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Abstract: Background and motivation: Lung computed tomography (CT) techniques are high-
resolution and are well adopted in the intensive care unit (ICU) for COVID-19 disease control
classification. Most artificial intelligence (AI) systems do not undergo generalization and are typically
overfitted. Such trained Al systems are not practical for clinical settings and therefore do not give
accurate results when executed on unseen data sets. We hypothesize that ensemble deep learning
(EDL) is superior to deep transfer learning (TL) in both non-augmented and augmented frameworks.
Methodology: The system consists of a cascade of quality control, ResNet-UNet-based hybrid deep
learning for lung segmentation, and seven models using TL-based classification followed by five types
of EDL’s. To prove our hypothesis, five different kinds of data combinations (DC) were designed
using a combination of two multicenter cohorts—Croatia (80 COVID) and Italy (72 COVID and
30 controls)—leading to 12,000 CT slices. As part of generalization, the system was tested on unseen
data and statistically tested for reliability/stability. Results: Using the K5 (80:20) cross-validation
protocol on the balanced and augmented dataset, the five DC datasets improved TL mean accuracy by
3.32%, 6.56%, 12.96%, 47.1%, and 2.78%, respectively. The five EDL systems showed improvements
in accuracy of 2.12%, 5.78%, 6.72%, 32.05%, and 2.40%, thus validating our hypothesis. All statistical
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tests proved positive for reliability and stability. Conclusion: EDL showed superior performance to
TL systems for both (a) unbalanced and unaugmented and (b) balanced and augmented datasets for
both (i) seen and (ii) unseen paradigms, validating both our hypotheses.

Keywords: COVID; control; ResNet-UNet; transfer learning; ensemble deep learning; unseen

1. Introduction

The COVID-19 pandemic has caused significant disruptions and health concerns
worldwide and worsened traditional diseases since its emergence in late 2019. Efforts to
control its spread have included non-pharmaceutical interventions, such as social distanc-
ing, mask-wearing, and quarantine measures, as well as the development and administra-
tion of vaccines. The development and administration of vaccines are effective in reducing
the severity of the disease and preventing hospitalization and death [1-6].

Ongoing research and analysis are needed to better understand the effectiveness of
various control measures and their impact on reducing the spread of COVID-19. There are
several motivations for researching COVID-19 and its control measures. First, COVID-19
is a novel virus, and there is still much to learn about its transmission, symptoms, and
long-term effects [1,7]. Second, research can help to fill these knowledge gaps and inform
public health strategies. Third, COVID-19 has highlighted existing health disparities and
inequities, and research can help to identify and address these issues in the context of the
response to the pandemic [8,9]. Lastly, the COVID-19 pandemic has spurred artificial intel-
ligence innovation and collaboration in fields such as medicine, epidemiology, and public
health. Research can help to build on these developments and inform future responses to
similar global health crises [3,6,10-12].

Supercomputers and graphical processing units (GPU) ease the burden of researchers
in detecting medical imaging diseases [5,13-15], e.g., pneumonia [5,16]. Transfer learning
(TL), ensemble deep learning (EDL), and hybrid deep learning (HDL) are novel methods of
achieving better accuracy faster than traditional methods [17-20]. Hospitals, labs, institutes,
professors, and doctors are not only adopting these new paradigms but also collaborating
to help humans. There is variability in the design of studies looking at COVID-19 and
its control measures [1,15,21-24], which can make it challenging to compare and draw
conclusions from different studies. Some studies may have limited generalizability, as
they may be conducted in specific populations and may not apply to other populations.
The emergence of new variants of the virus may affect the effectiveness of existing control
measures. Despite these limitations, ongoing research is critical for understanding and
mitigating the impacts of COVID-19 and developing effective control measures.

Researchers are facing challenges in obtaining a COVID-19 image dataset with good
volume. X-ray images are noisy, and these images could not clearly explain the infected
lung areas in comparison to CT images. The CroMED and NovMED datasets have helped
this research to detect infected COVID sections, but they should be processed using correct
models. There are several published machine learning (ML), and deep learning (DL)
models. ML models are mostly used for classification, while DLs are for feature extraction
and classification. Now, it could be said that DL models are more suitable for the COVID
CT image dataset than ML models [7,25]. Current DLs are already trained and tested on
the ImageNet dataset with good accuracy. These models can be utilized and trained on CT
images, but this would be a very slow and non-novel process. This challenge leads us to
use TLs and EDLs. TLs are faster than traditional DL methodologies. EDLs are stronger
than TLs. Still, researchers doubt the correct data size for DLs. The previous state of the art
has proven that data augmentation and data balancing have a significant role in achieving
better accuracy. Most of the Al systems are overfitted or never generalized. Such a process
is called memorized rather than generalized. Such systems are not practical for clinical
settings. Such systems therefore do not give accurate results when tried on unseen data sets.
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This is the fundamental motivation of this study. We specifically addressed a novel system
design which is a cascade of three major Al systems for multicenter data set design aimed
squarely at unseen analysis towards generalization. Thus, there is no system which is a
combination of HDL + 5 TL + 5 EDL systems which was designed and tested on special five
types of multicenter data systems of COVID + CONTROL combinations, and the design
was applied to “unseen analysis” to establish generalization over memorization.

Based on the limitations in current research, we hypothesize two points to improve
detection accuracy. First, the mean accuracy of EDLs is better than the mean accuracy of
TLs. Second, balanced and augmented data give better results compared to data without
augmentation. We studied 275 published journal and conference papers at IEEE, Sci-
enceDirect, Springer, and MDPI. After this, we finalized EfficientNetV2M, InceptionV3,
MobileNetV2, ResNet152, ResNet50, VGG16, VGG19, and Xception for our research work.
These TL combinations have generated EDL models that could improve COVID-19 detec-
tion accuracy [7,25]. Five EDL models and seven TLs are consistently used over dataset
combinations (DC) taken from Croatia and Italy.

The layout of this study is as follows: Section 2 presents the related literature. We
discuss recent research and its accuracy on currently available datasets. Section 3 is a
methodology in which the architecture and approach of research are included. The results
and performance evaluation based on methodology and different performance metrics are
presented in Section 4. Section 5 presents the system reliability and explainability. The
critical discussion is presented in Section 6, and finally, the study concludes in Section 7.

2. Background Literature

The COVID-19 pandemic has led to an unprecedented global health crisis, with a
significant impact on public health, and social and economic aspects of life [9,25]. One of the
primary challenges that has been faced by healthcare professionals during the pandemic is
the early and accurate diagnosis of COVID-19 patients. CT scans are one of the most reliable
and widely used methods for the diagnosis of COVID-19 owing to their high sensitivity
and specificity. With the advent of DL-based Al models, researchers have been able to
develop automated diagnostic tools that can help healthcare professionals to diagnose
COVID-19 patients more accurately and efficiently. Several studies have been conducted
to develop and evaluate Al-based models for the diagnosis of COVID-19 using CT scans.
For instance, in a study conducted by Gozes et al. [26], a DL-based model was developed
and evaluated using a dataset of ~1500 CT scans. The study reported an overall sensitivity
of 98% and a specificity of 92%, indicating that the model could accurately distinguish
COVID-19 patients from non-COVID-19 patients. In a more recent study by Li et al. [27], a
DL-based model was developed and evaluated using a dataset of 1684 CT scans obtained
from 468 COVID-19 patients and 1216 non-COVID-19 patients. The model has had an
overall accuracy of 91.4%, indicating that the model could accurately distinguish COVID-19
patients from non-COVID-19 patients.

Other studies have also explored the use of Al-based models for COVID-19 diagnosis
using CT scans. Alshazly et al. [28] used DenseNet169 and DenseNet201 to evaluate 746 CT
scan images. The authors have achieved an accuracy of 91.2%, an Fl-score of 90.8%, and
an AUC of 0.91 on DeseNet169 and an accuracy of 92.9%, an Fl-score of 92.5%, and an
AUC of 0.93 on DenseNet201. Cruz et al. [29] conducted another study using 746 CT scans.
The best accuracy metrics were 82.76%, precision was 85.39%, and AUC was 0.89 using
DenseNet161; the second-best model is VGG16, for which accuracy was 81.77%, precision
was 79.05%, and AUC was 0.9. Shaik et al. [30], Huang et al. [31], and Xu et al. [32] also used
TL-based MobileNetV2 on Dataset COVID-CT, TL-based MobileNetV2 on SARS-CoV2, and
TL-based EfficientNetV2m on COVID-CT, and they achieved accuracies of 97.38%, 88.67%,
and 95.66%, respectively. EDL has a major role in improving detection accuracy. There are
some popular EDL paradigms on the CT dataset. Pathan et al. [33], Kundu et al. [34], and
Tao et al. [35] used EDL models to achieve better accuracy in comparison to TL models.
All three studies had an accuracies of more than 97%. In recent years, some authors have
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also used ensemble methods to detect COVID and non-COVID patients on X-ray and CT
datasets [35—40]. These studies utilized at most two ensemble methods, and the datasets
were also not large. Some other sections were also missing, such as with and without
data augmentation results, unseen data analysis, and reason for combining all TLs. In
addition to CT data classification, ensemble methods have also supported other medical
sectors, i.e., breast cancer identification in early stages [41-45], brain tumor identification
and segmentation [46-49], heart disease [49-51], and diabetic patient identification and
treatment [52-56]. Statistical analysis has a vital role in finding reliable systems [57-64].
This analysis helps researchers to utilize models for real world applications [65-69]. Current
research has utilized EDL and TL models and has accuracy above 90%. For instance, the
Multi-DL RADIC model [70] demonstrated a remarkable accuracy rate of 99.4%. Similarly,
the Multi-Deep system attained a high accuracy rate of 94.7% in [71], while an explainable
CNN model achieved 95% accuracy [72]. Moreover, the use of transfer learning (TL)
with VGG19 resulted in a 94.52% accuracy rate [73], while DL using Wavelet achieved an
impressive accuracy of 99.7% [74].

The emergence of a novel era of Internet of Things (IoT) and EDL has further boosted
research efforts, leading to remarkable accuracy rates. For instance, in [75], researchers
achieved an accuracy rate of 98.56% using EDL in IoT. Stacked EDL also demonstrated
promising results, achieving an accuracy rate of 93.57% [76]. Additionally, the best EDNC
model achieved an accuracy rate of 97.75% [77], while a FUSI-CAD system based on a
CNN model attained an impressive 99% accuracy rate [78]. These results highlight the
effectiveness of various TL and EDL models in achieving high accuracy rates, which is
crucial for COVID patients’ detection using CT dataset.

After undergoing literature review, we concluded that there is a need for a study with
superior performance analysis, that is more generalized using unseen data analysis, and
that is checked for reliability, and that has stability in argumentation and non-augmentation
data sets. Furthermore, our COVLIAS system also underwent scientific validation.

These Al-based models need further validation, they could potentially play a crucial
role in the fight against the COVID-19 pandemic, especially in resource-limited settings
where access to diagnostic tools is limited. Future, we noticed that none of the models
had an extended role of EDL on TL models keeping HDL-based segmentation of CT scans,
which is a superior method since it undergoes quality control. Lastly, there has been
no attempt to undergo generalizability or cross-domain paradigm where the testing is
conducted on an “unseen dataset” taken from other clinical centers, unlike in the seen
data set, where both the training and testing have been conducted from the same hospital
settings. Our study exclusively addresses the “unseen analysis” and tested for the reliability
and stability of the system design.

3. Methodology

In this section, we discuss image acquisition and data demography, overall architec-
ture, HDL-based segmentation, TL-based classification approach, and EDL paradigm for
classification. These subsections present the complete process to achieve our hypothesis.

3.1. Image Acquisition and Data Demographics

In this research work, we utilized two distinct cohorts from different countries. This
dataset has already been validated by radiologists and doctors who are also co-authors in
this paper. The first cohort, referred to as the experimental data set, consists of 80 CroMED
COVID-19-positive individuals, with 57 males and the remainder female. Sample images
are in Figure 1. An RT-PCR test was conducted to confirm the presence of COVID-19 in
the selected cohort, with an average value of around 4 for ground-glass opacity (GGO),
consolidation, and other opacities. Of the 80 CroMED patients, 83% had a cough, 60%
had dyspnea, 50% had hypertension, 8% were smokers, 12% had a sore throat, 15% were
diabetic, and 3.7% had COPD. Out of the total cohort, 17 patients were admitted to the
intensive care unit (ICU), and 3 patients died due to COVID-19 infection [2,79,80].
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Figure 1. Raw “COVID-19 CT slices” patient images taken from CroMED dataset.

The second data set included 72 NovMED COVID-19-positive individuals. Figure 2
included 47 males, and the remainder were female. An RT-PCR test was conducted
to confirm the presence of COVID-19 in the selected cohort, with an average value of
approximately 2.4 GGO, consolidation, and other opacities. Of the 72 NovMED patients,
61% had a cough, 9% had a sore throat, 54% had dyspnea, 42% had hypertension, 12%
were diabetic, 11% had COPD, and 11% were smokers. In total, 10 patients died due to
COVID-19 infection in this cohort. Figure 3 shows NovMED(control) datasets from Italy.
The COVID (Croatia) dataset had dimensions of 512 x 512 and 5396 raw images, COVID
(ITA) had dimensions of 768 x 768 and 5797 raw images, and control (Italy) had dimensions
of 768 x 768 and 1855 raw images.

Figure 2. Raw “COVID-19 CT slices” images taken from NovMED dataset.
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Figure 3. Raw “Control CT slices” images taken from NovMED dataset.

The CT dataset was acquired using a 64-detector FCT Speedia HD scanner (Fujifilm
Corporation, Tokyo, Japan, 2017). The NovMED dataset, consisting of 72 COVID-19-
positive individuals, was obtained from the Department of Radiology at Novara Hospital,
Italy. The CT scans were performed using a 128-slice multidetector row CT scanner (Philips
Ingenuity Core, by Philips Healthcare). The patients were required to have a positive
RT-PCR test for COVID-19 as well as symptoms such as fever, cough, and shortness of
breath. No contrast agent was administered during the acquisition, and a lung kernel of a
768 x 768 matrix together with a soft-tissue kernel was utilized to obtain a 1 mm thick slice.
The CT scans were performed with a 120 kV, 226 mAs/slice detector configuration using
Philips’s automated tube current modulation-Z-DOM with a spiral pitch factor of 1.08 and
a 0.5 s gantry rotation time, and a 64 x 0.625 detector was considered [80]. Appendix A
has more samples of the CroMED (COVID), NovMED (COVID), and NovMED (control)
datasets. Data exclusion criteria for both CroMED and NOVMed dataset consisted of
selection of the CT scans regions were based on the absence of metallic items and the high
scan quality, free of external artefacts or blur caused from patient movement during the
scanning procedure. In this group, the average patient’s CT volume had about 300 slices.
During slice selection, slices with the greatest lung area were selected. Slice selection was
performed by one of the senior radiologists (K.V.).

Balancing rationale: CroMED (COVID) consisted of 5396 images, while for NovMED
(COVID), the data set consisted of 5797 images. NovMED (Control) consisted of 1855 im-
ages. Note that there were few control data points. The augmentation procedure consisted
of increasing the COVID data two times and control data six times. Thus, the total numbers
of images were changed to 10,792 (5396 x 2), 11,594 (5797 x 2), and 11,130 (1855 x 6),
respectively. This was for balancing the data sets for COVID and the controls, and this
made the control data sets nearly the same as the COVID data sets.

Folding rationale: The chosen sample size of COVID data was two times. This was
based on the sample size computation (so-called power analysis, as discussed in the
methodology section), for which the objective was to improve the accuracy. For the best
accuracy, there was a need for at least 8100 images for COVID. Thus, we increased the
COVID data sets by two times, i.e., to 10,792 (5396 x 2) and 11,594 (5797 x 2). Subsequently,
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the control was balanced by increasing the data set by six times, i.e., to 11,130 (1855 x 6).
Table 1 depicts the distribution of the dataset.

Table 1. Summary of CroMED (COVID), NovMED (COVID), and NovMED (control) dataset infor-
mation for the experiment.

Images Images (After ce
SN Dataset Cour}tr.y of Patients (Before Aug- Augmenta- . Image Trfnnmg. .
(Name) Origin . A Dimensions *  Testing Split
mentation) tion)
CroMED .
1 (COVID) Croatia 80 5396 10,792 512 x 512 K5
NovMED
2 (COVID) Novara, Italy 60 5797 11,594 768 x 768 K5
3 NOVMED =\ vara, Italy 12 1855 11,130 768 x 768 K5
(Control)

* Pixel square; K5: 80% training and 20% testing data sets.

3.2. Overall Pipeline of the System

The proposed overall architecture is portrayed in Figure 4. In this architecture, The
CT machine operator and doctor have contributed to the storage of raw images of lungs
for research purposes. These raw images were subjected to HDL segmentation to produce
segmented data, resulting in a clear and distinct image of the lung. The latest advancements
in segmentation have yielded better results when compared to raw images. We utilized
both TLs and EDLs to detect COVID-19 and control cases with high accuracy, which is
shown in Figure 4. In this study, we hypothesized that the mean accuracy of EDLs is
superior to that of TLs. Additionally, we hypothesized that the mean accuracy of models
with augmented input data, balanced with augmentation, would be greater than those
without augmentation in both TLs and EDLs. We conducted scientific validation, statistical
analysis, precision, recall, F1-score, and AUC to evaluate the performance of the models.

qriLl TL4

[ lmz|ims| |
ResNet-UNet [ H

?
Boa = l
ﬂ‘* Volume Acquisition "‘—v HDL Segmentation —> &2

CT Machine Operator CT Volume Segmented Lungs T T_| EOC ’_| L‘ o

EDL1 EDL2 EDL3

—» —>‘

B EDIL —»gjf‘

TL5 | TL6 | TL7 EDL4 | EDLS
I\ N /)
Y N7 % S v I v J
Machine Volume Acquisition HDL Lung Segmentation Explainable Transfer Ensemble Performance
Learning Classification Deep Evaluation

Classification

Figure 4. Overall pipeline consisting of CT volume acquisition, HDL-based segmentation, transfer
learning (TL1-TL7), and ensemble-deep-learning-based (EDL1-EDLS5) classification.

3.3. Hybrid Deep Learning Architecture of CT Lung Segmentation

After the data acquisition, raw input images were passed over to the HDL model for
segmentation. The process of segmenting an image is breaking it up into segments, each of
which corresponds to a desired class in the image. The approach that is utilized for image
segmentation relies on the specific application and the characteristics of the picture that
is being segmented. The study by Suri et al. [80] in the literature review has shown that
HDLs are better than solo segmentation. Using the same spirit, ResNet-UNet was exclu-
sively adopted for lung segmentation after pre-processing or quality control [81-86]. The
ResNet-UNet-based HDL model is composed of 165 layers with ~16.5 million parameters.
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The final trained model size of the model was 188 megabytes. Using a cutoff of 80%, the
model had Dice and Jaccard scores of 0.83 and 0.71, respectively.

These segmented images are the inputs for seven types of TL models and five EDL
models in five different input data combinations (DC)—with and (i) without data augmen-
tation and (ii) balanced and augmented data in predicting the presence of COVID-19 in
three different datasets: CroMED (COVID), NovMED (COVID), and NovMED (control).
ResNet helps in solving the vanishing gradient problem of previous models using skip
connection. The convolutional neural networks (CNN) layer in ResNet brings down the
sample features using stride two. UNet-based architecture helps in neutralizing the seman-
tic segmentation problem. We have therefore used the combination of ResNet and UNet
architecture to build HDL-based segmentation as shown in Figure 5. This amalgamation
paradigm has effectively segmented the lungs in COVID-19 and control CT scans.

— Max 3x3 Conv Wentity Conv Identity Conv Identity
x2 x3 x5
l l l Conv

3x3
. Up-sample | Cofw ) Up-sample Conv || Up-sample Conv | | Up-sample |

2x2 3x3 2x2 7 33 22 71 33 2x2

Cony Conv Conv

| U U U U ——

1x1 3x3 Ix1 1 Conv Conv Conv
Add 1x1 33 L 1xd T Add
Cony I
1x1
Cony block Identity block

Figure 5. ResNet-UNet HDL architecture for lung segmentation [80].

To balance the control and COVID classes, 3x augmentation of the control class was
carried out using a vertical horizontal flip and 45-degree rotation. After class balancing in
all five DC scenarios, data were further augmented twofold using a vertical horizontal flip
and 30-degree rotation. The augmented data were analyzed over seven TLs and five EDLs
in all five DC.

3.4. Transfer-Learning-Based Architecture for Classification

Transfer learning is one of the premier methods for classification and offers several
advantages compared to DL-based classification [27,87,88]. Our seven TL models adopted
were EfficientNetV2M, InceptionV3, MobileNetV2, ResNet152, ResNet50, VGG16, and
VGG1Y9, all pre-trained on the ImageNet dataset. Utilizing these TL models, we have
designed false to top layers of all models and added a flatten, dense layer, dropout layer,
and L2 regularizer. The flatten [89] helps to convert the multidimensional output of the
previous layer to a 1-dimensional vector. It passes the values to a dense layer that has a
ReLU activation function and L2 regularization with a strength of 0.001. This regularizer
prevents overfitting. Dropout is another method that helps to reduce overfitting. Finally,
the fully connected layer with two classes and a sigmoid activation function to the output
of the previous layer. The output of the last layer represents the predicted probability for
the two classes in the classification problem, COVID vs. control. All the architecture used
in this work is shown in Appendix B. We have used these TL models due to their ability to
bypass the long training time for scratch-based network designs [13,90].

3.5. Ensemble Deep Learning Architectures for Classification

The ensemble is the area of medical imaging that helps weak learners to make them
stronger. We have also used the soft-max voting ensemble method. In this approach, the
sum of the predicted score is used to predict the class of ensemble prediction. We have
also proposed a novel Algorithm 1 to generate five EDL from TLs. EDL generators use
a combination method over TL prediction score to create five EDLs from seven TLs. The
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accuracy of EDL is better than that of solo deep learning architecture. This is a novel
algorithm for generating EDLs from TL combinations.

Algorithm 1: EDL generator

Result: Combination of TL models score generates five EDLs
Input: TL Model predicted score

EDL=1[];

Whilel len(EDL) < 6 do:

While2 i in range (2,8) do:

While3 k in combinations, i: do:

NewEDL = GenerateEDL(TLK,i combinations);

/ /GenerateEDL function to generate on predicted score of TLs
If ACC of NewEDL >ACC of contituents TLs ACC then
EDL.append(NewEDL);

Else

Print(“Try new combination”)

End //End of If

End //End of while3

End / /End of while2

End //End of whilel

After obtaining the segmented image, TL and EDL performed the task of accurate
detection of COVID and control (Figure 6). First, these segmented data were preprocessed
over all five data combinations. Parallel execution of models on original data size created a
core dump (memory issue) at our GPU, which is why the input data size was reduced to
180 x 180. After that, the balancing of the COVID and control classes was performed after
the augmentation of control class by 3x. Once the data were balanced, we augmented the
data by 2 to increase the size of the data. Second augmentation was also performed to
check the augmentation effect. Seven TLs were used for feature extraction, and the sigmoid
function was used for binary classification. TL combinations generate EDL and EDL uses
softMAX voting on the predicted score for detection of COVID and control. We have also
performed balancing and augmentation on data.

OO O N\

bDC1 (pDC2 |)DC3 pDC4 ) DCS

l

Preprocessing, Optimization, __ Balance the COVID and
Balance, Augmentation CONTROL

|

Data Partition

o

Augmentation by 2X —

EfficientNetV2 Training , Val_ldatlan Testing Data
“ InceptionV3 I
()
i MobileNetV2 Feature Extractlon Q
=} _l_.
= = ResNet152 And 2 ;
= ResNet150 Classification 8
VGG16 Combination of TL =
—— for EDL Models é
N 1 o
\ 2 /J
\ % .
X Soft M.Lg];f ting for Al system to predict /
\_\ Covid and Control /"

Figure 6. TL and EDL classification process on segmented images.
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3.6. Loss Function

Cross-entropy (CE)-loss functions are frequently used for two or more than two DL
models. CE-loss, «c, is dependent on the probability of the Al model p; and the gold
standard label 1 and 0 by g; and (1 — g;), respectively, as shown in Equation (1).

xcg= —[(gi x logp;) + (1 — gi) x log(1 — p;)] D

3.7. Performance Metric

We have used true positive (TP), true negative (TN), false positive (FP), and false
negative (FN) to estimate the various performance evaluation metrics. These are accu-
racy (n) (Equation (2)), recall (R) (Equation (3)), precision (P) (Equation (4)), and Fl-score
(F) (Equation (5)). After calculating the accuracy of TL and EDL models, we calculated
the mean accuracy of TL (irL) in Equation (6) and the mean accuracy of EDL (NepL) in
Equations (7) and (8). In these equations, “n” is the number of TLs, and “N” is the number
of EDLs. Dice and Jaccard are also calculated based on Equations (9) and (10), where z
is a set of wanted items and ¥ set of found items. The probability curve ROC (receiver
operating characteristics) and degree of separability AUC (area under the curve) have
also been calculated for each model. In the standard deviation (o), each value from the
population is denoted by xj and p, population mean. N is the size of the population.

TP+ TN

Y TPIFP+EN+TN @
R= o 3

P Tpiipm )
F=2 x (;’ X ﬁ) ©)
R = ZK—lKrL“ (6)
Reps = ZMlA'ZEDL %
v i (JIC\i]_ > (®)
s =27 ¥
I(y,2) = 5 I_S(g(;)z) (10)

3.8. Experimental Protocol
3.8.1. Five Data Combinations
For the robust design of the classification system, we designed five types of data

combination scenarios. This is based on training and testing data using taken from two
countries—namely, Croatia and Italy.

e DC1: Training validation and testing using both CroMED (COVID) and NovMED
(control).
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e DC2: Training validation and testing on both NovMED (COVID) and NovMED
(control).

e  DCB3: Training validation using CroMED (COVID) and NovMED (control) and testing
on NovMED (COVID) and NovMED (control).

e  DC4: Training validation using NovMED (COVID) and NovMED (control) and testing
on CroMED (COVID) and NovMED (control).

e  DCS5: Training validation and testing on mixed data in which COVID CT scans from
Croatia and Italy are mixed; the control of Italy was used.

3.8.2. Experiment 1: Transfer Learning Models using Lung Segmented Data

This experiment consists of running seven types of TL models—namely, Efficient-
NetV2M, InceptionV3, MobileNetV2, ResNet152, ResNet50, VGG16, and VGG19—all
pre-trained on the ImageNet dataset for classification of segmented lung data into COVID
vs. controls. The lung segmentation was conducted using ResNet-UNet, and segmented
images were input for TLs. The experiment highlights the effectiveness of using TL for
improving the accuracy of models on HDL segmented data. The lung segmented data were
split with a ratio of 80, 10, and 10 for training, validation, and testing, respectively. Models
were saved after training and validation and later tested over 10% of the dataset under five
input data combinations. These TLs further predict COVID and control.

3.8.3. Experiment 2: Ensemble Deep Learning for Classification

Here, TLs are combined to design EDL to achieve even higher accuracy in detect-
ing COVID-19 vs. control [91-98]. In DC1 five EDLs have been generated on TL mod-
els. EDL1: VGG19 + VGG16, EDL2: InceptionV3 + VGG19, EDL3: VGG19 + Efficient-
NetV2M, EDL4: InceptionV3 + EfficientNetV2M, EDL5: ResNet50 + EfficientNetV2M.
Using DC2, EDL1: ResNet50 + ResNet152, EDL2: VGG16 + EfficientNetV2M, EDL3:
VGG19 + EfficientNetV2M, EDL4: VGG16 + MobileNetV?2, EDL5: VGG19 + MobileNetV2.
Using DC3 EDL1: ResNet50 + MobileNetV2, EDL2: ResNet50 + InceptionV3, EDL3:
InceptionV3 + VGG19, EDL4: InceptionV3 + MobileNetV2 + ResNet152, EDL5: Incep-
tionV3 + EfficientNetV2M + ResNet152. EDL1: EfficientNetV2M + ResNet50, EDL2: Mo-
bileNetV2 + ResNet50, EDL3: ResNet50 + ResNet 152, EDL4: ResNet152 + EfficientNetV2M,
MobileNetV2 + VGG19 for DC5.

3.8.4. Experiment 3: Effect of EDL Classification over TL Classification with Augmentation

This experiment is to show the effect of EDL classification over TL classification on
unaugmented data and augmented data [99-103]. Mean EDL accuracy and mean TL
accuracy verified after the balance and augmentation.

3.8.5. Experiment 4: Unseen Data Analysis

Training on one combination of data and testing on another combination of data were
experimented with here. We analyzed the models’ performance on unseen data to evaluate
their generalizability [104-111]. The results showed that the models performed well on
unseen data, indicating their potential for real-world applications. Input data scenarios
DC3 and DC4 are examples of unseen data analysis.

3.9. Experimental Setup

We used Idaho State University (ISU) GPU cluster for executing all models using DC1
to DC5. Tensorflow 2.0 libraries helped us to design the software, and results were also
evaluated using MedCalc v12.5 statistical software [112-117]. Common hyperparameters
in TL models are Optimizer: Adam, Learning rate: 0.0001, Loss: function categorical_cross-
entropy, Regularizer: L2 (0.01), Dropout: 0.5, Batch Size: 32, Classification activation
function: Sigmoid, Other layer activation function: Relu, and epoch: 25.
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3.10. Power Analysis

We calculated the sample size using the conventional method [118-120]. The formula
for calculating the sample size is represented by , is as follows:

n= [(z*)2 X (Mﬂ (11)

MoE2

where z* is the z-score corresponding to the desired level of confidence, MoE is the margin
of error (half the width of the confidence interval), and is the estimated proportion of
the characteristic in the population. Using MedCalc software, we calculated the required
values and substituted them into Equation (11). We need a sample size of at least 8100
to estimate the proportion of the characteristic in the population with a 95% confidence
interval of 0.963 to 0.978 and an MoE of 0.0075.

4. Results and Performance Evaluation

To verify both hypotheses, we conducted four experiments on five DC scenarios.
ResNet-UNet, a hybrid deep learning model, was used to segment the raw data. CroMED
(COVID), NovMED (COVID), and NovMED (control) raw images are there along with the
segmented images. We randomly selected four sample images from CroMED (COVID)
and passed them through ResNet-UNet. The output segmented images have been placed
below the raw images in Figure 7. With the same approach, NovMED (COVID) and
NovMED (control) information is stored in the same diagram. All five DC have utilized
the seven transfer learning models and five ensemble deep learning models over CroMED
(COVID), NovMED (COVID), and NovMED (control). The seven TLs are EfficientNetV2M,
InceptionV3, MobileNetV2, ResNet152, ResNet50, VGG16, and VGG19, and a combination
of TL models with soft-voting ensemble methods generates EDL models. Training accuracy
and loss plots for the ResNet-UNet on each epoch is shown in Figure 8.

Covid-Croatia
Raw Images

Covid-Croatia
Segmented
Images

Covid-Italy
Raw Images

Covid-Italy
Segmented
Images

Control-Ttaly
Raw Images

Control-Ttaly
Segmented
Images

Figure 7. Raw images and corresponding segmented images after ResNet-UNet.
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Figure 8. Training accuracy and loss plot for ResNet-UNet.

4.1. PE for HDL Lung Segmentation

Figure 9 depicts a cumulative frequency plot for Dice (left) and Jaccard (right) for
ResNet-UNet when computed against the medical doctor (MD) 1. The correlation coef-
ficients and BA plots for MD1 and MD2 are shown in Figures 10 and 11. The correlation
coefficient graph depicts the relationship strength between ResNet-UNet and doctors’
views. The BA plot shows the compatibility between ResNet and UNet. After the segmenta-
tion of images, TL and EDL models utilize this segmented image for classification. We have
decided on five scenarios for classification to prove our hypothesis. The evaluation metrics
used to compare the models include mean accuracy (Mean ACC), standard deviation (SD),
mean predicted score (Mean PR), area under the curve (AUC), p-value, precision, recall,
and F1 score.

~ 100 ---- 80% of the scans have Dice > 0.83 _~ 100 ---=80% of the scans have Jaccard > 0.71
SN g —
z 80 z 80
g g
= 60 = 60
2 <
= =
e 40 @ 40
3 3
g 20 E 20
= =
Q Q 0
1.0 0.8 0.6 0.4 0.2 1.0 0.8 0.6 0.4 0.2
Dice Jaccard

Figure 9. Cumulative frequency plot for Dice (left) and Jaccard (right) for ResNet-UNet when
computed against MD 1.
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Figure 10. Correlation coefficient plot for left: ResNet-UNet vs. MD 1 and right: ResNet-UNet vs.
MD 2.
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Figure 11. BA plot for ResNet-UNet using MD 1 (left) vs. MD 2 (right).

4.2. Results of Experiment 1: Transfer Learning Models using Lung Segmented Data

In Experiment 1, we performed the TLs operations using ResNet-UNet segmented
data. Following are the detailed results for all five DC scenarios.

e  DC1 results: Table 2 and Figure 12 show that the best accuracy of 97.93% without
augmentation and 99.93% with augmentation is shown by MobileNetV2. The mean
accuracy of all seven TLs without augmentation is 93.91% and is 97.03% with augmen-
tation. For TL6 (VGGL16), the accuracy improves from 90.20% (before augmentation)
to 95.61% (after augmentation), so the improvement was 5.41% using DC1 data com-
bination. TL2 (Inception V3) had an accuracies of 93.60% (before augmentation) and
93.97% (after augmentation), so the improvement was 0.37%. Therefore, we see that
augmentation has different effects on TL-based classifiers. It is more pronounced in
TL6, unlike in TL2. Table 3 shows the COVID precision are significantly increased or
comparable after balancing data.

DC1: Training Validation and Testing both using CroMED(COVID) and NovMED(Control).

Figure 12. Comparison of mean TL accuracy with/without augmentation. TL1: EfficientV2M,
TL2: InceptionV3, TL3: MobileNetV2, TL4: ResNet152, TL5: ResNet50, TL6: VGG16, TL7: VGG19
using DC1.
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Table 2. Comparative TL statistical analysis using with/without augmentation on DC1.

TL Statistics on DC1

Without Augmentation Balance + With Augmentation

TL Type 1)%:;C:)Cn (S%D) N{)elgn %I_JIC) p-Value IX(‘I‘:COa)Cn (S%D) N{’elzim %I_JIC) p-Value
TL1 EfficientNetV2M 93.93 0.44 0.26 0.92 <0.0001 98.44 0.49 0.48 0.98 <0.0001
TL2 InceptionV3 93.65 0.39 0.19 0.87 <0.0001 93.97 0.49 0.47 0.95 <0.0001
TL3 MobileNetV2 97.93 0.42 0.23 0.95 <0.0001 99.99 0.49 0.5 1.00 <0.0001
TL4 ResNet152 92.9 0.38 0.18 0.86 <0.0001 96.98 0.49 0.47 0.97 <0.0001
TL5 ResNet50 97.1 0.41 0.22 0.94 <0.0001 97.44 0.49 0.48 0.97 <0.0001
TL6 VGG16 90.2 0.42 0.23 0.85 <0.0001 95.61 0.49 0.47 0.95 <0.0001
TL7 VGG19 91.72 0.39 0.19 0.85 <0.0001 96.8 0.49 0.48 0.96 <0.0001
Mean ACC of all TLs: 93.91% Mean ACC of all TLs: 97.03%
Table 3. Comparative precision, recall and F1 score analysis of COVID and control classes
with/without augmentation on DC1.
TL Statistics on DC1
Without Augmentation
TL Type PCOY¥D Con'tlzol COVID Control COVID F1 Control F1
recision Precision Recall Recall Score Score
TL1 EfficientNetV2M 0.97 0.86 0.95 0.91 0.96 0.88
TL2 InceptionV3 0.93 1.00 1.00 0.78 0.96 0.88
TL3 MobileNetV2 0.97 1.00 1.00 0.92 0.99 0.96
TL4 ResNet152 091 1.00 1.00 0.72 0.95 0.84
TL5 ResNet50 0.94 0.98 0.99 0.81 0.97 0.89
TL6 VGG16 0.92 0.84 0.95 0.77 0.94 0.8
TL7 VGGI19 0.97 0.81 0.93 0.92 0.95 0.86
Balance + With Augmentation
TL Type COY¥D Cor}tr‘ol COVID Control COVID F1 Control F1
Precision Precision Recall Recall Score Score
TL1 EfficientNetV2M 0.97 0.93 0.92 0.98 0.95 0.95
TL2 InceptionV3 0.99 1.00 1.00 0.99 1.00 1.00
TL3 MobileNetV2 1.00 1.00 1.00 1.00 1.00 1.00
TL4 ResNet152 0.99 1.00 1.00 0.99 0.99 0.99
TL5 ResNet50 0.99 1.00 1.00 0.99 1.00 1.00
TL6 VGG16 0.94 0.92 0.92 0.95 0.93 0.93
TL7 VGGI19 0.92 0.95 0.95 0.92 0.93 0.93

e  DCQC2results: Table 4 and Figure 13 show that the best accuracy of 90.84% is achieved
by InceptionV3 without augmentation, and the best with augmentation of 93.92% is
achieved by EfficientNetV2M. The mean accuracy of all seven TLs without augmen-
tation is 84.41% and is 89.85% with augmentation. TL4 (ResNet152), the accuracy
improves from 78.16% (before augmentation) to 87.40% (after augmentation) when
using DC2 data combination, so the improvement was 11.82%. TL6 (VGG16) had
accuracies of 85.6% (before augmentation) and 84.05% (after augmentation), so there
was no improvement. Therefore, we see that augmentation has different effects on
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TL-based classifiers. It is more pronounced in TL4, unlike in TL6. Table 5 shows
the effect of augmentation in COVID precision, recall and F1-score. These are signifi-
cantly increased or comparable after balancing data.

Table 4. Comparative TL statistics analysis with/without augmentation on DC2.

TL Statistics on DC2

Without Augmentation Balance + With Augmentation

TL Type lxlgi(? (SO/OD) N;)ela:n 31?1(): p-Value IXIE? (SOB N{)elin ﬁff) p-Value
(%) (%)

TL1 EfficientNetV2M 84.96 0.39 0.19 0.75 <0.0001  93.92 0.49 0.45 0.93 <0.0001
TL2 InceptionV3 90.84 0.35 0.15 0.81 <0.0001  90.04 0.49 0.44 0.81 <0.0001
TL3 MobileNetV2 85.22 0.37 0.16 0.74 <0.0001  89.77 0.49 0.49 0.89 <0.0001
TL4 ResNet152 78.16 0.2 0.04 0.56 <0.0001 87.4 0.49 0.52 0.87 <0.0001
TL5 ResNet50 79.47 0.44 0.27 0.74 <0.0001  93.53 0.49 0.46 0.89 <0.0001
TL6 VGG16 85.62 0.43 0.24 0.8 <0.0001  84.05 0.49 0.45 0.83 <0.0001
TL7 VGG19 86.66 0.42 0.22 0.8 <0.0001 90.3 0.49 0.43 0.9 <0.0001

Mean ACC of all TLs: 84.41% Mean ACC of all TLs: 89.85%

Table 5. Comparative precision, recall, and F1 score analysis of COVID and control classes
with/without augmentation in DC2-TL.

TL Statistics on DC2

Without Augmentation
TL Type PCOY?D Con.tl:ol COVID Control COVIDF1  Control F1
recision Precision Recall Recall Score Score
TL1 EfficientNetV2M 0.9 0.69 0.9 0.68 0.9 0.68
TL2 InceptionV3 0.87 0.38 0.64 0.71 0.74 0.5
TL3 MobileNetV2 0.87 0.8 0.96 0.54 0.81 0.65
TL4 ResNet152 0.88 0.48 0.76 0.68 0.82 0.56
TL5 ResNet50 0.89 0.53 0.81 0.69 0.85 0.6
TL6 VGG16 0.93 0.62 0.85 0.79 0.89 0.7
TL7 VGG19 0.9 0.6 0.85 0.7 0.87 0.65
Balance + With Augmentation
TL Type PCOY¥D Cor}tl:ol COVID Control COVIDF1 Control F1
recision Precision Recall Recall Score Score
TL1 EfficientNetV2M 0.86 0.94 0.95 0.84 0.9 0.89
TL2 InceptionV3 0.85 0.83 0.83 0.84 0.84 0.84
TL3 MobileNetV2 0.73 1.00 1.00 0.61 0.84 0.76
TL4 ResNet152 0.8 0.78 0.78 0.8 0.79 0.79
TL5 ResNet50 0.83 0.83 0.84 0.83 0.84 0.83
TL6 VGG16 0.83 0.78 0.78 0.83 0.8 0.81

TL7 VGG19 0.84 0.88 0.89 0.83 0.86 0.85
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DC2: Training Validation and Testing both on NovMED(COVID) and NovMED(Control).

'9 93.53

Figure 13. Comparison of mean TL accuracy with/without augmentation. TL1: EfficientV2M,
TL2: InceptionV3, TL3: MobileNetV2, TL4: ResNet152, TL5: ResNet50, TL6: VGG16, TL7: VGG19
using DC2.

e DC3 results: Table 6 and Figure 14 show that the best accuracies of 85.40% with-
out augmentation and 91.41% with augmentation are achieved by EfficientNetV2M.
The mean accuracy of all seven TLs without augmentation is 72.90% and is 82.355%
with augmentation. For TL5 (ResNet50), the accuracy improves from 67.17% (before
augmentation) to 80% (after augmentation) when using DC3 data combination, so
the improvement was 19.10%. TL2 (InceptionV3) had accuracies of 67.58% (before
augmentation) and 76.43% (after augmentation), so the improvement was 13.09%.
Therefore, we see that augmentation has different effects on TL-based classifiers. It
is more pronounced in TL5, unlike in TL2. Augmentation and balancing effects are
visible in Table 7. It shows that better results can be achieved after balancing the data.

Table 6. Comparative TL statistics analysis with/without augmentation on DC3.

TL Statistics on DC3
Without Augmentation Balance + With Augmentation
TL Type IXIEaCn (S%D) N;)elin ﬁ)lfl(): p-Value 1\1/\[?(131 (SOB N{)elgn 2)1_']1(): p-Value
(%) (%)
TL1 EfficientNetV2M 85.4 0.39 0.12 0.71 <0.0001  91.41 0.49 0.49 0.91 <0.0001
TL2 InceptionV3 67.6 0.48 0.38 0.65 <0.0001  76.43 0.48 0.63 0.76 <0.0001
TL3 MobileNetV2 67.3 0.47 0.35 0.63 <0.0001  86.75 0.48 0.38 0.86 <0.0001
TL4 ResNet152 78.1 0.18 0.03 0.57 <0.0001  82.28 0.49 0.59 0.82 <0.0001
TL5 ResNet50 67.2 0.49 0.4 0.66 <0.0001 80 0.48 0.61 0.8 <0.0001
TL6 VGG16 73.7 0.48 0.37 0.73 <0.0001 81 0.48 0.61 0.8 <0.0001
TL7 VGG19 71.2 0.48 0.38 0.7 <0.0001  78.63 0.49 0.56 0.78 <0.0001

Mean ACC of all TLs: 72.90% Mean ACC of all TLs: 82.35%
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DC3: Training Validation using CroMED(COVID) and NovMED(Control) and Testing on
NovMED(COVID) and NovMED(Control).

Figure 14. Comparison of mean TL Accuracy with/without augmentation. TL1: EfficientV2M,
TL2: InceptionV3, TL3: MobileNetV2, TL4: ResNet152, TL5: ResNet50, TL6: VGG16, TL7: VGG19
using DC3.

Table 7. Comparative precision, recall, and F1 score analysis of COVID and control classes
with/without augmentation in DC3.

TL Statistics on DC3
Without Augmentation
TL Type PCOY¥D Cor}h:ol COVID Control COVIDF1 Control F1
recision Precision Recall Recall Score Score

TL1 EfficientNetV2M 0.87 0.79 0.95 0.58 091 0.67
TL2 InceptionV3 0.84 0.41 0.69 0.63 0.76 0.5

TL3 MobileNetV2 0.82 0.4 0.72 0.55 0.77 0.46
TL4 ResNet152 0.77 1.00 1.00 0.14 0.87 0.25
TL5 ResNet50 0.85 0.41 0.68 0.65 0.75 0.5

TL6 VGG16 0.89 0.49 0.74 0.72 0.81 0.58
TL7 VGG19 0.87 0.46 0.72 0.7 0.79 0.55

Balance + With Augmentation
TL Type PCOY?D Cor}tl:ol COVID Control COVIDF1 Control F1
recision Precision Recall Recall Score Score

TL1 EfficientNetV2M 091 0.92 0.92 091 091 091
TL2 InceptionV3 0.86 0.71 0.63 0.9 0.72 0.79
TL3 MobileNetV2 0.8 0.98 0.99 0.75 0.88 0.85
TL4 ResNet152 0.89 0.78 0.74 091 0.8 0.84
TL5 ResNet50 0.88 0.75 0.69 091 0.78 0.82
TL6 VGG16 0.89 0.76 0.7 0.92 0.78 0.83
TL7 VGG19 0.82 0.76 0.72 0.85 0.77 0.8

e  DC4results: Table 8 and Figure 15 show that the best accuracies of 69.40% without aug-
mentation and 81.05% with augmentation are shown by VGG19. The mean accuracy
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of all seven TLs without augmentation is 47.85% and is 70.39% with augmentation.
The augmentation effect was also visible with TL3 (MobileNetV2), which had a lowest
accuracy of 27.97% before augmentation and 52.68% after the augmentation, so the
improvement is 92.5%. Table 9 has been presented to show augmentation effect for
precision, recall and Fl-score.

Table 8. Comparative TL statistics analysis with/without augmentation on DC4.

TL Statistics on DC4
Without Augmentation Balance + With Augmentation
Mean Mean
TL1 EfficientNetV2Q¥ 0.45 0.7 0.63 <0.0001 67.57 0.41 0.77 0.68 <0.0001
TL2 InceptionV3 45.6 0.47 0.66 0.55 <0.0001 60.52 0.33 0.87 0.61 <0.0001
TL3 MobileNetV2 28 0.26 0.92 0.49 <0.0001 52.68 0.21 0.95 0.53 <0.0001
TL4 ResNet152 35.2 0.42 0.75 0.47 <0.0001 73.92 0.46 0.68 0.74 <0.0001
TL5 ResNet50  39.7 0.4 0.78 0.56 <0.0001 78.41 0.48 0.6 0.78 <0.0001
TL6 VGG16 67.5 0.49 0.45 0.7 <0.0001 78.59 0.47 0.66 0.78 <0.0001
TL7 VGG19 69.4 0.49 0.41 0.7 <0.0001 81.05 0.48 0.63 0.81 <0.0001
Mean ACC of all TLs: 47.85% Mean ACC of all TLs: 70.39%

DC4: Training Validation using NovMED(COVID) and NovMED(Control), and Testing on
CroMED(COVID) & NovMED(Control).

78.59 - 81.05

Figure 15. Comparison of mean TL accuracy with/without augmentation. TL1: EfficientV2M,
TL2: InceptionV3, TL3: MobileNetV2, TL4: ResNet152, TL5: ResNet50, TL6: VGG16, TL7: VGG19
using DC4.

e  DC5 results: Table 10 and Figure 16 show that the best accuracy of 95.10% is achieved
by InceptionV3 without augmentation, and 95.28% is achieved by VGG16 with aug-
mentation. The mean accuracy of all seven TLs without augmentation is 91.22% and is
93.76% with augmentation. TL6 (VGG16), the accuracy improves from 86.81% (before
augmentation) to 95.28% (after augmentation) when using DC5 data combination,
so the improvement is 9.75%. TL3 (MobileNetV2) has an accuracies of 92.95% (be-
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fore augmentation) and 89.07% (after augmentation), so there is no improvement.
Therefore, we see that augmentation has different effects on TL-based classifiers. It is
more pronounced in TL6, unlike in TL3. In the most of TL models, improvement of
precision, recall and F1-score can be seen Table 11, after the balancing and augmenting
the data.

Table 9. Comparative precision, recall, and F1 score analysis of COVID and control classes
with/without augmentation in DC4.

TL Statistics on DC4

Without Augmentation
TL Type PCO}@D Con.tlzol COVID Control COVIDF1  Control F1
recision Precision Recall Recall Score Score
TL1 EfficientNetV2M 0.93 0.31 0.37 0.91 0.52 0.47
TL2 InceptionV3 0.82 0.27 0.36 0.75 0.5 0.4
TL3 MobileNetV2 0.72 0.24 0.08 0.92 0.14 0.38
TL4 ResNet152 0.73 0.23 0.23 0.72 0.35 0.35
TL5 ResNet50 0.87 0.27 0.24 0.89 0.38 0.42
TL6 VGG16 0.9 0.41 0.64 0.77 0.75 0.53
TL7 VGGI19 0.88 0.42 0.69 0.72 0.77 0.53
Balance + With Augmentation
TL Type I)COYI.D Cor}tl:ol COVID Control COVIDF1  Control F1
recision Precision Recall Recall Score Score
TL1 EfficientNetV2M 0.92 0.61 0.4 0.97 0.56 0.74
TL2 InceptionV3 0.96 0.55 0.24 0.99 0.38 0.71
TL3 MobileNetV2 0.78 0.42 0.69 0.72 0.77 0.53
TL4 ResNet152 0.9 0.64 0.49 0.94 0.64 0.76
TL5 ResNet50 0.88 0.72 0.67 0.9 0.76 0.8
TL6 VGG16 0.94 0.71 0.62 0.96 0.75 0.81
TL7 VGGI19 0.94 0.74 0.68 0.95 0.78 0.83
Table 10. Comparative TL statistics analysis with/without augmentation on DC5.
TL Statistics on DC5
Without Augmentation Balance + With Augmentation
mape  AcC  SD Memo AU RS SD Memo AUC
(%) (%)
TL1 EfficientNetV2M 89.9 0.32 0.12 0.76 <0.0001  94.14 0.47 0.33 0.93 <0.0001
TL2 InceptionV3 95.1 0.29 0.09 0.83 <0.0001  94.86 0.45 0.29 0.92 <0.0001
TL3 MobileNetV2 93 0.32 0.12 0.82 <0.0001  89.07 0.48 0.36 0.88 <0.0001
TL4 ResNet152 89.7 0.34 0.14 0.78 <0.0001  95.22 0.45 0.29 0.93 <0.0001
TL5 ResNet50 91.8 0.25 0.06 0.72 <0.0001  94.62 0.45 0.28 0.92 <0.0001
TL6 VGG16 86.8 0.31 0.11 0.68 <0.0001  95.28 0.45 0.28 0.93 <0.0001
TL7 VGG19 92.3 0.27 0.08 0.75 <0.0001  93.19 0.45 0.29 0.9 <0.0001

Mean ACC of all TLs: 91.22% Mean ACC of all TLs: 93.76%
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DCS: Training Validation and Testing on Mix data where COVID CT scan Croatia and Italy are

Figure 16. Comparison of mean TL accuracy with/without augmentation. TL1: EfficientV2M,
TL2: InceptionV3, TL3: MobileNetV2, TL4: ResNet152, TL5: ResNet50, TL6: VGG16, TL7: VGG19
using DC5.

Table 11. Comparative precision, recall, and F1 score analysis of COVID and control classes
with/without augmentation in DC5.

TL Statistics on DC5
Without Augmentation
TL Type PCOY¥D Cor}tl:ol COVID Control COVIDF1 Control F1
recision Precision Recall Recall Score Score
TL1 EfficientNetV2M 0.93 0.67 0.95 0.57 0.94 0.61
TL2 InceptionV3 0.95 0.98 1.00 0.66 0.97 0.79
TL3 MobileNetV2 0.95 0.79 0.97 0.69 0.96 0.73
TL4 ResNet152 0.94 0.64 0.94 0.63 0.94 0.64
TL5 ResNet50 0.92 0.93 0.99 0.45 0.95 0.61
TL6 VGG16 0.94 0.39 0.82 0.69 0.88 0.5
TL7 VGG19 0.93 0.88 0.99 0.53 0.96 0.66
Balance + With Augmentation
TL Type COY?D Cor}tl:ol COVID Control COVIDF1 Control F1
Precision Precision Recall Recall Score Score
TL1 EfficientNetV2M 0.96 091 0.95 0.92 0.96 091
TL2 InceptionV3 0.94 0.98 0.99 0.86 0.96 0.92
TL3 MobileNetV2 0.94 0.81 0.89 0.88 0.92 0.84
TL4 ResNet152 0.94 0.99 0.99 0.88 0.97 0.93
TL5 ResNet50 0.93 0.99 1.00 0.85 0.96 091
TL6 VGG16 0.94 0.99 1.00 0.86 0.97 0.92

TL7 VGG19 0.92 0.95 0.98 0.84 0.95 0.89
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e Tables 3, 5, 7, 9 and 11 also show the precision and a comparison to Experiment
1, which presents the verification of Hypothesis 2 that data augmentation helps in
improvement in the performance of TL model. p-value based on the Mann—-Whitney
test was used for all data combinations.

4.3. Results of Experiment 2: Ensemble Deep Learning for Classification

In Experiment 2, we performed the EDL operations for accurate classification of
COVID and control. These EDLs are created using TL models. Following are the detailed
results for all five DC scenarios.

e  DCl results: Table 12 and Figure 17 show that the mean accuracy of all EDLs without
augmentation is 95.05% and is 97.07% with augmentation.

Table 12. Comparative EDL statistics analysis with/without augmentation on DC1.

EDL Statistics on DC1

EDL Without Augmentation Balance + With Augmentation
Type Alé’[éa&)) (S%D) Ni’elin 2)?1(): p-Value Algéa(f;)) (S%D) Ni’ele{m 2)[_}1()2 p-Value
EDL1 92.82 0.4 0.2 0.87 <0.0001 96.89 0.49 0.47 0.96 <0.0001
EDL2 94.06 0.39 0.19 0.88 <0.0001 95.43 0.49 0.46 0.95 <0.0001
EDL3 94.48 0.41 0.21 0.9 <0.0001 98.26 0.49 0.48 0.98 <0.0001
EDL4 95.31 0.42 0.23 0.92 <0.0001 96.8 0.49 0.47 0.96 <0.0001
EDL5 98.62 0.42 0.24 0.97 <0.0001 97.99 0.49 0.48 0.98 <0.0001
Mean ACC of all EDLs: 95.05% Mean ACC of all EDLs: 97.07%

DC1: Training Validation and Testing both using CroMED(COVID) and NovMED(Control).

‘Combination of TL Models

VGG19 + VGG16

InceptionV3 + VGG19

VGG19 + EfficientNetV2
TInceptionV3 + EfficientNetV2M
ResNet50 + EfficientNetV2

Figure 17. Comparison of mean EDL accuracy with/without augmentation. EDL1: VGG19 + VGG16,
EDL2: InceptionV3 + VGG19, EDL3: VGG19 + EfficientNetV2M, EDL4: InceptionV3 + Efficient-
NetV2M, EDL5: ResNet50 + EfficientNetV2M using DC1.

e  DC2results: Table 13 and Figure 18 show that the mean accuracy of all EDLs without
augmentation is 87.63% and is 92.70% with augmentation.

e  DC3 results: Table 14 and Figure 19 show that the mean accuracy of all EDLs without
augmentation is 75.88% and is 80.98% with augmentation.
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Table 13. Comparative EDL statistics analysis with/without augmentation on DC2.

EDL Statistics on DC2

Without Augmentation Balance + With Augmentation
EDL  Mean SD Mean  AUC o lféa(‘:‘ SD Mean  AUC o
Type  ACC(%) (%) PR o 7 o (%) PR o F
(]
EDL1 85.09 0.36 0.15 0.73 <0.0001 93.74 0.49 0.46 0.93 <0.0001
EDL2 87.32 0.39 0.19 0.75 <0.0001 91.89 0.49 0.46 0.91 <0.0001
EDL3 87.58 0.39 0.19 0.8 <0.0001 93.65 0.49 0.45 0.93 <0.0001
EDL4 88.75 0.4 0.2 0.82 <0.0001 91.36 0.49 0.47 0.91 <0.0001
EDL5 89.41 0.39 0.19 0.82 <0.0001 92.86 0.49 0.46 0.92 <0.0001
Mean ACC of all EDLs: 87.63% Mean ACC of all EDLs: 92.70%
DC2: Training Validation and Testing both on NovMED(COVID) and NovMED(Control).
Combination of TL Models
ResNet50 + ResNet152
VGG16 + EfficientNetV2M
VGG19 + EfficientNetV2M
WVGG16 + MobileNetV2
VGG19 + MobileNetV2
Figure 18. Comparison of mean EDL accuracy with/without augmentation. EDL1: ResNet50 + ResNet152,
EDL2: VGG16 + EfficientNetV2M, EDL3: VGG19 + EfficientNetV2M, EDL4: VGG16 + MobileNetV2,
EDL5: VGG19 + MobileNetV2 using DC2.
Table 14. Comparative EDL statistics analysis with/without augmentation on DC3.
EDL Statistics on DC3
Without Augmentation Balance + With Augmentation
EDL Mean SD Mean AUC Value IXI?C“ SD Mean AUC Value
Type  ACC(%) (%) PR on P o (%) PR on F
EDL1 68.27 0.48 0.38 0.66 <0.0001 82.92 0.49 0.52 0.8 <0.0001
EDL2 68.55 0.48 0.39 0.67 <0.0001 79.63 0.48 0.61 0.79 <0.0001
EDL3 72.41 0.48 0.37 0.71 <0.0001 78.17 0.49 0.58 0.78 <0.0001
EDL4 83.86 0.38 0.17 0.73 <0.0001 81.73 0.49 0.58 0.81 <0.0001
EDL5 86.34 0.36 0.15 0.75 <0.0001 82.46 0.49 0.59 0.82 <0.0001

Mean ACC of all EDLs: 75.88%

Mean ACC of all EDLs: 80.98%
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Combination of TL Models

ResNet50 + MobileNetV2
ResNet50 + InceptionV'3
InceptionV3 + VGG19
Tnception’3 = MobileNetV2 +
ResNet152

TnceptionV3 + EfficientNetv2M +
ResNetl 52

Figure 19. Comparison of mean EDL accuracy with/without augmentation. EDL1: ResNet50 + Mo-
bileNetV2, EDL2: ResNet50 + InceptionV3, EDL3: InceptionV3 + VGG19, EDL4: InceptionV3 + Mo-
bileNetV2 + ResNet152, EDL5: InceptionV3 + EfficientNetV2M + ResNet152 using DC3.

e  DC4 results: Table 15 and Figure 20 show that the mean accuracy of all EDLs without
augmentation is 59.99% and is 79.22% with augmentation.

Table 15. Comparative EDL statistics analysis using with/without augmentation on DC4.

EDL Statistics on DC4
Without Augmentation Balance + With Augmentation
Mean

EDL Mean SD Mean AUC SD Mean AUC
Type ACC (%) (%) PR (0-1) p-Value I?S)C %) PR ©-1) p-Value
EDL1 71.24 0.49 0.44 0.74 <0.0001 80.88 0.48 0.63 0.81 <0.0001
EDL2 70.71 0.49 0.47 0.76 <0.0001 80.61 0.47 0.65 0.8 <0.0001
EDL3 43 0.46 0.67 0.52 <0.0001 75.94 0.47 0.65 0.76 <0.0001
EDL4 4431 0.45 0.7 0.56 <0.0001 78.32 0.48 0.61 0.78 <0.0001
EDL5 70.71 0.48 0.47 0.76 <0.0001 80.35 0.47 0.64 0.8 <0.0001

Mean ACC of all EDLs: 59.99% Mean ACC of all EDLs: 79.22%

Combination of TL Models

'GG19 + i 2M
/GG16 + EfficientNetV2M
ception + ResNetl52
ception + ResNets0
'GG16 ~ VGG19 + EfficientNetv2M

Figure 20. Comparison of mean EDL accuracy with/without augmentation. EDL1: VGG19 + Ef-
ficientNetV2M, EDL2: VGG16 + EfficientNetV2M, EDL3: Xception + ResNet152, EDL4: Xcep-
tion + ResNet50, EDL5: VGG16 + VGG19 + EfficientNetV2M using DC4.
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e  DC5 results: Table 16 and Figure 21 show that the mean accuracy of all EDLs without
augmentation is 93.39% and is 95.64% with augmentation.

Table 16. Comparative EDL statistics analysis with/without augmentation on DC5.

EDL Statistics on DC5

Without Augmentation Balance + With Augmentation

EDL  Mean SD Mean  AUC Mean SD Mean  AUC

Type ACC (%) (%) PR (0-1) p-Value ‘?(,(A?’)C (%) PR 0-1) p-Value
EDL1 93.18 0.26 0.07 0.75 <0.0001 96.59 0.46 0.3 0.95 <0.0001
EDL2 94.17 0.29 0.09 0.81 <0.0001 96.35 0.46 0.3 0.94 <0.0001
EDL3 92.95 0.28 0.08 0.77 <0.0001 95.28 0.45 0.28 0.92 <0.0001
EDL4 92.49 0.3 0.1 0.78 <0.0001 96.65 0.46 0.3 0.95 <0.0001
EDL5 94.17 0.31 0.1 0.83 <0.0001 93.37 0.46 0.31 0.91 <0.0001

Mean ACC of all EDLs: 93.39%

Mean ACC of all EDLs: 95.64%

DCS: Training Validation and Testing on Mix data where COVID CT scan Croatia and Italy are
mixed and Control of Italy has been used.

96.59 06.35 96.65

Combination of TL Models

EfficientNetV2M + ResNet50
MobileNetV2 + ResNet50
ResNet50+ResNetl 52
ResNet!152 + EfficientNetV2M
MobileNetV2 + VGG19

Figure 21. Comparison of mean EDL accuracy with/without augmentation. EDLI1: Efficient-
NetV2M + ResNet50, EDL2: MobileNetV2 + ResNet50, EDL3: ResNet50 + ResNet 152, EDL4:
ResNet152 + EfficientNetV2M, MobileNetV2 + VGG19 using DC5.

4.4. Results of Experiment 3: EDL vs. TL Classification with Augmentation

In Experiment 3, we verified the effect of augmentation in EDLs over TLs in all
five DC scenarios. Figure 22 shows results in unaugmented data, and we observed an
accuracy improvement in EDLs over TLs of 5.54%. Similarly, Figure 23 shows an accuracy
improvement of 2.82% in EDLs over TLs with balanced and augmented data. This verifies
Hypothesis 1.

4.5. Results of Experiment 4: Unseen Data Analysis

In Experiment 4, we performed unseen data analysis. In the DC3 scenario, training
was performed on CroMED (COVID) and testing on NovMED (COVID). Similarly, in DC4
scenarios, training was performed on NovMED (COVID) and testing on CroMED (COVID).
As shown in Figures 22 and 23, we observed that even in unseen data analysis, both of our
hypotheses are proven to be correct.
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Figure 22. Accuracy plot of TL vs. EDL without augmentation for DC1, DC2, DC3, DC4, and DC5.

|3 |
|1 ’
|1 — ) ‘

Figure 23. Accuracy plot of TL vs. EDL with augmentation for DC1, DC2, DC3, DC4, and DC5.

The comparative graph of mean TL accuracy and mean EDL accuracy proves both
of our hypotheses. First, the mean accuracy of EDLs is better than the mean accuracy of
TLs. Second, balanced and augmented data give better results compared to those without
augmentation. We have also presented the standard deviation, mean predicted score, AUC,
and p-value for all input data scenarios. DC1, DC2, DC3, DC4, and DC5 TL models with
data augmentation and balance improved mean accuracy by 3.32%, 6.56%, 12.96%, 47.1%,
and 2.78%, respectively. Similarly, the five EDLs” accuracies increased by 2.12%, 5.78%,
6.72%, 32.05%, and 2.40%, respectively.

4.6. Receiver Operating Charaterstics

We calculated the AUC from ROC graphs for our model to check explainability.
Figures 24-28 show TL1: EfficientV2M, TL2: InceptionV3, TL3: MobileNetV2, TL4: ResNet152,
TL5: ResNet50, TL6: VGG16, and TL7: VGG19.ROC for input data scenarios DC1, DC2,
DC3, DC4, and DCS5, respectively.
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Figure 24. ROC of seven TLs using DC1 with augmentation and without augmentation.
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Figure 25. ROC of seven TLs using DC2 with augmentation and without augmentation.
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Figure 26. ROC of seven TLs using DC3 with augmentation and without augmentation.
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Figure 28. ROC of seven TLs using DC5 with augmentation and without augmentation.

Overall, the results show that deep learning models based on transfer learning and
ensemble methods achieve high accuracy in detecting COVID-19. Among the transfer
learning models, MobileNetV2 outperforms the other models in terms of accuracy and
AUC in all five cases. In addition, the ensemble models show better performance than
individual transfer learning. Similar to TL ROC, EDL’s ROC can also be generated. All
EDLs AUC-ROC for all five data combinations is already discussed in the result Section 4.2
tables. One of the data combinations, DC1, with augmentation ROC is depicted in Figure 29.
It shows that at most of the AUC points of EDLs are better than or equal to their constituents.
Data combinations of two to five scenarios ROC are in Appendix C.
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Figure 29. ROC of five EDLs using DC1 with augmentation.
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5. System Reliability
Statistical Test

Paired t-test, Mann—-Whitney, and Wilcoxon tests were performed to check the relia-
bility of the system in all five IDS. The p-value was less than 0.0001 in all five input data
scenarios cases. This shows that our proposed system is highly reliable for real-world
applications. The test has been performed using Python and MedCalc software. Result
section tables also have stored p-values on the Mann-Whitney test for all TLs and EDLs
using DC1, DC2, DC3, DC4, and DC5. Similarly paired t-test and Wilcoxon tests were also
performed, and their summaries have been stored in Tables 17 and 18. Table 17 shows the
three statistical tests (paired ¢-test, Mann-Whitney, and Wilcoxon tests) for seven TL models
(EfficientV2M, InceptionV3, MobileNetV2, ResNet152, ResNet50, VGG16, and VGG19).
As seen in Table 17, all the TL models (TL1-TL7) exhibit p-values <0.0001. This clearly
demonstrates the TL models’ reliability and stability as per the definition null hypothesis.
Table 18 presents the three statistical tests (paired t-test, Mann-Whitney, and Wilcoxon
tests) for five EDL models (EDL1-EDLS5). As seen in Table 18, all the EDL models exhibit
p-values <0.0001. This clearly demonstrates the EDL model’s reliability and stability as
per the definition null hypothesis. Note that our results are consistent with our previous
studies [80,121-126].

Table 17. Summary of paired t-test, Mann-Whitney, and Wilcoxon tests for TL models using five
data combinations.

TL Type Paired ¢-Test Mann-Whitney Wilcoxon
TL1 EfficientNetV2M p <0.0001 p < 0.0001 p <0.0001
TL2 InceptionV3 p <0.0001 p <0.0001 p <0.0001
TL3 MobileNetV2 p <0.0001 p < 0.0001 p < 0.0001
TL4 ResNet152 p <0.0001 p < 0.0001 p <0.0001
TL5 ResNet50 p <0.0001 p < 0.0001 p <0.0001
TL6 VGG16 p <0.0001 p <0.0001 p < 0.0001
TL7 VGG19 p <0.0001 p < 0.0001 p <0.0001

Table 18. Summary of paired t-test, Mann—Whitney, and Wilcoxon tests for EDL models using five
data combinations.

EDL Paired t-Test Mann-Whitney Wilcoxon
EDL1 p <0.0001 p <0.0001 p <0.0001
EDL2 p <0.0001 p < 0.0001 p <0.0001
EDL3 p <0.0001 p < 0.0001 p <0.0001
EDL4 p <0.0001 p <0.0001 p <0.0001
EDL5 p <0.0001 p < 0.0001 p <0.0001

6. Discussion

The proposed system has been trained on multicenter data using different acquisition
machines and incorporated superior quality control techniques, class balancing using
augmentation, and ResNet-UNet HDL segmentation. It uses seven types of TL classifiers
and five types of EDL-based fusion to make accurate predictions. The model employed
uniquely designed data systems, a generalized cross-validation protocol, and performance
evaluation of HDL segmentation, TL classification, and EDL systems. It was also tested for
reliability analysis and stability analysis and benchmarked against previous TL and EDL
research work.
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6.1. Principal Findings

Explainable transfer learning (TL) and ensemble deep learning (EDL) models accu-
rately predicted the presence of COVID-19 in Croatian and Italian datasets and justified
both hypotheses. This architecture presented the behavior of models on data augmentation
and balancing. TL accuracy with augmentation and balancing overperformed compared to
that without augmentation. Some TL and EDL models outperformed the benchmark in
most cases in accuracy, precision, recall, F1 score, and AUC. The proposed method, which
uses ResNet—-UNet for segmentation and TL and EDL models for classification, is a promis-
ing approach for identifying COVID-19 in CroMED (COVID), NovMED (COVID), and
NovMED (control). It is a novel approach that uses HDL segmentation for ensemble-based
classification. Overall, these findings suggest that ensemble deep learning models can be
useful tools for identifying COVID-19 and controlling its spread. Unseen analysis in data
combinations two and three show that this infrastructure could be used for real world
application. These TL and EDL results have proven that, and the novelties can be summa-
rized as (i) implementation of ResNet-UNet-based HDL segmentation; (ii) executing seven
types of TL classifiers, design of five types of EDL-based fusion; (iii) design of five types of
data systems; (iv) generalized COVLIAS system design using unseen data; (v) tested for
reliability analysis; (vi) tested for stability analysis. The methods applied in this study have
created an effective and robust system that has better performance metrics in comparison
to existing published models.

6.2. Benchmarking

We studied several papers and sorted some recent papers for benchmarking. These
papers include the COVID-CT dataset and the SARS-CoV-2 dataset [127-137]. Our pro-
posed models have used the CroMED (COVID), NovMED (COVID), and NovMED (con-
trol) datasets. Seven state-of-the-art transfer learning models, including DenseNet201,
DenseNet169, DenseNet161, DenseNet121, VGG16, MobileNetV?2, and EfficientNetV2M,
have been used on the COVID dataset and compared with our best proposed model on
MobileNetV2. We evaluated the models based on their accuracy, precision, recall, F1 score,
p-value, and AUC and compared the results to the previous benchmark studies. Our
experimental results showed that our proposed method, which used MobileNetV2 on
Dataset 1 (CroMED (COVID) and NovMED (control)), outperformed all other models, with
an accuracy of 99.99%, precision and recall of 100%, F1 score of 100%, and AUC of 1.0.
The second-best model was DenseNet121 by Xu et al. [32], which achieved an accuracy of
99.44% on the COVIDx-CT 2A dataset. It is presented in Table 19. We have also compared
our best TL with other existing models proposed by Alshazly et al. [28], Cruz et al. [45],
Shaik et al. [30], and Huang et al. [31], who achieved accuracies of 92.9%, 82.76%, 97.38%,
and 95.66%, respectively. Our results demonstrate the effectiveness of TL in developing
accurate and efficient models for COVID-19 diagnosis using CT images. Our findings
highlight the importance of using larger and more diverse datasets for training DL models
for medical image analysis. Like the TL model comparison, we have also compared our
proposed EDL models to state-of-the-art EDL models. We evaluated the models based on
their accuracy, precision, recall, F1-score, and AUC and compared the results to the previous
benchmark studies. The ensemble model, a combination of ResNet152 + MobileNetV2,
outperformed all other models, with an accuracy of 99.99%, precision and recall of 100%,
F1 score of 100%, AUC of 1.0, and p-value of less than 0.0001. The second-best model, with
an accuracy of 99.05% and an F1 score of 98.59%, was proposed by Toa et al. [35]. Other
ensemble models are also shown in Table 20 and are quite lower than our proposed model.
Other EDL models were proposed by Pathan et al. [33], Kundu et al. [34], Cruz et al. [29],
Shaik et al. [30], Khanibadi et al. [138], Lu et al. [139], and Huang et al. [31]. We also
performed scientific validation that is missing in other models.
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Table 19. Transfer-learning-based models’ comparison.
o o o o AUC . .
SN Yr Author Models TL Dataset DS Accu (%) Pre (%) Re (%) F1 (%) 0-1) p-Value  Cli. Val.  Sci Val.
1 2021 Alshazly et al. [28] DenseNet201 TL COVID-CT 746 92.9 91.3 - 92.5 0.93 - X X
2 2021 Alshazly et al. [28] DenseNet169 TL COVID-CT 746 91.2 88.1 - 90.8 0.91 - X X
3 2021 Cruz et al. [29] DenseNet161 TL COVID-CT 746 82.76 85.39 77.55 81.28 0.89 - X X
4 2021 Cruz et al. [29] VGG16 TL COVID-CT 746 81.77 79.05 84.69 81.77 0.9 - X X
5 2022 Shaik et al. [30] MobileNetV2 TL SARS-CoV-2 2482 97.38 97.41 97.35 97.38 0.97 - X X
6 2022 Shaik et al. [30] MobileNetV2 TL COVID-CT 746 88.67 88.5 88.61 88.55 0.88 - X X
7 2022 Huang et al. [31] EfficientNetV2M TL COVID-CT 7463 95.66 95.67 95.58 95.65 0.97 - X X
8 2023 Xu et al. [32] DenseNet121 TL COV;KX_CT 3745 99.44 99.89 - - - - X X
9 2023 Proposed MobileNetV2 TL Dataset] 5797 99.99 100 100 100 1.00  <0.0001 X v
(Best) 1855
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Table 20. Ensemble-deep-learning-based models” comparison.

Re N AUC Cli. .
(%) F1 (%) 0-1) p-Value Sci. Val.

SN Yr Name Models EDL Dataset DS Accu (%)  Pre (%) Val

ResNet50,
AlexNet, VGGI19,
DenseNet,
Inception V3

VGG-11,
GoogLeNet,
2 2021 Kundu et al. [34] SqueezeNet v1, EDL SARS-CoV-2 2482 98.93 98.93 98.93 98.93 0.98 - X X
Wide
ResNet-50-2

AlexNet,
3 2021 Tao et al. [35] GoogleNet, EDL COVID-CT 2933 99.05 - - 98.59 0 X X
ResNet

VGGI16,
ResNet50,
4 2021 Cruz et al. [29] Wide-ResNet50, EDL COVID-CT 746 90.7 93.27 89.69 94.05 0.95 - X X
DenseNet161/169,
InceptionV3

VGGI6,
ResNet50,

1 2021 Pathan et al. [33] EDL COVID-CT 746 97.00 97.00 97.00 0.97 - X X

5 2022 Shaik et al. [30] EDL COVID-CT 746 91.33 91.29 91.16 91.22 091 - X X

Naive Bays,
6 2022  Khanibadi et al. [138] Support Vector EDL COVID-CT 746 93.00 92.7 93.5 94.4 0.94 - X X
Machine

Self-Supervised
7 2022 Luetal. [139] model with Loss EDL COVID-CT 746 94.3 0.94 0.93 0.94 0.98 <0.0001 X X
function

8 2022  Huangetal. [31] BoE-gZC;Tg/eth EDL  COVID-CT 7463 98.84 98.87  98.93 98.92 0.99 0 X X

ResNet152,
MobileNetV2

* CroMED (COVID), NovMED (Control).

9 Proposed EDL Dataset1 * 7652 99.99 100 100 100 100 <0.0001 X v
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These TL and EDL results have proven that the novelties—ResNet-UNet HDL segmen-
tation+ seven types of TL classifier + design of five types of EDL-based fusion + design of
five types of data systems + generalized COVLIAS system design using unseen data + tested
for reliability analysis + tested for stability analysis—applied in this study have created
an effective and robust system that has better performance metrics compared to existing
published models.

6.3. A Special Note on EDL

Ensemble-based models can be effective in addressing some of the limitations and
weaknesses in current published research work on COVID-19 and its control measures.
Ensemble-deep-learning-based models are deep learning models that combine multiple
models to make more accurate predictions than any single model alone. This approach
can improve the generalizability and robustness of predictions, which can be particularly
useful in the context of COVID-19 research. Ensemble models always survive when the
amalgamation of features or predicted score improves accuracy. If there is a bias in data,
then EDL survival is difficult.

6.4. Strengths, Weaknesses, and Extensions

The study compares seven transfer learning and five ensemble deep learning mod-
els in predicting the presence of COVID-19, providing a comprehensive evaluation of
different approaches. This work uses data augmentation and balanced data to improve
the performance of the models, which can be a valuable technique in improving model
accuracy. Our research outperforms the benchmark results in most cases, indicating that
the proposed models are effective in predicting the presence of COVID-19. The study only
uses three datasets, CroMED (COVID), NovMED (COVID), and NovMED (Control), which
limits the generalizability of the results. It does not compare the proposed models to other
COVID-19 prediction models that may have been developed outside of the benchmark
studies. The work could investigate the impact of other segmentation methods on the
accuracy of the models. Transformers can also be added for segmentation and detection
of COVID-19 [140-144]. While the system is generalized, the system lacks explainability
of the Al models, so-called explainable Al (XAI) models. The system lacks the role of
superposition of heatmaps on the lung CT images, which can tell where COVID-19 lesions
are present, especially using these TL models applied to the HDL segmented lung outputs.
Previous systems have used heatmaps [5,121,122] but not in the cascaded framework of
HDL + TL + EDL in the multicenter paradigm. Since the field of immunology brings dis-
cussions on lung damage causing different kinds of pneumonia, the current paradigm of
COVID/ control binary classification can be extended to multiclass framework. Our group has
several studies which followed multiclass classification using Al framework [145-149]. Our
system can therefore be extended as we acquire clinical data for different kinds of pneumonia.

7. Conclusions

In this research work, we had two hypotheses. First, that mean TL accuracy with
augmentation is better than without augmented data, which was proven in all five input
data scenarios. DC1, DC2, DC3, DC4, and DC5 TL models with data augmentation and
balance improved mean accuracy by 3.32%, 6.56%, 12.96%, 47.1%, and 2.78%, respectively.
Second, that weaker learners would be stronger in the ensemble process, and that mean
EDL accuracy would over mean TL, which is visible in performance evaluation. Explain-
able transfer learnings have generated ROCs. These are useful for identifying better models.
Three statistical tests have shown p-values of less than 0.0001 for all models. This indicates
that the system is highly reliable. We have also compared our results to the benchmark
results on the COVID dataset. The ensemble model, a combination of ResNet152 and
MobileNetV2, outperformed all other models, with an accuracy of 99.99%, precision and
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recall of 100%, F1 score of 100%, AUC of 1.0, and p-value of less than 0.0001. The second-
best benchmark model has 99.05% accuracy and a 98.59% F1 score. Our findings have
not only supported both hypotheses, but the proposed methodology also outperforms
benchmark performance indicators.

Some future works can also be implemented. We have performed a soft-max voting
method in the ensemble process; fusion of features before the prediction is also an option.
Statistical tests will confirm system reliability, and a heatmap of the ensemble model could
also be generated.
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Appendix A

Appendix A includes three figures: Figures A1-A3. These diagrams are sample images
of the dataset. Figure Al is CroMED (COVID), Figure A2 depicts NovMED (COVID), and
Figure A3 shows NovMED (Control).
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Figure A3. Raw “COVID-19 CT slices” taken from NovMED dataset.

Appendix B

Appendix B includes seven transfer learning models from Figures A4-A10.
Figures A4-A10 show the fine-tuned transfer learning models TL1: EfficientV2M, TL2:
InceptionV3, TL3: MobileNetV2, TL4: ResNet152, TL5: ResNet50, TL6: VGG16, and TL7:
VGG19, respectively.

EfficientNetV2M, Figure A4, has 54.1 million parameters. By default, its input size is
480 x 480, and it is trained on the ImageNet dataset. It has a softmax activation function to
classify one thousand classes. We removed the top layer; flattened the model output; and
added three dense layers, two dropout layers, and L2 regularizers to avoid overfitting. The
sigmoid activation function helps us to classify COVID and control classes.
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EfficientNetV2M Transfer Learning Model

Remove top fully
connected layers and
freeze 438 layers of
EfficientNetV2M on
ImageNet \

kernel (128x2)
bias (2)

kernel (26080x256)
kernel (256x128)
bias (128)
Sigmoid

bias (236)

|

Custom layers
Figure A4. EfficientNetV2M transfer learning model.

InceptionV3, Figure A5, has 23.83 million parameters. By default, its input size is
299 x 299, and it is trained on the ImageNet dataset. It has a softmax activation function to
classify one thousand classes. We removed the top layer; flattened the model output; and
added three dense layers, two dropout layers, and L2 regularizers to avoid overfitting. The
sigmoid activation function helps us to classify COVID and control classes.

InceptionV3 Transfer Learning Model

Remove top fully

connected layers and
freeze 48 layers of

InceptionV3 on ImageNet

Sigmoid

|

Custom layers
Figure A5. InceptionV3 transfer learning model.

MobileNetV2, Figure A6, has 4.3 million parameters. By default, its input size is
224 x 224, and it is trained on the ImageNet dataset. It has a softmax activation function to
classify one thousand classes. We removed the top layer; flattened the model output; and
added three dense layers, two dropout layers, and L2 regularizers to avoid overfitting. The
sigmoid activation function helps us to classify COVID and control classes.

MobileNetV2 Transfer Learning Model

Remove top fully
connected layers and
freeze 53 layers of
MobileNetV2 on

ImageNet \

kernel (128x2)
Sigmoid

bias (236)

|

Custom layers

Figure A6. MobileNetV2 transfer learning model.

ResNet50, Figure A7, has 25.56 million parameters. By default, its input size is
224 x 224, and it is trained on the ImageNet dataset. It has a softmax activation function to
classify one thousand classes. We removed the top layer; flattened the model output; and
added three dense layers, two dropout layers, and L2 regularizers to avoid overfitting. The
sigmoid activation function helps us to classify COVID and control classes.
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ResNet50 Transfer Learning Model

Remove top fully
connected layers and
freeze 50 layers of
ResNet50 on ImageNet

kernel (256x128)
kernel (128x2)

|

Custom layers
Figure A7. ResNet50 transfer learning model.

ResNet152, Figure A8, has 60.19 million parameters. By default, its input size is
224 x 224, and it is trained on the ImageNet dataset. It has a softmax activation function to
classify one thousand classes. We removed the top layer; flattened the model output; and
added three dense layers, two dropout layers, and L2 regularizers to avoid overfitting. The
sigmoid activation function helps us to classify COVID and control classes.

ResNet152 Transfer Learning Model

Remove top fully
connected layers and
freeze 152 layers of

ResNetl152 on ImageNet

kernel (256x128)
kernel (128x2)

bias (236)

|

Custom layers
Figure A8. ResNet152 transfer learning model.

VGGI16, Figure A9, has 138.3 million parameters. By default, its input size is 224 x 224,
and it is trained on the ImageNet dataset. It has a softmax activation function to classify one
thousand classes. We removed the top layer; flattened the model output; and added three
dense layers, two dropout layers, and L2 regularizers to avoid overfitting. The sigmoid
activation function helps us to classify COVID and control classes.

VGG16 Transfer Learning Model

Remove top fully
connected layers and
freeze 16 layers of
VGG16 on ImageNet

kernel (256x128)
kernel (128x2)

bias (128)
Sigmoid

bias (236)

|

Custom layers
Figure A9. VGG16 Transfer Learning Model.

VGG19, Figure A10, has 23.83 million parameters. By default, its input size is 224 x 224,
and it is trained on the ImageNet dataset. It has a softmax activation function to classify one
thousand classes. We removed the top layer; flattened the model output; and added three
dense layers, two dropout layers, and L2 regularizers to avoid overfitting. The sigmoid
activation function helped us to classify COVID and control classes.
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Remove top fully
connected layers and
freeze 19 layers of
VGG19 on ImageNet

VGG19 Transfer Learning Model

080x256)

kernel (26
bias (236)

kernel (256x128)

Custom layers

Figure A10. VGG19 transfer learning model.

Appendix C

|

In this section, Figures A11-A14 depict the ROC of EDLs using DC2, DC3, DC4, and

DCS5, respectively. EDLs using DC1 are already discussed in the Results section of the ROC.
These ROC indicate that the mean AUC of EDLs is better than that of the TL model.
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