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Abstract: Natural Killer (NK) cells, integral components of the innate immune system, play a crucial
role in the protection against intracellular threats. Their cytotoxic power requires that activation is
tightly controlled, and in this, they take a unique position within the immune system. Rather than
depending on the engagement of a single activating receptor, their activation involves a delicate
balance between inhibitory and activating signals mediated through an array of surface molecules.
Only when this cumulative balance surpasses a specific threshold do NK cells initiate their activity.
Remarkably, the activation threshold of NK cells remains robust even when cells express vastly
different repertoires of inhibitory and activating receptors. These threshold values seem to be
influenced by NK cell interactions with their environment during development and after release
from the bone marrow. Understanding how NK cells integrate this intricate pattern of stimuli is an
ongoing area of research, particularly relevant for cellular therapies seeking to harness the anti-cancer
potential of these cells by modifying surface receptor expression. In this review, we will explore some
of the current dogmas regarding NK cell activation and discuss recent literature addressing advances
in our understanding of this field.
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1. Introduction

NK cells belong to the innate lymphoid cell (ILC) family. Unlike B and T cells, which
rely on the recombinant activating genes (RAG) for their development, NK cells develop
independently of RAGs and are not regulated by antigen-specific receptors [1]. ILCs are
categorized into three subsets based on the cytokines and transcription factors they express:
group 1 ILCs (ILC1s), group 2 ILCs (ILC2s), and group 3 ILCs (ILC3s). Group 1 ILCs
further divide into classical NK cells and ILC1s [2]. Both NK cells and ILC1s can secrete
interferon-γ (IFNγ) and tumor necrosis factor (TNF). However, NK cells stand out due to
their potent cytolytic functions. Unlike other ILCs, NK cells are circulating cells, while ILCs
primarily reside in tissues [3–5].

Defining ILC1s and NK cells can be challenging, especially across different tissues
and inflammatory conditions. Single-cell analysis has revealed significant heterogeneity
within ILC1 subsets. One main distinction is Eomesodermin (EOMES) dependency: NK
cells require EOMES for development and maturation, while ILC1s do not. Additionally,
murine NK cells express the CD49b marker, whereas ILC1s express markers such as CD103,
CD49a, and CXCR6 [1]. It is important to note that the expression of ILC1-specific markers
can vary depending on the tissue being analyzed.

In human peripheral blood, NK (natural killer) cells are identified by the presence of
the CD56 marker and the absence of the CD3 marker. Human NK cells are further classified
based on CD56 expression into two subsets: CD56dim and CD56bright. Most NK cells in the
spleen and peripheral blood are CD56dim CD16+ and express perforin. The CD56dim subset
is more cytotoxic and produces IFNγ to a lesser extent, whereas the CD56bright CD16−

subset primarily produces cytokines [6].
NK cells are crucial components of the innate immune response, playing a vital role in

early responses to tumors, viral infections, and organ transplants [7]. They possess cytotoxic
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capabilities and can lyse target cells using various mechanisms, including cytolytic granules
containing granzyme and perforin, as well as inducing apoptosis via TRAIL and FASL. Both
pathways contribute to a process known as serial killing, where initial kills are mediated by
granzyme B and later by FASL [8–10]. Additionally, NK cells mediate antibody-dependent
cell cytotoxicity (ADCC) [11]. Beyond their cytotoxic functions, NK cells secrete a range
of cytokines, such as IFNγ, granulocyte-macrophage colony-stimulating factor (GM-CSF),
and TNFα, which modulate the functions of other innate and adaptive immune cells
(Figure 1) [12].
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Figure 1. NK cell activation and immune regulation: The binding of an activating receptor to its
ligand causes a shift in the balance between activating and inhibitory receptors, resulting in NK cell
activation. This activation is further enhanced by the cytokines IL-12 and IL-18, which are produced
by dendritic cells and macrophages. Once activated, NK cells can eliminate target cells through the
release of lytic granules containing granzyme B, which induce target cell death. Moreover, NK cells
secrete cytokines such as IFN-γ and TNF-α, which help modulate the functions of other innate and
adaptive immune cells.

There are several ways in which NK cells can exert immune regulation. They influence
the homeostasis of dendritic cells (DCs) by killing immature DCs and promoting the cross-
presentation of antigens from apoptotic target cells to DCs. NK cells also promote DC
maturation by secreting IFNγ and TNFα, which, in turn, further activate NK cells through
IL-12 and IL-18 [7]. Additionally, NK cells impact T and B cells during inflammation by
promoting the priming of Th1 cells via IFNγ secretion and killing activated T cells that
lack sufficient classical or non-classical MHC-I molecules [13,14]. Fas-deficient mouse
studies have shown that NK cells can suppress autoreactive B lymphocytes, as NK cell
depletion increases the severity of autoimmunity [15]. Thus, NK cells protect the host from
pathological agents and regulate excessive immune responses.

NK cells play a crucial role in immune regulation, homeostasis, and defense. Therefore,
their activity must be tightly controlled to prevent harmful conditions such as inflammation
or autoimmune disorders. On their surface, NK cells stochastically express a variety of
germline-encoded activating and inhibitory receptors. Although it is well established that
activating signals must outweigh inhibitory ones for NK cell activation, this raises an
important question: Is this regulatory balance sensitive enough, or are there additional
mechanisms required to ensure proper NK cell activation? Furthermore, numerous geneti-
cally modified mice have been created that lack the expression of one or several NK cell
receptors. While these mice have shown varying degrees of susceptibility to certain patho-
logical conditions, none have exhibited major defects in NK cell function. This observation
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prompts another question: How do NK cells compensate for these receptor deficiencies?
In this review, we will explore these questions and provide an overview of the known
compensatory mechanisms in NK cells.

2. NK Cell Receptors and Activation

Unlike T and B cells, NK cells lack recombination-dependent antigen receptors but
express many germline-encoded activating and inhibitory receptors. The activation of
NK cells is governed by a system known as a balance system, wherein cells receive sig-
nals from both activating and inhibitory receptors. Depending on the prevailing signal,
NK cells either remain inactive or become activated [12,16]. NK cells survey the body
in search of “unhealthy” and potentially dangerous cells. Under normal physiological
conditions, NK cell activity is inhibited by interaction between inhibitory receptors and
self-MHC-I molecules. If these proteins are expressed at sufficient levels, NK cells receive
the appropriate inhibitory stimuli to remain inactive.

The first way by which NK cells are believed to be activated is through a lack of MHC-I
molecules or a reduction in their expression. MHC-I molecules are typically downregulated
upon viral infection such as cytomegalovirus infection (CMV) [17,18] or in some tumors,
for example, bladder, breast, colorectal cancers, and melanoma [19–23], to avoid CD8
T cell-mediated control. This event, therefore, signals that something is wrong. MHC-
I downregulation results in a relative reduction of inhibitory stimuli, thus shifting the
balance towards activation in a process referred to as “missing self” [24,25]. The second
way of activation is through activating receptors. Healthy cells do not express ligands for
activating receptors or express them at very low levels. Their expression increases after
cells undergo stressful conditions such as infection or oncogenic transformation, which
is then detected by activating receptors. This type of NK cell recognition and activation
is known as “induced self” and an example of it is the interaction between NKG2D and
its ligands, such as MICA/MICB in humans or MULT1 in mice [26]. The third way is
known as “non-self” recognition and is unique for the Ly49H activating receptor since it
recognizes mouse cytomegalovirus-encoded protein m157, expressed on the surface of
infected cells [27,28].

Inhibitory and activating NK cell receptors are a complex group of molecules that
structurally can be divided into 2 subgroups: The first group is an immunoglobulin (Ig) like
receptor superfamily including KIR (Killer Ig-like receptors), LIR (leukocyte Ig receptors)
expressed only in humans, and NCR (Natural cytotoxicity receptors) expressed both in
human and mice. The second group includes C-type lectin-like receptors (CTLR), including
the NKG2 (NKG2A to F) and Ly49 receptor families [16].

2.1. Activating Receptors

Activating receptors can provide NK cells with a strong stimulus in the absence of
co-stimulation due to the presence of adaptor molecules such as DAP12, DAP10, FcRγ,
and CD3ζ that contain immunoreceptor tyrosine-based activating motifs (ITAMs). FcRγ
and DAP12 have a single ITAM, while CD3ζ has three ITAMs per chain. Phosphorylated
ITAM induces a signaling cascade in the Syk family of kinases, most notably Syk or ZAP-70,
resulting in the activation of the cell [29].

Numerous activating receptors adorn the surface of NK cells. As mentioned previously,
most of them recognize ligands that are usually not expressed on healthy cells, but their
expression increases after cells undergo stressful conditions such as infection or oncogenic
transformation. Notable examples are NKG2D, NKp46 (NCR1), and DNAM-1, which
play an important role in the control of different pathological conditions. NKG2D (coded
by Klrk1) is constitutively expressed on all NK cells from the earliest stages of NK cell
development in the pre-pro NK cells [30]. Throughout their development, expression of
NKG2D increases and stays high at their mature stage [30]. Virus-infected cells upregulate
NKG2D ligands, which makes them susceptible to NKG2D-mediated NK cell elimination.
Murine cytomegalovirus (MCMV) dedicates several genes to disrupt the expression of
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NKG2D ligands (m138, m145, m152, and m155), which emphasizes its importance [31–33].
The NKG2D receptor also plays an important role in tumor surveillance since many tumors,
especially in the early stages of oncogenesis, express NKG2D ligands. It was shown that
transfection of resistant tumors with NKG2D ligands makes them susceptible to NK cell-
mediated control in vivo and in vitro [34,35]. The importance of this receptor was further
illustrated by the fact that Klrk1−/− mice rapidly succumbed to NKG2D-ligand-expressing
cells upon their transfer [36,37]. Although the cellular ligands for NKp46 are still mostly
unknown, the role of NKp46 receptors in tumor immunology, as well as in bacterial and
viral infections, is well investigated [38–40]. The NKp46 receptor plays an important role
in regulating the development of metastasis and lymphoma [39,41]. DNAM-1 (CD226)
plays a crucial role in the recognition and elimination of tumor cells by both NK and T
cells. In vivo, tumor rejection was notably diminished in mice lacking DNAM-1 expression,
particularly in models where the DNAM-1 ligand PVR was expressed on tumor cells [42].

While most ligands for activating receptors are expressed on the cell surface, recent
studies have shown that soluble ligands can also activate NK cells. For example, activation
with soluble ligands can occur through the NKG2D and NKp44 receptors. Tumors often try
to evade NK cell-mediated control by shedding membrane ligands that bind to NKG2D
receptors, causing NK cell desensitization. However, Deng et al. demonstrated that
shedding the high-affinity NKG2D ligand MULT-1 has the opposite effect, resulting in
increased NK cell activation and better tumor control [43].

Additionally, it has been shown that platelet-derived growth factor (PDGF)-DD, se-
creted by many cancers to support tumor growth and stromal reactions, acts as a ligand for
the NKp44 activating receptor. The interaction between the NKp44 receptor and PDGF-DD
triggers the secretion of IFN-γ and TNF-α, leading to tumor cell growth arrest [44]. This
shows that the mechanism used by tumors to promote their growth and evade the immune
system can backfire and enhance NK cell-mediated control.

2.2. Inhibitory Receptors

While activating receptors recognize ligands that are pathogen-derived or stress-
induced, inhibitory receptors recognize constantly expressed self-proteins, most notably
MHC-I. Inhibitory receptors include members of the Ly49 receptor family in mice, killer
cell immunoglobulin-like receptors (KIRs) in humans, and CD94/NKG2A receptors. In
their cytoplasmic tail, inhibitory receptors contain ITIMs (immunoreceptor tyrosine-based
inhibitory motif). MHC-I engagement of inhibitory receptors induces phosphorylation
of ITIMs, which recruits the Src-homology 2 (SH2) domain-containing protein tyrosine
phosphatases such as SHP-1 and SHP-2 and consequently induces NK cell inhibition [45].
Inhibitory receptors are stochastically expressed on NK cells, and an individual NK cell
can simultaneously express multiple inhibitory receptors, even some that do not recognize
self-MHC [46]. Inhibitory receptors play an important role in a process called licensing or
education that ensures proper NK cell reactivity as well as tolerance toward self [24], which
will be addressed later in this review.

To assess the significance of specific activating or inhibitory receptors, numerous
genetically modified mice lacking the expression of one or even several receptors were
generated. The majority of defects observed in NK cells from these mice were directed
toward targets that expressed ligands specific to particular mutated receptors. For instance,
NK cells deficient in the NKG2D, NKp46, or DNAM-1 receptor exhibited diminished
capability to eliminate target cells expressing corresponding ligands or showed decreased
survival in cases where tumors expressed those ligands [36,42,47]. Also, NKp46 deficient
mice showed reduced lung NK cell activation and IFNγ production after S. pneumoniae
infection [40]. While certain genetically modified mice lacked one or more crucial NK cell
receptors, the overall functionality of NK cells in these mice remained intact. Moreover,
these mice did not exhibit spontaneous autoimmunity or develop cancers, suggesting the
intricate regulation of NK cell activity. This observation also implies that NK cells possess
compensatory mechanisms to overcome such deficiencies.
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3. Regulation of NK Cell Activity

NK cell activation is a tightly regulated interplay between inhibitory and activating
signals that cells receive through receptors expressed on their cell surface and/or a variety
of cytokines produced by other hematological and nonhematological cells [48]. This tight
regulation is required to avoid autoimmune diseases, excessive inflammation, or immune-
related damage. Although NK cells have been extensively investigated for almost half a
century, this complex process of NK cell activation is still not completely understood. Many
things contribute to this complexity, and we will mention some of them in this review.

3.1. Regulation of NK Cell Responsiveness during Development
3.1.1. Education through Inhibitory Receptors

For NK cells to become functional, self-specific inhibitory receptors must interact with
their ligands. This is a process known as licensing or education, which occurs during NK
cell development [49]. This means that NK cells must possess at least one inhibitory receptor
specific to self-MHC-I molecules [49]. Evidence for this model comes from experiments
performed in B2m−/− mice, in which MHC-I expression is abrogated, or from Ly49-
deficient mice. NK cells from these mice exhibited defective cytokine production and
impaired recognition and elimination of MHC-I-deficient target cells and were generally
hyporesponsive [50–52]. A more recent study using specific genetic models showed that
NKG2A and inhibitory members of the Ly49 receptor family synergize to regulate NK cell
education. Mice lacking all Ly49 receptors showed comparable results to mice lacking only
inhibitory Ly49 proteins (Ly49I and Ly49C) in terms of reduced IFNγ production and tumor
control. Mice lacking only NKG2A showed similar results but with milder differences in
comparison to wild-type mice. Only combined deletion of inhibitory Ly49 receptors and
NKG2A showed results comparable to those from B2m−/− mice [53]. Nevertheless, it seems
that the process of education is not final but rather ongoing and fluid since environmental
changes can alter the licensed state of even fully mature NK cells. Evidence for this comes
from the fact that NK cells from MHC-I deficient mice restored their function after adoptive
transfer to wild-type mice [54].

In humans, NK cell education also takes place, predominantly using inhibitory re-
ceptors from the KIR receptor family and NKG2A [55]. KIR receptors are highly variable
and recognize polymorphic determinants of HLA-A, -B, and -C. In contrast, NKG2A is
a conserved receptor that recognizes leader peptides derived from classical HLA-A, -B,
or -C, presented on the nonclassical class I molecule HLA-E [56]. The HLA and KIR gene
families form the most polymorphic receptor-ligand pair in the human genome [57,58].
KIR and HLA genes are located on different chromosomes, allowing them to be inherited
independently. As a result, individuals may express KIRs for which the corresponding
HLA ligand is absent [59].

During NK cell development, NKG2A is expressed first, while KIRs appear later.
CD56bright cells typically exhibit high NKG2A expression and low KIR expression. These
cells are weakly cytotoxic but produce high levels of cytokines. As NK cells mature to
the CD56dim stage, the expression of KIRs increases [56]. Due to the stochastic nature
of inhibitory receptor expression, NK cells can express none, one, or a combination of
inhibitory receptors. Cooley et al. demonstrated that CD56dimNKG2A−KIR− cells have
reduced IFNγ production and diminished killing capacity. Conversely, NKG2A+KIR−

NK cells showed the highest specific lysis against K562 targets, while NKG2A+KIR+ and
NKG2A−KIR+ cells were comparable. They also showed that CD56dimNKG2A−KIR−

cells are functionally immature but can be induced to proliferate and differentiate in vitro,
acquiring KIR and NKG2A receptors and effector functions [56].

NK cells educated by NKG2A/HLA-E develop different responses compared to those
educated by KIR. Leijonhufvud et al. observed that despite a positive correlation between
KIR-mediated education and CD16 expression, NK cells educated by one or even two
inhibitory KIRs did not perform better in terms of ADCC than uneducated NK cells in
either missing-self or KIR-ligand matched settings at saturating antibody concentrations.
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Instead, NKG2A+ NK cells consistently showed more potent ADCC in the missing-self
context despite lower levels of CD16 expression [60]. Differences between KIR and NKG2A-
educated NK cells arise from variations in their cellular metabolism. NKG2A-educated
NK cells are more metabolically active and remain more functionally competent when
oxidative phosphorylation is restricted [61].

In mice, there is synergy between Ly49 receptors and NKG2A, whereas, in humans,
it seems that HLA molecules themselves dictate the relative contributions of KIR and
NKG2A to education. Polymorphisms in the HLA leader sequence control the availability
of peptides presented by HLA-E to NKG2A. Individuals with KIR-B haplotypes, which
are enriched for multiple activating receptors, exhibit greater expression of the inhibitory
receptor LIR-1, restoring the balance between activating and inhibitory signals [62]. Thus,
human NK cell education is finely tuned at the repertoire level, maintaining a balance
between activating and inhibitory effector functions [63].

3.1.2. Education through Activating Receptors

During development, NK cells undergo additional education, which regulates respon-
siveness to certain activating receptors. In mice, three activating receptors differ from the
others expressed in NK cells. These are NKG2D, NKp46 and CD16. These receptors are
expressed on all murine NK cells and play an important role in NK cell effector functions.
NKG2D and NKp46 recognize induced-self ligands, while CD16 binds the Fc-tail of an-
tibodies and plays an important role in ADCC. Also, there is no inhibitory receptor that
recognizes the same ligands. To ensure proper activation through these receptors, their
activity is fine-tuned during NK cell development. The developmental process involving
NKG2D influences the sensitivity of the NKp46 and CD16 receptors [47]. This regulatory
mechanism is mediated through the NKG2D-DAP12 signaling axis, which orchestrates the
downregulation of CD3ζ and ZAP-70, which play a role in negatively modulating NKp46
and CD16 signaling. This, in turn, governs the sensitivity of NK cells when encounter-
ing cellular targets expressing NKp46 ligands [47]. Mice who lack NKG2D expression,
therefore, have dysregulated responsiveness of NKp46 and CD16 receptors and show
hyperresponsiveness through these receptors, which results in better control of MCMV
infection as well as tumors expressing NKp46 ligands [33,64]. Regrettably, discerning the
influence of NKG2D on NK cell development in humans poses a challenge. Currently,
no deficiency in this receptor has been observed, and most peripheral NK cells express
NKG2D, making it challenging to compare NK cell subpopulations with and without this
molecule.

3.2. Regulation of NK Cell Responsiveness in the Periphery

In the periphery, NK cell activity is fine-tuned using several mechanisms. In con-
trast to CD16, NKp46, and NKG2D, many NK activating receptors recognize the same
class of ligands as certain inhibitory ones, which are therefore known as paired receptors.
Paired receptors can be found in the Ly49 family in mice or the KIR family in humans.
Activating receptors in the KIR family are called killer activating receptors (KAR). Their
transmembrane sequence contains charged amino acids that interact with an activating
adaptor molecule [65]. Ligands of most KARs are unknown, but those of which the lig-
and is known to recognize MHC class I proteins are also recognized by a KIR inhibitory
partner. Inhibitory receptors always show stronger binding to the shared ligand [64]. The
question of why we have activating and inhibitory receptors recognizing the same ligands
within these receptor families is still unexplained. One of the suggested explanations
is that KARs fine-tune the threshold required for both activation and inhibition of NK
cells. KIRs exhibit rapid binding and unbinding kinetics with their corresponding MHC
class I proteins. Notably, studies have demonstrated that the level of HLA-C proteins
influences the effectiveness of NK cell inhibition [66]. Thus, it is plausible that when MHC
class I proteins are engaged by KARs, they refine the inhibitory threshold by providing a
counterbalancing activating signal [64]. In the Ly49 family, we find one specific receptor
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pair of Ly49I inhibitory and Ly49H activating receptors. In addition to recognizing MHC
class I, Ly49I also recognizes the non-self MCMV encoded protein m157. It is, therefore,
believed that this molecule was originally formed by the virus to evade NK cell-mediated
control. However, through evolution, the Ly49H activating receptor developed, which now
efficiently detects and eliminates MCMV-infected cells in B6 mice [67]. Another example of
a receptor pair is DNAM-1 and TIGIT. In the absence of stressors such as infection, signals
from the inhibitory receptor TIGIT prevail over those from the activating receptor DNAM-1
since the former has a higher affinity for their common ligand PVR. Upon cellular stress,
the expression of PVR is upregulated over a certain threshold at which signals from the
activating receptor become dominant [65].

NK cells also express receptors, which have both inhibitory and activating properties,
for example, 2B4. The 2B4 receptor belongs to the CD2 family of molecules and is expressed
in all human and murine NK cells. The ligand for 2B4 is CD48, which is expressed on
all hematopoietic cells and is upregulated during EBV infection [68,69]. Both human and
murine 2B4 have four immunotyrosine-based switch motifs (ITSM) in their cytoplasmic
tail. For the activating functions of this receptor, binding of the intracellular adaptor
molecule SAP (signaling lymphocyte activation molecule (SLAM)-associated protein) is
crucial. Evidence for this comes from a study showing that in SAP-deficient humans, 2B4
stimulation leads to a decrease in NK cell lytic activity and IFNγ production [70]. For
inhibitory activity, it was thought that EAT-2A and EAT-2B play a role since they can also
bind to 2B4 ITSMs [71], but cells lacking expression of these molecules were still able to
provide inhibition through the 2B4 receptor [72]. Since both SAP and EAT-2 can bind
Fyn, regulation of Fyn kinase recruitment and/or activity may be crucial for regulating
activating or inhibitory functions of the 2B4 receptor [73]. It is clear that the regulation of
2B4 activity is complex, and the decision on whether inhibitory or activating signals will be
transduced depends on the degree of receptor expression, the extent of its ligation, and the
relative abundance of certain adaptor molecules [72].

In summary, NK cell responsiveness is a carefully regulated process, depending on
several educational steps during development, which is further fine-tuned in the periphery.
Its ultimate goal is to generate cells that manage an impressive balancing act, retaining suffi-
cient sensitivity to cellular threats while preventing detrimental hyperreactivity (Figure 2).

3.3. Tipping the Balance

Recently, the question of whether the balance system is sensitive enough or whether
NK cells need an additional signal from a specific receptor to trigger their activation arose.
The NKG2D, NKp46, and CD16 receptors are expressed on all murine NK cells, do not
have inhibitory counterparts, and share a unique way of fine-tuning their reactivity, posing
them as potential candidates. Mice lacking all three of these receptors were generated
(Triple knockout mice-TKO mice). Analysis of TKO mice showed that NK cells do not
require signals from these receptors to be activated, revealing the remarkable plasticity
of NK cell responsiveness. The combined loss of NKG2D, NKp46, and CD16 receptors
resulted in a significant reduction in the ability of NK cells to control viral infection and
non-hematopoietic tumors. However, their functionality was not abrogated completely [74].
Interestingly, apart from the function of CD16 associated with ADCC, the loss of these
receptors was partially compensated by differential expression and sensitivity to activa-
tion by other activating receptors [46]. TKO NK cells showed reduced expression of the
inhibitory Ly49A and TIGIT receptors while upregulating expression of the activating
receptor DNAM-1. Although the expression level of the activating receptor NK1.1 was
unchanged, TKO NK cells showed hyperresponsiveness through this receptor [74].

Similar effects were also observed in NKG2D and NKp46 double-knockout mice. NK
cells from these mice have increased expression of KLRG1 and DNAM-1 while exhibiting
lower expression of Ly49G2 and Ly49F. Although the receptor repertoire was altered, the
killing ability of these cells towards different tumor targets remained unchanged. They
did, however, exhibit hyperresponsiveness to IL-2 and Ly49D stimulation [75]. Another
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example is mice lacking all Ly49 receptors. In these mice, there was also an altered receptor
repertoire with an increase in the expression of the NK1.1 receptor and a decrease in the
expression of NKG2D and DNAM-1 [53].
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Figure 2. Regulation of NK cell activity: NK cell activity is regulated at multiple levels, both during
development and in the periphery. During development, NK cells undergo classical NK cell education
(a) as well as specific education that establishes a threshold for activating receptors such as NKp46 (b).
In the periphery, their activity is tightly controlled through mechanisms involving paired receptors
(c) and is further safeguarded by the balance system (d).

It seems that NK cells compensate for the lack of certain activating receptors by lower-
ing and increasing the expression of inhibitory and activating receptors, respectively, as
well as changing threshold levels for the remaining activating receptors (Figure 3). These
compensatory mechanisms are already visible in mice lacking only one activating receptor.
CD16-deficient NK cells showed hyperreactivity through the NK1.1 receptor [74], while
NKp46-deficient NK cells showed hyperreactivity after cytokine stimulation (unpublished
data). Similarly, NKG2D deficient NK cells showed higher IFNγ production after stimula-
tion through NKp46 or CD16 receptors [47]. Furthermore, mice lacking CD45 expression
showed a decrease in expression of Ly49D and 2B4 receptors [76]. It appears that this effect
is not a specific compensatory mechanism for defects in the receptor repertoire, as it is also
observed when NK cells lack Fyn kinase, an important downstream activating signaling
component. NK cells from Fyn kinase-deficient mice also have changed the expression of
certain receptors, such as Ly49A and Ly49D [77]. This shows the remarkable compensatory
mechanism of NK cells, allowing them to have similar activation thresholds despite having
a different receptor repertoire.
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Figure 3. Adaptation of the NK Cell Receptor Profile and Sensitivity Following the Loss of an
Activating/Inhibitory Receptor: When an activating receptor is lost, NK cells modify their receptor
profile to sustain the “balance system” and preserve their sensitivity. This modification may include
the downregulation of some inhibitory receptors and/or the upregulation of particular activating
receptors (a). Moreover, the loss of one receptor can be offset by the increased responsiveness of
another receptor (b).

4. Memory NK Cells

An additional level of peripheral modulation of NK cell responsiveness occurs in a
subset of NK cells after activation. Nearly two decades ago, it was discovered that natural
killer (NK) cells can develop memory-like populations capable of mounting a robust recall
response. NK cell memory generation occurs following certain viral infections, contact
hypersensitivity reactions, and stimulation by pro-inflammatory cytokines. Numerous
reviews detail the generation and role of memory NK cells in various infections [78–81],
so we will not elaborate on that here. However, it is important to mention that memory
NK cells, compared to naïve cells, show a change in receptor expression and activation
threshold.

Although emerging evidence shows that various viral infections such as HIV/SIV,
vaccinia virus, and influenza virus can induce memory NK cell formation, its development
has been most thoroughly studied in the context of the murine cytomegalovirus (MCMV)
infection [80]. In this model, the interaction between the Ly49H receptor and its viral ligand
m157 leads to the expansion of a virus/m157-specific NK cell subset. This results in a
long-lasting enhanced secondary response, providing improved protection against MCMV
compared to naïve NK cells [82]. Memory NK cells show higher expression of Klrg1,
CD43, and Ly6C and reduced expression of CD27. Compared to naïve NK cells, memory
NK cells exhibit better IFNγ production and degranulation after stimulation through
NK1.1, although NK1.1 expression remains unchanged. Memory NK cells also have higher
expression of the Ly49H receptor and show a better cytokine response after exposure to
m157-expressing target cells [82]. Similar observations were made in cytokine-induced
memory NK cells. Cytokine-induced memory NK cells upregulate multiple markers of NK
cell activation and maturation following homeostatic expansion and proliferation [83]. In
addition, these cells show higher IFNγ production after restimulation with cytokines and
after stimulation through NK1.1 or Ly49H [84]. In humans, memory NK cells show several
modifications associated with altered activation thresholds. Human memory NK cells
have shown a loss of the adapter molecule FcεRIγ, as well as signaling molecules Syk and
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EAT2 [85,86]. At the same time, higher constitutive levels of IFNγ transcripts have been
observed, which were proposed to be due to epigenetic modifications. The NKG2C+ NK
cell population that expands in HCMV-seropositive individuals exhibits a demethylated
CNS1 region in the Ifng locus, facilitating transcription [87]. Taken together, these findings
indicate that memory NK cells modulate their activation threshold, increasing sensitivity
and allowing for a more potent response upon antigen re-encounter.

5. Therapeutic Implications of NK Cells

Natural killer (NK) cells, as cytotoxic innate lymphocytes, are promising targets
for immunotherapy due to their ability to lyse tumor cells and release proinflammatory
cytokines without requiring prior sensitization. Unlike T cells, NK cells are not restricted
by human leukocyte antigen (HLA) and can mediate graft-versus-leukemia (or tumor)
effects without causing graft-versus-host disease (GvHD). Despite the potential of NK cell
immunotherapy, challenges include limited persistence in vivo, poor infiltration into solid
tumors, clinical-grade expansion, and tumor editing [88].

NK cell-based immunotherapy can target either inhibitory or activating receptors,
but it must aim to shift the NK cell balance system toward activation. In the tumor
microenvironment, impaired NK cell function is often linked to increased expression of
inhibitory receptors, which can bind to ligands on tumor cells, thus evading immune
recognition. Inhibitory receptors include PD-1, LAG3, TIM3, and TIGIT. These receptors
can be blocked using antibodies to prevent their inhibitory activity, a strategy known as
immune checkpoint therapy. Various inhibitory receptors, including KIR and LIR family
members, NKG2A/CD94, TIGIT, LAG-3, TIM-3, and CTLA-4, as well as IL-1R8, are being
investigated for immune checkpoint therapy [89–94]. The most successful immunotherapy,
anti-PD-1/PD-1L treatment, stimulates both T cell and NK cell responses [95,96].

Many NK cell-based immunotherapies focus on enhancing the Chimeric Antigen
Receptors (CARs) [97]. CARs are synthetic fusion proteins with an extracellular antigen
recognition domain and an intracellular signaling domain that activates the cell. Initially
designed for T cells, CAR T cell therapy has shown potential but also presents challenges
like severe side effects (cytokine release syndrome and neurotoxicity), autologous donor
limitations, and issues with T cell quality and quantity in heavily pre-treated patients [98,99].
This is why NK cells present an attractive alternative. Also, in addition to CAR, NK cells
have other activating receptors that can detect ligands on tumor cells and prevent tumor
evasion by downregulating CAR targets.

Recent findings indicate that modulating the surface expression of activating receptors
triggers changes in the expression of other receptors to maintain the NK cell activation
threshold. In CAR NK cells, the overexpression of specific CAR molecules can alter NK cell
phenotype or activity. Supporting this hypothesis, transcriptomic analyses have revealed
differences in gene expression between CAR NK cells and untreated NK cells, including
higher expression of cytotoxic factors and changes in receptors like TIGIT, KLRC1, KLRD1,
and NKp44 [100,101]. In vivo engagement also alters the transcriptional profile of NK cells,
with differences noted in receptors and signaling molecules such as DNAM-1, NKp30,
KIR2DS4, and Zap70 [102]. The CD3ζ molecule is frequently used as an adaptor in CARs.
Studies have shown that variations in CD3ζ expression levels affect the activation threshold
of other activating receptors [47]. Further research is necessary to determine whether this
could hamper the success of CAR NK therapy.

A promising NK cell-based therapy involves NK cell engagers (NKCEs), which trigger
an activating receptor on NK cells while simultaneously binding a tumor antigen [103].
This approach is simpler and more affordable than CAR-based therapy and has shown
comparable success. NKCEs are synthetic molecules derived from monoclonal antibodies
designed to harness NK cell immune functions against cancer. Examples are Bispecific
killer cell engagers (BiKEs) and trispecific killer cell engagers (TriKEs), with BiKEs targeting
CD16 and tumor antigens, and TriKEs additionally including an IL-15 moiety to enhance
NK cell proliferation, activation, and survival [104]. Some TriKEs target multiple tumor
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antigens simultaneously, such as those targeting CD19, CD22, and CD16 [105]. While a
CD16-specific TriKE (and BiKE) primarily takes advantage of ADCC, additional NK cell
receptors might also be suitable for NK cell engagers. One candidate is NKG2D since
many tumors express NKG2D ligands. The potential downside of the NKG2D receptor is
that chronic engagement can cause its downregulation from the cell surface [106]. NKp46
represents another interesting target with the advantage that its expression remains stable
in the tumor microenvironment [107].

Recently, a tetraspecific engager was developed containing an IL-2v peptide stimulat-
ing IL-2R, an antibody fragment targeting NKp46, an Fc domain of human IgG1 mediating
interaction CD16, and an antibody fragment targeting CD20 (aCD20) as a model tumor-
associated antigen (TAA) [107]. An IL-2 variant designed with a point mutation that
abolishes binding to CD25 was used to limit interaction with Tregs but retains the ability
to interact with CD122/CD132 and promote NK cell activation and proliferation [108].
However, whether these molecules cause changes in the activation threshold of NK cells
over time is currently unknown.

NKCEs offer a versatile, cost-effective platform that can engage various combinations
of activating receptors and novel targeting ligands. However, their use also seems to result
in transcriptomic changes affecting receptor and cytotoxic molecule expression. Future
research must reveal whether this limits the effectiveness of these compounds in a clinical
setting.

6. Conclusions

Natural Killer (NK) cells are powerful effectors in antitumor immunity; however, a
major challenge in leveraging them therapeutically lies in the incomplete understanding
of NK cell activation. Despite extensive research for almost five decades, significant
gaps remain in our comprehension of the molecular mechanisms that enable NK cells to
target certain cancer cells selectively. Proper regulation of NK cell activation is crucial, as
inappropriate activation can result in tissue damage or autoimmune disorders. Currently,
there are several therapeutical strategies in development, the most prominent ones being the
NK cell engagers and CAR NK cell therapy. Functional plasticity of NK cells suggests that
NK cells modulate their phenotype to preserve a certain threshold of activation. Therefore,
the deficiency of one or more receptors leads to altered expression of other receptors to
maintain the same activation threshold. This poses a new perspective on CAR NK cell
therapy, as over-expressing a CAR could lead to altered expression of other receptors
present in NK cells and potentially lead to treatment failure. On the other hand, NK cell
engagers involve multiple NK cell receptors to try to provide a stronger signal to shift the
signal balance toward activation. This could be a novel strategy that does not interfere
with the receptor repertoire of NK cells. All of this highlights the need for a deeper insight
into the complexity of NK cell biology and elucidating molecular mechanisms underlying
NK cell activation. A better understanding of this complex process represents an attractive
target for manipulation and more effective use of NK cells in cancer immunotherapy.
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