234]; (f) using fibroblast growth factor 7 (FGF7)
to stimulate the creation of naïve T cells and aid in the elimination of unhealthy cells in
order to restore thymus function [235]; and (g) improving CD8+ T-cell function through
the administration of rapamycin [236,237].
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Figure 3. The most common form of neuroinflammation in aging is a chronic low-grade inflammatory
condition in the brain and spinal cord. Reactive oxygen species and cytokines, two inflammatory
mediators, are present in higher concentrations throughout this process. Contributing factors include
senescent cell-induced secretory phenotypes, sterile components from cell cycle-related debris, and
the impact of chronic infections. In aging brains, the diminished ability to resolve inflammation and
the accumulation of neurotoxic molecules exacerbate this condition. Neuroinflammation may disrupt
neural function, potentially contributing to age-related cognitive decline and neurodegenerative
diseases. (The up and down arrows in the image represent the increase (up arrow) or decrease (down
arrow) of the processes or factors they are next to, such as increasing proinflammatory cytokines or
decreasing phagocytosis).

Calorie restriction is another important non-pharmacological tactic that has been
shown to strengthen immunity. Through the activation of insulin-like growth factor 1
(IGF-1) and/or peroxisome proliferator-activated receptor (PPAR) pathways, this strategy
enhances thymopoiesis and delays the generation of senescent T cells [238,239]. Func-
tional foods may help reduce inflammation and oxidative stress while also enhancing lipid
metabolism, which is linked to metabolic disorders, according to recent research. The
NF-kB and/or Nrf2 signaling pathways are responsible for these effects [240,241]. There is
therapeutic potential in some molecules and mechanisms that affect immunosenescence. In
an effort to reduce inflammation, the activator protein 1 (AP-1) signaling pathway, which is
essential for macrophage-mediated inflammation, has been targeted. For example, systemic
and hepatic inflammation was reduced in mice given a high-fat diet when lentiviral small
interfering RNAs (siRNA) targeting AP-1 were transfected [242]. Furthermore, rosiglita-
zone, a PPARg agonist, showed promise in treating sepsis in mice by lowering cardiac
inflammation and cell death. Improved insulin resistance and enhanced fatty acid oxidation
were seen in human skeletal muscle [243]. Therapies intended to reduce inflammation must
concentrate on the synergistic effects of numerous substances, concurrently regulating dis-
tinct pathways, due to the complexity of aging involving many biological processes. As an
instance, a combination therapy including three distinct substances—rapamycin, acarbose,
and 17a-estradiol—converges on controlling the p38-MAPK and ERK1/2 pathways [244].
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5. Neuroimmune Dynamics in Mood Disorders

The relationship between the immune system and mood disorders, such as depression
and anxiety, is a dynamic and complex interplay. This bidirectional interaction suggests that
mood disorders are not solely psychological or neurological but are deeply entangled with
immune system functions. On the one hand, mood disorders often coincide with a state
of chronic low-grade inflammation. Individuals with depression, for instance, frequently
show elevated levels of pro-inflammatory cytokines—such as IL-1β, IL-6, and TNF-α—in
their blood and cerebrospinal fluid. In the brain, these cytokines can alter neurotransmitter
systems, particularly serotonin, dopamine, and glutamate, which are critical for mood
regulation. The result is a disruption in neural circuits that regulate emotions, leading to
symptoms like persistent sadness, anxiety, and cognitive impairments. Conversely, mood
disorders themselves can influence immune function. Psychological stress can activate
the hypothalamic–pituitary–adrenal (HPA) axis, leading to the release of cortisol. While
cortisol has anti-inflammatory effects in acute situations, chronic stress can lead to cortisol
resistance, where immune cells become less responsive to its regulatory effects. This
condition exacerbates inflammation, creating a vicious cycle where the immune system
remains in a heightened state of activation, further aggravating mood symptoms [245–248].

Mood disorders continue to be a challenge in the field of mental health, even in the face
of significant advancements in psychiatry. These conditions collectively exert a negative
impact on individuals’ psychological well-being, with major depressive disorder affecting a
substantial portion of adults, ranging from 3% to 17%, and bipolar disorder (BD) prevalent
in approximately 1% to 3% of the general population. Simultaneously, mood disorders
share the stage with cardiovascular diseases (CVDs) as some of the leading contributors to
global illness and premature mortality, as individuals suffering from such mental disorders
often face an elevated risk of experiencing suicidal thoughts and encountering various
other health complications [245–247]. As only a minority of patients experience complete
remission following their initial course of treatment, we need to think beyond the already
thoroughly studied mechanisms of these illnesses when discussing the potential pathogen-
esis [248]. This is where the immune system comes into play. In the past, diseases of the
nervous system and the immune system were thought to be two separate entities, with
interactions mainly linked to brain conditions such as multiple sclerosis. Recent studies
have, however, shown a more complex and dynamic relationship, showing that the brain
exhibits high levels of immunological activity and sophisticated innate immune responses
and that it is not immunologically isolated from the periphery but rather communicates
continuously with it [1].

Immune cells derived from bone marrow typically have limited access to the CNS
due to the CSF and BBB. However, if these barriers become impaired by events such as
enhanced metalloprotease activity, tight junction protein loss, endothelial cell degeneration,
or in case of infection, increased BBB permeability, peripherally produced cytokines and
immune cells no longer face any obstacles and can freely infiltrate the CNS, resulting in
neuroinflammation and brain function abnormalities [249–251]. It is important to note
that the CNS can produce cytokines internally by its innate immune cells, rather than
only receiving them from the periphery. These immune cells, known as microglia, display
different structural characteristics based on whether they are in an activated or resting
state. When microglia are tasked with surveilling the central nervous system for possi-
ble dangers, they take on a morphology that allows them to coexist harmoniously with
nearby neurons, astrocytes, and oligodendrocytes. Microglia, on the other hand, adopt
an amoeboid morphology when a neuroinflammatory environment is present, and they
release pro-inflammatory cytokines like interleukin 1β, interleukin 6, tumor necrosis factor
α, interferon γ, chemokines like CCL2, and neurotransmitters like glutamate, adenosine
triphosphate (ATP), nitric oxide (NO), reactive oxygen species (ROS), and reactive nitrogen
species (RNS). It is noteworthy to mention that such changes in microglial morphology
can also be triggered in response to tissue injury, stress, and infections, and can result
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in the disruption of neuro-glial processes important for maintaining balance inside the
CNS [1,252,253].

While discussing stress as a potential trigger for these events, the precise activation
mechanism of the innate immune response remains unknown. Nevertheless, research
has demonstrated that a range of signals, including catecholamines, glucocorticoids, gut
microbiota, and tissue alarm signals, may significantly contribute to this phenomenon
referred to as “sterile inflammation” [254]. According to recent studies, the activation of
neuroinflammation specifically induced by stress is thought to be one of the most common
initiating factors in the pathophysiology of mood disorders, particularly depression [255].
Last but not least, neuroinflammation within the brain is characterized not only by mi-
croglial activation and high levels of pro-inflammatory cytokines, as already mentioned
above but also by peripheral leukocyte infiltration and nerve tissue injury [256]. In light
of the presented information, it is evident that normal brain function depends on a bal-
anced neuroimmune system, and any disturbance or dysregulation within this intricate
system can set in motion a series of pathological processes, ultimately culminating in the
development of mood disorders (Figure 4).
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Figure 4. Neuroimmunomodulation’s involvement in mood disorders hinges on complex interactions
between the nervous and immune systems. Notably, microglial activation emerges as a crucial factor.
These resident immune cells respond to stress by releasing pro-inflammatory cytokines, contributing
to neuroinflammation. Stress, a potent trigger, induces glucocorticoid release, further activating mi-
croglia and intensifying neuroinflammatory responses. Additionally, peripheral cytokines, produced
by the innate and adaptive immune cells, infiltrate the brain through the disrupted blood–brain
barrier, disturbing neurotransmitter balance and neuronal function.
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5.1. Decoding Neuroinflammation in Depression

MDD, commonly known as depression, is a severe psychiatric condition with an esti-
mated prevalence of 264 million globally. It is characterized by persistent symptoms such as
sadness, altered psychomotor activity, and cognition, low energy, disrupted sleep and appetite,
and poses a significant burden on daily life and psychosocial functioning [257–259]. Despite
many interventions, there has been no reduction in the global prevalence or burden of
depressive disorders since 1990, emphasizing the persistent and substantial impact of these
conditions [260]. Research indicates that the rate of achieving remission following the initial
treatment phase remains below 40%, despite the existence of several therapeutic choices for
addressing MDD [261]. However, recent research has demonstrated that major depressive
disorder might be associated with the immune system’s activation of its inflammatory
response, suggesting that new therapeutic options may become available shortly [262].
According to the neuroinflammation theory, immune system imbalances brought on by
stress amplify the central nervous system’s inflammatory response. This can be observed
in MDD as long-term stress increases the permeability of the BBB and triggers the release
of pro-inflammatory cytokines, which are a major contributor to depression.

A great influence on depression’s chronic inflammation is the increased activity of the
sympathetic nervous system, which enables certain immune cells to enter the brain and
activate microglial cells. These cells in turn produce pro-inflammatory cytokines like IL-1,
IL-2, IL-6, IL-18, TNFα, and IFNγ, which are accompanied by a decrease in the levels of anti-
inflammatory cytokines such as IL-4 and IL-10. Most important findings are summarized
in Table 1. Elevated pro-inflammatory cytokine levels in individuals with depression may
also prompt the release of cortisol via the hypothalamic–pituitary–adrenal (HPA) axis,
leading to a loop of impaired inflammatory regulation and suggesting their potential role as
biomarkers for depression [263–266]. Neuroinflammatory processes have been implicated
in influencing specific brain regions, contributing to the pathogenesis of depression. These
include the reward circuit, comprising the anterior cingulate cortices, ventral tegmental
area, ventral striatum, ventral pallidum, raphe nucleus, and orbital prefrontal cortex, as
well as the lateral habenula (LHb), known as the aversive center [266,267]. In suicidal
patients with depression, autopsies revealed elevated primed microglia density in the
dorsal anterior cingulate cortex (ACC), leading to persistent neuroinflammation affecting
neuronal function. PET studies demonstrated increased binding of the translocator protein,
indicative of increased microglial activation, in the ACC, hippocampus, insula, prefrontal
cortex, and temporal cortex. This elevation in binding strongly correlated with the severity
of depression [267,268].

Patients with significant depression have impaired connectivity in the ventral striatum,
a critical portion of the brain’s reward system, especially when it comes to the degree of
inflammation as shown by CRP levels. This altered connectivity extends to various brain
regions, affecting networks associated with emotional regulation and reward processing,
leading to depressive symptoms. Recent research demonstrates that during the anticipation
of small rewards, there is a specific reduction in ventral striatal activation in those with ele-
vated inflammation levels [267,269]. The dorsal raphe nuclei (DRN), a key hub of serotonin
neurons in the brainstem, are closely linked to psychiatric disorders like anhedonia, anxiety,
and depression. In response to inflammatory stimuli, the DRN experience microglial acti-
vation, changed gene expression, and neuronal alterations. These results suggest that DRN
inflammation plays a significant role in the development and progression of depressive-like
behaviors associated with conditions like inflammatory bowel diseases [267,270,271]. The
LHb, implicated in various animal models of depression, consistently exhibits increased
activity and is associated with psychiatric disorders, particularly major depression. In-
creased activity and βCaMKII expression in LHb were found to impact the serotonin (5-HT)
neuronal activity in the DRN, providing a potential neurobiological link through which
LHb contributes to the development of depression-like behaviors in illnesses associated
with chronic pain [267,272].
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Table 1. Comparative analysis of biomarkers in studies concerning depression.

Authors Biomarkers Studied Conclusions

Charlton et al. (2017) [273] IL-1β, IL-6, TNF-α

IL-1β and IL-6 levels are elevated in the
Late-Life Depression (LLD) group compared to
healthy controls, with statistically significant
differences. The TNF-α level is also higher in

the LLD group, but the difference is not
statistically significant at the given alpha level.

Wang et al. (2019) [274] IL-1β, IL-6,
TNF-α, IFN-α2, IFN-γ

IL-6 shows a significant elevation in patients
with MDD compared to healthy controls.
IL-1β, TNF-α, IFN-α2, and IFN-γ did not
exhibit significant differences between the

two groups.

Vogelzangs et al. (2016) [275]

CRP, IL-6, TNF-α, IFN-γ, IL-2, IL-4,
IL-8, IL-10,

IL-18, MCP-1, MIP-1α,
MIP-1β, MMP2, TNF-β

In individuals with current depressive or
anxiety disorders compared to healthy controls,

elevated levels were observed in CRP, IL-6,
IL-8, IL-18, MCP-1, MIP-1α, MIP-1β, MMP2,
and TNF-β, while TNF-α, IL-10, IFN-γ, IL-2,
and IL-4 levels either showed no significant

elevation or were lower.

Dahl et al. (2014) [276]
IL-1β, IL-1Ra, IL-5, IL-6, IL-7, IL-8, IL-10,

G-CSF, IFN- γ, MIP-1α, TNF-α, IL-2,
IL-15

Plasma concentrations of IL-1β, IL-1Ra, IL-5,
IL-6, IL-7, IL-8, IL-10, G-CSF, IFN- γ, and

TNF-α are significantly elevated in patients
with MDD compared to healthy controls. IL-2,

IL-15, and MIP-1α did not show significant
differences in plasma concentrations between

the two groups.

Schmidt et al. (2014) [277]
IL-2, IL-4, IL-5, IL-10, IL-12,

IL-13,GM-CSF,
IFN- γ, TNF- α

In the depressed group compared to the
non-depressed group, IL-5, IL-12, IL-13,
GM-CSF, INF-g, and TNF-a levels were

significantly elevated, while IL-2 and IL-10
levels showed no significant differences.

One of the pro-inflammatory cytokines that have sparked considerable research at-
tention is TNF-α, which exhibited a noteworthy elevation in individuals diagnosed with
MDD across numerous studies [278–280]. Its pivotal contribution to the development of
depression lies in the escalation of the release of corticotropin-releasing hormone, adreno-
corticotropic hormone, and cortisol, all of which hold significant functions within the
hypothalamic–pituitary–adrenal (HPA) axis [281]. Another significant role of TNF-α lies
in its induction of indoleamine 2,3-dioxygenase (IDO) activation, leading to the depletion
of tryptophan, an essential precursor for serotonin. Due to IDO activation, this impact
causes an increase in serotonin and tryptophan consumption, which provides a plausible
explanation for the decreased availability of serotonin in depression [282]. Furthermore,
TNF-α is associated with elevated plasma CRP concentrations both on the periphery and
inside the central nervous system, which has been correlated with an elevated risk for a
range of diseases, including cardiovascular disease, metabolic disorders, and diabetes, all of
which are recognized as contributors to the development of MDD [283]. In a comparative
analysis of patients with different rates of depressive episode onset, distinct patterns in
serum cytokine levels emerged. Notably, individuals with rapid-onset depressive episodes,
in contrast to those with a more gradual onset, exhibited reduced levels of TNF-α, along
with other cytokines such as IFN-γ, IL-2, IL-4, IL-6, IL-10, and IL-10. Moreover, individu-
als with depressive episodes lasting fewer than six months displayed diminished serum
levels of specific cytokines (IL-2, IL-8, IL-10, and IFN-γ) compared to those with episodes
spanning 6 to 24 months [284].
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In the context of managing treatment-resistant depression in individuals characterized
by elevated baseline inflammatory markers, Infliximab, an anti-TNF-α antibody primarily
indicated for autoimmune inflammatory conditions, has demonstrated the capacity to
alleviate depressive symptoms [285]. When studied in individuals diagnosed with Crohn’s
disease and ankylosing spondylitis, its effects on depressive symptoms have demonstrated
promising results [286]. Additionally, a newly published meta-analysis examining Inflix-
imab’s antidepressant effectiveness found that patients with elevated levels of inflammatory
markers such as TNF-α and C-reactive protein benefited most from the medication [287].
These findings found further support in a study that examined Infliximab’s potential in
alleviating treatment-resistant depression within a participant cohort of 60 people, exhibit-
ing significant therapeutic benefits, particularly in those with heightened inflammatory
markers [288]. Etanercept, on the other hand, falls within the same biological TNF in-
hibitor category but operates as a recombinant fusion protein of human TNF receptors.
It competitively impedes the binding of endogenous TNF to cell-surface receptors, ulti-
mately attenuating TNF’s effects [289]. Notably, it is generally acknowledged as a milder
antagonist of TNF-α when compared to Infliximab [286]. Findings from a study indicate
that Etanercept demonstrates effectiveness in alleviating anxiety and depression in psori-
asis patients. However, it is noteworthy that sustained depression is linked to a reduced
therapeutic response to etanercept [290]. Consistent with these results, an experimental
study in mice has demonstrated that the extended administration of etanercept effectively
reduces anxiety and depressive traits in diabetic mice [291]. Similarly, in a rat model of
absence epilepsy, etanercept exhibited therapeutic potential in treating depression-like
behavior [292].

As we expand our perspective to consider other innovative therapies, it is important
to also highlight the potential of Pentoxifylline and Adalimumab as new and promising
treatments for individuals with MDD. While both drugs have anti-inflammatory properties,
the human immunoglobulin Adalimumab works by stopping TNF alpha from binding to
specific receptors [293]. On the other hand, Pentoxifylline inhibits inflammatory reactions to
pro-inflammatory cytokines like TNF by lowering their concentrations through an increase
in cyclic adenosine monophosphate levels [294,295]. This was further demonstrated in a
six-week, double-blinded, placebo-controlled trial involving 56 patients with MDD. When
compared to a group receiving sertraline and a placebo, the combination treatment of
pentoxifylline and sertraline significantly reduced depressed symptoms in patients [296].
In a similar study, the combination of adalimumab and sertraline dramatically improved
depression symptoms and decreased inflammatory markers in a 6-week trial involving 36
patients with MDD. However, larger and longer-term studies are required to confirm these
promising results in MDD treatment [297].

While many studies have reported increased levels of TNF-α in individuals with de-
pression, it is essential to acknowledge that not all studies have consistently produced these
positive findings [298]. This heterogeneity underscores the need for further research and a
comprehensive understanding of the complex interplay between TNF-α and depression.

Similarly, IL-6 functions as a pro-inflammatory cytokine but differs from TNF-α. It
is particularly important for the immune system, as it can boost the activity of B and T
lymphocytes, trigger the acute phase response in response to infections and inflammatory
processes, influence hematopoiesis, inhibit the growth of leukemic cells, and have addi-
tional effects on the nervous system [299,300]. High levels of IL-6 are mainly produced in
adipocytes, highlighting a strong connection between dietary factors, obesity, and a higher
incidence of behavioral problems—specifically, MDD and cognitive impairments—which
are more common in obese individuals than in the general population [265,301]. However,
it is important to recognize that both microglia and peripheral immune cells also contribute
significantly to IL-6 production [265]. Moreover, IL-6 has been linked to brain signaling
linked to “sickness behavior”, a compensatory response to illness or injury that manifests
as behavioral changes like decreased activity and appetite as well as social changes like
heightened feelings of social disconnection, loneliness, and sensitivity [302]. Apart from
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the observed decrease in neurogenesis linked to IL-6 signaling in the hippocampus, which
is in line with the smaller hippocampus frequently observed in people with depression
diagnoses, it was also shown that there was a significant reduction in prefrontal cortex
thickness in association with elevated serum levels of IL-6 [303,304].

When considering potential mechanisms behind the pathogenesis of depression, it is
worth mentioning that IL-6 has an inhibitory effect on the serotonin transporter (SERT),
which plays a crucial role in regulating serotonin levels in the CNS. This inhibitory function
was evidenced by a decrease in SERT activity, as well as reduced SERT protein and mRNA
levels in both mouse hippocampal tissue and human choriocarcinoma JAR cells. Yet, it
was shown that this effect was reversed in mice deficient in IL-6, whose hippocampal
SERT levels were higher and whose depression symptoms were lower [305]. A six-year
longitudinal study that looked into the connection between IL-6 and MDD discovered a
similar cross-sectional relationship regarding IL-6 levels and an existing depressive disor-
der. Furthermore, the research discovered that among women with a baseline diagnosis,
increased IL-6 levels over time were linked to a chronic course of depression [306]. Another
recent study explored the regulatory role of IL-6 in depression-like symptoms using two rat
depression models: chronic unpredictable mild stress (CUMS) and lipopolysaccharide (LPS)
administration-induced depression. In the CUMS model, rats displayed a core depressive
symptom known as anhedonia, along with behavioral despair in the forced swim test. IL-6
expression in the Cornu Ammonis 1 (CA1) hippocampus region was examined, revealing
an initial significant increase in IL-6 mRNA levels during the first two weeks of CUMS
exposure. However, both the prolonged CUMS exposure and the LPS-induced depression
model led to a significant reduction in IL-6 mRNA levels [307].

In terms of treatment, utilizing IL-6 receptor antibodies or IL-6 antibodies to reduce
depressive symptoms represents a new therapeutic strategy. For instance, sirukumab,
a human anti-IL-6 monoclonal antibody, effectively blocks IL-6-mediated signaling and
its biological effects through its high-affinity binding to IL-6 [308]. In those suffering
from rheumatoid arthritis, a condition where depression-related symptoms are linked
to high IL-6 levels, treatment with sirukumab significantly improved the reduction of
depressive symptoms by the eighth week [309]. Another study examined the effectiveness
of sirukumab in 36 patients with Cutaneous Lupus Erythematosus (CLE) or Systemic Lupus
Erythematosus (SLE). The results indicated that sirukumab significantly improved mental
health outcomes, particularly in CLE patients, highlighting its potential for enhancing
well-being and mood in individuals with immune-mediated diseases [310].

Another anti-IL-6 antibody worth mentioning when talking about treating depres-
sion is tocilizumab, whose function is to inhibit the activation of both membrane-bound
and trans-receptor signaling, as described in two published studies that confirmed its
positive effect on symptoms related to MDD [311]. The significance of tocilizumab when
treating depression and anxiety in rheumatoid arthritis patients was demonstrated in a
study involving 91 adult patients with RA who received tocilizumab injections for 24
weeks, with approximately 66% of patients experiencing reduced anxiety and/or depres-
sion during the study [312]. In view of the COVID-19 pandemic, a study investigated
the efficacy of tocilizumab as a therapy for intermediate to severe COVID-19 pneumo-
nia, with an emphasis on depression, anxiety, and quality of life. Results revealed that
patients in the tocilizumab group initially reported higher levels of depression, anxiety,
and reduced quality of life at three months compared to the control group; however, the
psychological well-being and quality of life improved for both groups at the six-month
follow-up [313]. Unfavorable side effects from tocilizumab therapy mainly revolve around
metabolic processes, including significant weight gain and increased cholesterol and triglyc-
eride levels [301].

Contrary to conventional antidepressant drugs, ketamine is a noncompetitive N-
methyl-D-aspartate (NMDA) glutamate receptor antagonist that was first licensed for use
as an anesthetic. Over the past two decades, ketamine has gained attention for its potent
antidepressant effects, especially in patients with treatment-resistant MDD [314,315]. To
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support this assertion, a 2020 study measured the inflammatory cytokine levels of 60
patients with MDD after they received six ketamine infusions. The results showed that
the administration of ketamine was associated with decreased levels of IL-6 and other
pro-inflammatory cytokines, linking this improvement to a reduction in depressive symp-
toms [316]. Intranasal ketamine has shown similar effectiveness in treating MDD, delivering
improvement with only mild and temporary adverse effects [317]. Given that ketamine
lacks FDA approval for treating depression, it is utilized as an off-label intervention with
limited exploration into its long-term benefits. This highlights the necessity for further
randomized controlled trials to establish the efficacy and safety of all forms of ketamine in
the treatment of depression.

5.2. Understanding the Role of IL-33 in Depression: Insights from Meta-Analysis and Biological
Mechanisms

IL-33, a pro-inflammatory cytokine from the IL-1 family, is expressed in numerous
types of cells, such as microglia and astrocytes [318]. These cells show a high expression
of its receptor, ST2 [319]. IL-33 has a critical role in brain areas important for emotional
function, implying its importance in depression development [320]. Upon inflammatory
stimulation, cells produce IL-33, which activates downstream pathways that regulate pro-
inflammatory and Th2-related cytokines, making it an important participant in the cytokine
hypothesis of depression [321].

Earlier research reveals that IL-33 has a dual role as a pro-inflammatory factor influ-
encing depression development and a neurotrophic factor controlling depression develop-
ment [322]. Despite numerous studies on IL-33 and depression, encompassing variations
in circulating levels throughout the illness and electroconvulsive treatment, the findings
are conflicting [323–325]. To address this, a meta-analysis was carried out to determine
IL-33’s particular influence on depression, providing a new viewpoint on immunological
depression therapy.

IL-33 influences central nervous system synapses by regulating microglial phagocy-
tosis, notably in regions related to emotions such as the thalamus [326]. As a member
of the IL-1 cytokine family, IL-33 has two functions: as a transcriptionally inhibitory N-
terminal domain (aa1-78) and as a pro-inflammatory IL-1-like cytokine domain (aa111-270)
that interacts with ST2L [327]. Early neurodevelopmental cleavage of proIL-33, which is
generated by neural glial cells, influences pro-inflammatory processes in the brain via the
IL-33/ST2/AKT pathway. This influence affects mitochondrial activity, microglial polariza-
tion, and synaptic remodeling, which may help prevent depression and neurodegenerative
diseases [322,328,329].

Moreover, IL-33 regulates microglial activation and polarization, potentially affecting
anxiety control in the basolateral amygdala via the IL-33/ST2/NF-κB pathway [330]. How-
ever, contradictory data show that IL-33 may suppress brain-derived neurotrophic factor
(BDNF) synthesis via the NF-κB pathway [328].

In terms of its function in depression, IL-33 mRNA levels are greatest in the brain
and spinal cord, particularly in stress-responsive areas such as the paraventricular nucleus
and prefrontal cortex [331,332]. Stress and inflammation activate IL-33 expression, which
influences midbrain nucleus biogenic amine metabolism, HPA axis activity, cortisol levels,
and neurotrophic factor downregulation [333].

IL-33’s effect on synaptic remodeling in microglia and astrocytes affects emotion-
related brain areas, potentially influencing depression risk [334]. While direct research
on chronic stress and depression is scarce, a theoretical theory proposes an indirect link
between IL-33, human microglia, and depression triggers, which influences neurodevelop-
ment and synapse count. Additional study is required to confirm these findings.

Due to its magnitude and unclear cytokine balance with serum, IL-33 in cerebrospinal
fluid presents difficulties that make it challenging to consistently determine its impact on
depression [335]. By controlling the development of the central nervous system, microglial
cells produce IL-33 in the brain, which affects memory and emotion-related areas, synap-
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tic remodeling, and depression [336]. In patients with bipolar illness, major depressive
disorder during pregnancy, postpartum depression, and Alzheimer’s disease, there are
elevated levels of IL-33 in the cerebrospinal fluid [337–339]. Although the link between dose
and response is yet unknown, IL-33 may cause tryptophan breakdown and consequent
depression [340].

Despite its high concentration, serum IL-33 exhibits correlations with depression,
which may be explained by active transport and blood–brain barrier leakage [335]. Central
and peripheral IL-33 levels may be regulated by the HPA axis [341]. Serum IL-33 has a clear
correlation to depression among female patients who have experienced abuse as children
in the past, alopecia areata, systemic lupus erythematosus, and recurrent major depressive
disorder [342–344].

Although there is inconsistent research on IL-33’s effects on depression, research
points to a protective effect. Increased levels of circulating IL-33 are linked to a decreased
incidence of depression, and IL-33 corresponds with a lower recurrence rate in MDD and BD
electroconvulsive treatment [345]. Particularly among women with a history of childhood
maltreatment, some single-nucleotide polymorphism (SNP) haplotypes in the IL-33 gene,
such as rs11792633 and rs7044343, offer protection against depression [344]. Depression
is a result of neurodevelopmental degenerative alterations, and IL-33 influences synaptic
quantity and remodeling by functioning as a neurotrophic factor and a pro-inflammatory
factor [330].

Under normal circumstances, IL-33 signals are produced by maturing microglia and
promote mitochondrial metabolism, M2-type macrophage polarization, and synaptic phago-
cytosis and remodeling. This suggests that IL-33 is essential for preserving the number of
synapses and neurodevelopment in the thalamus and spinal cord at normal levels. Changes
in circulating ST2 levels reveal a positive link with lower depression risk, consistent with
IL-33 effects. ST2, the receptor for IL-33, is correlated with depression [346]. Nevertheless,
no research has found a link between depression and ST2-related SNPs. The HPA axis,
neuroinflammation, and monoamine signaling were supported by IL-33 participation in
an experimental study on male mice that found that persistent stress produced anxiety
or depression-like behavior. This finding offers fresh insight into the function of IL-33 in
regulating the development of depression.

People with BD and MDD exhibit different immunological patterns in their immune-
inflammatory response system (IRS) and compensatory immune regulatory response
system (CIRS) [347]. In BD, IL-33 or ST2 mostly controls the IRS and CIRS, providing
antidepressant protection. Subgroup analysis suggests that elevated IL-33 or ST2 levels
are beneficial for both MDD and BD. The effects of IL-33 on depression among animals
have been confirmed [348]. Antidepressant medication’s effect on circulating IL-33 or
ST2 in some patients may lead to false negative correlations, even though several studies
have found no significant relationship between the two variables and depression. ELISA
is the most widely used technique for measuring cytokines, including IL-33, and yields
reliable results on a variety of platforms. Subgroup studies demonstrate the preventive
function of IL-33 against depression, independent of the cause or course of therapy. Po-
tential factors influencing study heterogeneity are highlighted using meta-regression and
sensitivity analyses. These parameters include significance, depression kinds, ethnicity,
and genes. This raises the possibility of IL-33 as a depression diagnostic and treatment
tool. IL-33 levels can be measured in depressed patients to help with prognosis, diagnosis,
and treatment planning. The IL-33/ST2/NF-KB pathway and SNP haplotypes provide
possibilities for focused treatment interventions, highlighting the significance of caution
and care in patients with low IL-33 levels or certain genetic markers [349].

6. Bipolar Disorder: Immunological Insights

Bipolar disorder includes bipolar disorder type I (BD-I), bipolar disorder type II (BD-II),
and cyclothymic disorder, which are chronic mental illnesses marked by frequent episodes
of mania or hypomania interspersed with periods of depression. Behavioral characteristics
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of bipolar I disorder are mainly described as manic episodes, which can include delusions
and hallucinations as much as 75% of the time. Manic episodes can also occasionally be
accompanied by depressive symptoms. In contrast, bipolar II disorder is predominantly
defined by episodes of depression alternating with hypomania without the occurrence of
manic phases.

Regarding prevalence, bipolar I disorder is estimated to have a global lifetime oc-
currence rate ranging from 0.6% to 1.0%, while bipolar II disorder falls within a range of
0.4% to 1.1%. Finally, but just as importantly, cyclothymic disorder is defined as a mix of
hypomanic and depressive symptoms with episodes that last for at least two years, but
neither condition fully satisfies the diagnostic requirements for either bipolar disorder or
major depressive disorder [350–353].

Despite the existence of a broad spectrum of treatments for bipolar disorder that are
currently accessible, the current pharmacological options fall short of addressing the high
rates of relapses and recurrences. Since BD lacks a singular common cause, its patho-
physiology and etiology remain incompletely understood. However, recent studies point
to immune system activation and elevated cytokine levels as factors in the development
and progression of this condition in a significant subset of cases [354]. Two terms that are
frequently used when discussing neuroinflammation as a pathophysiological mechanism
for BD are the IRS and the CIRS. The CIRS serves as a reactive mechanism triggered by the
IRS, playing a crucial role as a regulatory feedback system. The CIRS acts to counteract any
inflammatory response that the IRS initiates by raising the amounts of anti-inflammatory
cytokines [355,356]. The CIRS typically produces interleukin 4, interleukin 10, and trans-
forming growth factor-α in response to elevated levels of interleukin 1, interleukin 6, tumor
necrosis factor, interferon-γ, interleukin 2, and interleukin 17 [357].

Furthermore, a growing body of research has repeatedly shown that BD is linked to
increased levels of pro-inflammatory cytokines, indicating a possible connection between
aberrant immune responses and the onset or progression of the illness [354].

6.1. Exploring Correlations: BD-II Candidate Proteins, Cytokines, and BDNF

Potential protein biomarkers for BD-II, such as PRDX2, CA-1, FARSB, MMP9, and
PCSK9 have also been discovered by certain researchers. These biomarkers work well
together for diagnosing BD-II. It is yet unknown, though, how these proteins contribute
to the pathophysiology of BD-II [358]. Elevated TNF-α, CRP, and IL-8 levels during
acute episodes, along with decreased levels post-treatment, suggest cytokines as potential
diagnostic and staging biomarkers [359]. Significant manic and depressed symptoms as
well as later phases of bipolar disorder are correlated with brain-derived neurotrophic
factor, which is essential for neuron formation and may serve as a biomarker for the status
and progression of the condition [360–362].

Drawing from prior research indicating the inflammatory characteristics of specific
proteins associated with BD-II, a recent study explored relationships between these BD-II
candidate plasma proteins, cytokines, and BDNF [363–365]. The aim was to elucidate corre-
lations between patients and controls. Anticipating potential associations and differences
in correlations, the study provided new insights into underlying mechanisms.

In a separate study, significant connections were found between cytokine and BDNF
levels and the plasma levels of potential BD-II proteins [358]. These links, however, differed
between the control group and BD-II patients. Through their association with inflammatory
markers, the study provided preliminary evidence about these potential proteins’ role in
the mechanisms behind BD-II.

6.2. FARSB Protein and BDNF

According to recent studies, BD-II patients’ plasma Phenylalanyl-TRNA Synthetase
Subunit Beta (FARSB) protein and BDNF levels are significantly higher than those of con-
trols [358,361,366–368]. Furthermore, there was a clear positive association in both groups
between the levels of BDNF and FARSB. Contradictory findings on BDNF levels in BD
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stages necessitate further exploration [368,369]. Moreover, another study suggested ele-
vated BDNF levels in early-stage BD-II, potentially indicating a compensatory or protective
effect, as observed in individuals with familial BD risk [366,368].

FARS2, an enzyme linked to aminoacyl-tRNA synthetase-related diseases, demon-
strated correlations between both BDNF and IL-8 [363–365,370,371]. The positive correla-
tion with IL-8 supports the role of inflammation in BD-II pathogenesis. Furthermore, it
has been proposed that FARSB, acting as a neurotransmitter in response to neuronal injury,
may trigger BDNF compensation [370,371].

6.3. CA-1 and IL-8 Levels

In postmortem tissue, changes in Carbonic Anhydrase 1 (CAR1) were seen in the
frontal brain. A zinc-metalloenzyme called CAR1 makes it easier for carbon dioxide (CO2)
to be reversibly hydrated. Carbon dioxide and water are converted into protons (H+) and
bicarbonate ions (HCO3

−) upon the activation of CAR1. An alkaline extracellular envi-
ronment is produced by decreased CAR1 levels, which also result in reduced extracellular
bicarbonate ions and protons.

CAR1 is an essential regulator of neuronal excitability and synaptic transmission, as it
governs the release of protons (H+) and bicarbonate into the extracellular gap. Synaptic
transmission is directly impacted by protons (H+). Through its particular modulation of
pH and the bicarbonate concentration in the hilus area of the hippocampus, CAR1 influ-
ences inhibitory neuronal transmission, which in turn affects granule cell (GC) excitability.
Restoring CAR1 expression in the astrocytes of mice lacking CAR1 compensates for im-
pairments in granule cell inhibitory neuronal transmission. The ventral hippocampus of
mice exposed to pharmacological stimulation or overexpression of CAR1 exhibits notable
impacts on synaptic transmission and neuronal activity. These results demonstrate the
critical function of CAR1 in brain functions and shed light on its functional importance
outside of depression [372].

BD-II patients had significant increases in their levels of CA-1 and IL-8, and only in
the BD-II group was there a positive association between the two. The primary component
of many cells, CA-1 catalyzes the conversion of carbon dioxide and water. The association
with IL-8 supports recent studies that indicate CA-1 participation in BD-II pathophysiology
through the cytokine system [369,373,374].

In addition, CA-1 exhibited significant correlations with TNF-α, and Matrix
metalloproteinase-9 (MMP9) correlated with CRP, specifically in the control
group [375–378]. MMP9’s role in increasing BBB permeability and its association with in-
flammatory cytokines align with its positive correlation with CRP in normal controls [377].
Whether MMP9 and CRP can serve as biomarkers for other inflammatory diseases requires
further investigation [375,376]. These findings shed light on the intricate relationships
between candidate proteins, cytokines, and BDNF in BD-II, contributing to a deeper under-
standing of the disorder’s underlying mechanisms [358].

6.4. Calcium Signaling and ER Stress in Bipolar Disorder: Insights and Mechanisms

In addition to the malfunction of the mitochondria and oxidative system, changes in
calcium signaling and stress responses associated with the endoplasmic reticulum (ER)
are frequently seen in BD in post-mortem, clinical, cellular, and imaging studies [379,380].
Calcium, akin to ROS, serves as a potent activator of NLRP3 [381]. Calcium ions play
vital roles in modulating neuronal functions. Even slight changes in the minute fraction
(<1%) of free intracellular calcium can significantly impact neuronal function and trigger
apoptotic cascades [379,380,382]. Patients with BD can be diagnosed by common single-
nucleotide polymorphisms (SNPs) in voltage-gated calcium channel genes, specifically at
the CACNA1C locus [380,382,383]. Human neurons that have been induced from high-risk
BD genotypes show improved calcium signaling and higher expression of the CACNA1C
gene. It is noteworthy that in samples from patients who respond clinically to lithium, the
drug specifically reverses this hyperexcitable phenotype [384–387]. Through mitochondria-
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associated membranes (MAMs), endoplasmic reticula and mitochondria work together
to control the intracellular calcium balance. MAMs function as locations where NLRP3
complexes assemble and serve as sensors for elevated ROS generation from damaged
mitochondria, which triggers the release of cytokines that promote inflammation [381].

6.5. Kynurenine Pathway

In BD, tryptophan metabolism via the kynurenine (KYN) pathway plays a critical
role in mediating the relationship between cellular stress and systemic inflammation,
impacting a range of physiological processes [388,389]. TRP is converted to KYN by stress
hormone-regulated enzymes called extra-hepatic indoleamine 2,3-dioxygenase (IDO) and
intra-hepatic tryptophan dioxygenase (TDO). Patients with euthymic bipolar disorder
show a higher conversion of TRP to KYN, with more pronounced effects in the central
nervous system [390]. Astrocytic metabolism produces neuroprotective kynurenic acid,
while microglial processing leads to neurotoxic quinolinic acid and 3-hydroxykynurenine
(3HK) [389].

Inflammatory conditions enhance kynurenic toxicity, disrupting the blood–brain bar-
rier and elevating pro-inflammatory cytokines [388]. Reduced hippocampus functioning
and depressive symptoms are linked to imbalances in KynA/QA ratios in a number of
illnesses [389]. By aggravating the conversion of TRP to KYN, metabolic inflammation
connects kynurenine signaling to BD symptoms [390]. Preclinical studies support this
link, revealing protective effects against obesity-induced inflammation in IDO-knockout
mice [389].

Interestingly, blocking IDO can prevent the depression brought on by LPS, and low-
dose ketamine acts as an antidepressant by influencing KynA/QA competition at the
NMDA receptor [391]. Activated by KYN, the aryl hydrocarbon receptor (AhR) impacts
mitochondrial activity and plays a role in inflammatory reactions [392,393]. By causing
neuroprotective changes in kynurenine metabolites, therapies including electroconvulsive
therapy (ECT), exercise, and cyclo-oxygenase (COX) inhibitors are effective in treating
BD and MDD [389]. Key molecules known to date and their interactions are presented in
Figure 5.
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Clinical trials investigating KynA analogs and IDO inhibitors are underway, but
caution is advised due to potential effects on cognitive and psychotic symptoms [394].
Importantly, physicians need to exercise caution when treating patients with cognitive and
psychotic symptoms since KYN modulation may have unexpected effects [389,395,396].

6.6. NLRP3 Inflammasome: Linking ER/Mitochondrial Stress to Immune Activation in Bipolar
Disorder

Periods of heightened ER/mitochondrial stress can lead to substantial protein/calcium
imbalances, initiating apoptotic and neuroinflammatory responses. The NLRP3 inflamma-
some, comprising NLRP3, ASC, and caspase-1, plays a pivotal role in this process. Upon
induction, NLRP3 colocalizes with MAMs, contributing to mitochondrial destabilization
and further activation of NLRP3. The two-step activation involves Toll-like receptor prim-
ing and subsequent activation through various effectors like UPR, ROS, mtDNA, Ca2+,
lipids, purines, and pathogens [397].

When these signals are recognized, caspase-1 activates, causing pyropoptosis and the
production of pro-inflammatory cytokines (IL-1β and IL-18) [398]. The inflammatory cycle,
triggered by cell death and cytokine release, can lead either to damage repair or chronic
disease progression. This notion is supported by a post-mortem study of frontal cortex
samples from patients with BD, which shows reduced levels of mitochondrial complex I
and higher levels of NLRP3, ASC, caspase-1, and cytokines [399].

NLRP3’s role extends to metabolic disorders, and medicines that interact with NLRP3
have demonstrated a benefit in treating some BD symptoms. The relationship between
insulin resistance and peripheral IL-1β levels in bipolar patients and suicide risk highlights
the importance of the inflammasome in immunological response and cardiometabolic
illness. Medications exacerbating metabolic syndrome in BD raise concerns, urging further
exploration of NLRP3 activity in common treatments.

Potential therapies focusing on NLRP3 inhibition, such as Baicalin and ketogenic
diets, show promise in preclinical studies [400]. Baicalin exhibits antidepressant effects
and mitigates obesity and insulin resistance. Ketogenic diets, known for their benefits in
epilepsy, also demonstrate positive effects on mood and inflammation, possibly through
NLRP3 inhibition [401]. Trials have begun to explore the safety and effectiveness of these
therapies, indicating a possible role as adjuvant therapy in BD, particularly for individuals
with elevated metabolic burden [359].

7. Unraveling Schizophrenia: Pathogenesis and Immune Links

Schizophrenia is a severe psychiatric disorder identified by clinical features that
include positive and negative symptoms, mood alterations, disorganization symptoms,
and cognitive impairments. This condition affects nearly 1% of the global population,
presenting a significant mental health challenge [402,403]. Its onset typically occurs in
the late teens or early twenties, often preceded by a prodromal phase marked by subtle
behavioral changes. The heritability of schizophrenia is considerable, with genetic factors
accounting for 80% of the risk, and studies implicate immune system pathways and synaptic
function. The immune hypothesis in schizophrenia suggests a genetic disturbance that
increases vulnerability to psychosis, evident in genetic studies indicating overlap between
schizophrenia-associated genes and those related to immune function.

During the prodromal phase, individuals with schizophrenia exhibit anomalies such
as reduced gray matter volumes and dendritic irregularities, especially in the prefrontal and
parahippocampal regions. Signs of neuroinflammation are suggested by the association
between the reduction in gray matter and increased immune markers, such as tumor necro-
sis factor α. This implies the possibility of the cytokine-mediated activation of microglia
in this disorder, with elevated cytokine levels showing a correlation with the severity of
symptoms. These structural aberrations contribute to the modification of physiological
activity and the alteration of functional connectivity within critical brain regions associated
with schizophrenia [404,405].
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The Immune System’s Role in Schizophrenia: Exploring the Connection

Similar to previously mentioned mood disorders, the pro-inflammatory cytokine IL-6
plays a significant role in the neuroinflammatory pathogenesis of schizophrenia, serving as
a focal point in numerous studies. According to research, high levels of IL-6 are associated
with negative effects on both hippocampal gray matter volume and white matter integrity
in the brain. Higher levels of peripheral IL-6 have also been linked to detrimental effects
on memory, learning, and general cognitive function [406].

These effects are exhibited by patients who struggle to shift attention between different
tasks or activities, experience a negative influence on the ability to focus on visual stimuli,
and have slower visual and motor information processing speeds [407]. According to
several studies, certain cytokines may function as disease-specific markers of inflammation.
This theory is supported by research showing that both relapse patients and those going
through their first psychotic episode had higher IL-6 levels during the illness’s acute
phase [408].

A newly published meta-analysis involving first-episode psychosis (FEP) patients
revealed that IL-6 concentrations were noticeably higher in FEP individuals in contrast
to healthy controls. Subgroup analyses confirmed the reliability of these connections,
highlighting that IL-6 plays a crucial role in the biological processes associated with the
development of first-episode psychosis [409]. Notably, there was a correlation between the
total severity of psychopathology and IL-6 levels. Furthermore, psychotic symptoms in
early adulthood were linked to elevated IL-6 levels measured in childhood, years before
psychosis onset.

A comprehensive study involving 311 participants investigated this idea and revealed
a correlation between elevated levels of the inflammatory marker IL-6 and occurrences of
both childhood trauma and compromised social cognition [410]. In the context of examining
neuroinflammation in chronic schizophrenia, a separate study unveiled elevated IL-6 levels
in individuals with persistent schizophrenia, accompanied by heightened concentrations of
various cytokines, including TNF-α, IL-12, INF-γ, and sIL2r [408]. Complementing these
results, a different study examined cytokine fluctuations in serum during admission and
discharge in individuals diagnosed with chronic schizophrenia. Clinical features upon
discharge improved when IL-6 concentrations were lowered [411].

An extensive and recently updated review was conducted to assess the effectiveness of
anti-inflammatory medications in the context of the evolving landscape of schizophre-
nia treatment. The review included 62 double-blind randomized clinical trials with
2914 patients. As the most researched COX-targeted anti-inflammatory drug, celecoxib, a
specific COX-2 inhibitor, produced mixed results across four trials. Even though there was
only one study that clearly demonstrated a distinction between celecoxib and a placebo,
two other studies suggested that there might be an effect, and a third analysis corroborated
the notion that adding celecoxib could significantly improve symptoms, particularly in
those going through their first episode of schizophrenia.

Low-dose aspirin (a COX-1 inhibitor) demonstrated positive outcomes in two trials,
especially in a subgroup with elevated baseline symptom severity, although concerns about
potential side effects were raised. Overall, the effects of anti-inflammatory drugs such
as celecoxib, aspirin, and minocycline on symptomatology and overall functioning were
noteworthy. However, the exact mechanisms by which these drugs work so well in cases of
schizophrenia are still unknown [412].

A link between inflammatory processes, led by higher values of CRP, is a common
thread across multiple studies. A systematic review and meta-analysis of prospective
cohort studies, involving 89 792 participants, looked into the connection between CRP
levels and the subsequent development of psychotic disorders. The analysis unveiled a
significant finding: individuals with elevated CRP levels at baseline exhibited a 50% higher
risk of developing psychosis compared to those with lower levels. However, the strength
of this association weakened upon excluding individuals with suspected infections and
incorporating additional adjustments [413].
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In both acute and chronic phases of schizophrenia, elevated levels of CRP have been
observed, as indicated by a study exploring acute psychosis. This study demonstrated a
relationship between positive symptoms in acute psychosis and CRP levels. On the other
hand, different studies have explicitly found a connection with cognitive dysfunctions
as opposed to positive symptoms. Furthermore, a meta-analysis involving five studies
exploring cytokine levels in chronic schizophrenia patients disclosed that 28% of these
patients manifested elevated CRP levels [408].

The role of CRP within the context of chronic inflammation has been identified as a
significant contributor to reduced cognitive functions. This association was underscored
by a study involving 208 patients with schizophrenia, where a decrease in CRP levels was
found to be correlated with overall improvements in global cognitive performance. How-
ever, this association did not extend to individuals specifically within the schizophrenia
spectrum. Interestingly, further cognitive alterations were linked to reduced CRP levels,
emphasizing the complex interaction of inflammation, CRP, and cognitive function in
schizophrenia [414].

A different study, however, offers an opposing perspective. It shows that while
increased CRP levels are clearly associated with cognitive impairment in schizophrenia,
the correlation’s comparatively small practical significance implies that inflammation may
not have a significant effect on cognitive dysfunction in the majority of schizophrenia
patients [415].

In exploring therapeutic avenues for schizophrenia, recent double-blind randomized
placebo-controlled trials investigating the efficacy of adjunctive 1000 mg aspirin as an
anti-inflammatory intervention presented unexpected outcomes. Contrary to expectations,
neither Study 1, involving 200 patients, nor Study 2, with 160 patients exhibiting elevated
CRP levels, revealed statistically significant differences in primary (overall symptoms in
Study 1 and positive symptoms in Study 2) or secondary outcomes (other symptoms or
patient well-being) between aspirin and a placebo. Furthermore, a meta-analysis that
included previous research was unable to determine if supplementary aspirin medication
significantly reduced symptoms of schizophrenia when compared to a placebo [416].

In contrast, there is increasing acknowledgment of the medicinal use of omega-3
polyunsaturated fatty acids, particularly docosahexaenoic acid (DHA) and eicosatetraenoic
acid (EPA), in reducing inflammatory states. Numerous studies have linked increased
consumption of these omega-3 fatty acids to a lower incidence of chronic diseases character-
ized by elevated inflammation [417]. Omega-3 fatty acid supplementation has been proven
to significantly reduce TNF-α, IL-6, and CRP levels according to a comprehensive analysis
of 68 randomized trials. This advantageous effect was noted in both healthy individuals
and those with long-term autoimmune and non-autoimmune disorders, underscoring the
comprehensive anti-inflammatory capabilities of omega-3 fatty acids [418].

Interestingly, approximately one-third of individuals with schizophrenia possess
antigliadin antibodies of the immunoglobulin G type. This subgroup, characterized by
elevated anti-gliadin antibody (AGA) IgG levels, is linked to a chronic inflammatory state
caused by increased levels of peripheral cytokines passing through a leak in the BBB.
Recognized as a distinct subset within the heterogeneous landscape of schizophrenia,
individuals having high AGA IgG levels may indicate gluten sensitivity, leading to targeted
interventions like a gluten-free diet. One such pilot study involving individuals with
schizophrenia and elevated anti-gliadin antibodies showed that those following a gluten-
free diet experienced significant improvements in their general psychiatric condition and
negative symptoms in contrast to individuals following a gluten-containing diet [419].
These findings open a new avenue for alternative therapeutic approaches or precision
treatments; however, further research is necessary to draw definitive conclusions and fully
understand the implications of these discoveries.
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8. Conclusions

From early 20th-century discoveries to the revolutionary discoveries of the 1970s
and beyond, the evolution of neuroimmunomodulation has markedly advanced our un-
derstanding of the complex interaction between the immune and neurological systems.
Important concepts of conditioned immunosuppression were established, providing the
framework for this multidisciplinary area. Recent discoveries have clarified the roles of
complementary systems, gut microbiota, and immunological senescence in neurodegener-
ative and neuroinflammatory disorders, emphasizing the complex relationship between
aging and neurodegeneration and systemic and central nervous system inflammation,
often referred to as “inflammaging”. In the evolving landscape of pain management and
neurological therapies, there is a growing emphasis on developing innovative method-
ologies beyond traditional approaches like VNS and neuromodulation techniques such
as TMS. These novel methodologies aim to target the complex neural circuits involved
in pain perception, mood regulation, and cognitive functions, presenting new opportu-
nities and challenges in clinical practice. While VNS and TMS have shown promise in
modulating neural activity and providing therapeutic benefits for conditions like chronic
pain, depression, and epilepsy, they also come with inherent limitations. VNS, for example,
involves either invasive procedures or relies on patient compliance with non-invasive
devices, while TMS requires specialized equipment and clinical settings, often limiting
accessibility. Transcranial direct current stimulation, transcranial ultrasound stimulation,
closed-loop neuromodulation, optogenetics and chemogenetics, and sophisticated imaging
methods are examples of emerging technologies that have transformed diagnostic and ther-
apeutic approaches and made more targeted interventions possible. While neuroimmune
pharmacology continues to provide targeted treatments for neuroinflammatory conditions,
other techniques, such as vagus nerve stimulation, neurofeedback, and biofeedback, have
demonstrated encouraging results in modulating inflammatory responses, improving men-
tal health, and enhancing cognitive functions. The investigation of neuroimmunodulation
in the treatment of chronic pain highlights the potential benefits of glial inhibitors, neuro-
modulation methods, and anti-inflammatory drugs; nevertheless, there are still obstacles in
the way of converting preclinical results into practical clinical treatments. The interaction
between cytokines, like IL-33, and pathways, like the kynurenine pathway, has revealed
new treatment targets in mood disorders, including major depressive disorder and bipolar
disorder, and it has also shed light on the intricate role that neuroinflammation plays
in mental health. Furthermore, the necessity of comprehensive methods that target the
underlying mechanisms and symptoms of neurodegenerative illnesses and mood disorders
is underscored by the role that systemic inflammation plays in aggravating these conditions.
Clinical trials and ongoing interdisciplinary collaboration will be crucial to developing
these medicines further, maximizing their use, and eventually enhancing patient outcomes
as research advances. This multimodal approach highlights how important it is to compre-
hend and target the neuroimmune interface in order to improve our ability to effectively
manage and cure neurological and inflammatory illnesses.
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