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Abstract

In this paper, an in-depth analysis of Escherichia coli seawater measurements

during the bathing season in the city of Rijeka, Croatia was conducted. Sub-

merged sources of groundwater were observed at several measurement loca-

tions which could be the cause for increased E. coli values. This specificity

of karst terrain is usually not considered during the monitoring process, thus

a novel measurement methodology is proposed. A cascade machine learning

model is used to predict coastal water quality based on meteorological data,

which improves the level of accuracy due to data imbalance resulting from

rare occurrences of measurements with reduced water quality. Currently,
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the cascade model is employed as a filter method, where measurements not

classified as excellent quality need to be further analyzed. However, with

improvements proposed in the paper, the cascade model could be ultimately

used as a standalone method.
Keywords: bathing water quality, machine learning, fecal pollution,

cascade prediction modelling, karst region

1. Introduction

Microbiological contamination presents a great concern in areas where wa-

ter bodies are used for recreational activities since the existence of pathogens

can cause serious health problems (Solo-Gabriele et al., 2016). This is espe-

cially important for tourism-oriented countries, such as Croatia, since bathing

locations with high water quality can attract tourists, and maintenance of

such favourable repute is one of the main priorities. Currently, the main

methodology for water quality classification consists of fortnightly measure-

ments of feacal indicator bacteria, such as Escherichia Coli or enterococci.

Unfortunately, measurements are temporary and spatially sparse as they are

expensive and time consumable. This is a considerable problem since studies

observed that number of microbes has a high temporal and spatial variation

(Ekklesia et al., 2015; Vukić Lušić et al., 2017). Additionally, currently in

Croatia, sampling and laboratory testing take about 2.5 days, thus the infor-

mation is already outdated by the time it is obtained. Therefore, methods

for predicting water quality integrating meteorological data are increasingly
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being investigated.

Many factors need to be taken into consideration when investigating mi-

crobe concentrations in the seawater, such as solar radiation, tides, wind

intensity and direction, rainfall, the density of bathers, presence of rivers

and canals near the bathing area, etc. (Agency, 2009; He and He, 2008; Cho

et al., 2010). In a number of studies, rainfall was deemed greatly influen-

tial for microbiological contamination both in coastal (Dwight et al., 2011;

Vukić Lušić et al., 2017; He et al., 2019) and underground waters (Knierim

et al., 2015; Mance et al., 2018; Buckerfield et al., 2019). A more detailed

overview of numerical modeling approaches and the influence of normal and

extreme storm events on E. coli values in coastal waters was reviewed in

Weiskerger and Phanikumar (2020).

When investigating the water quality of coastal areas, specifics of each

location must be taken into consideration. He et al. (2019) conducted an

analysis of two beaches, approximately 20 km apart in China, after a single

storm event where a difference in water quality was observed due to distinct

beach environments. Viau et al. (2011) investigated bacterial pathogens in

Hawaiian coastal streams which were shown to be pollution sources associated

with beach locations. In Kucuksezgin et al. (2019) the enclosed bay of Izmir

Bay, Turkey was analyzed, where domestic and industrial wastes contribute

to reduced water quality. In Verga et al. (2020) an analysis of seasonal and

spatial variability of water quality in Patagonia, Argentina was conducted.

Observed problem with sewage and draining systems was linked to insuffi-
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cient dilution of wastewater in seawater. Chahouri et al. (2021) conducted

an assessment of both beach and estuary location in Agadir bay, South-West

Morocco. It is noted that estuary location is influenced by effluents from un-

treated wastewater and agricultural activities and the tourist beach is center

of human activities, where greater fecal streptococci loads were observed at

the estuary location. These studies indicate need for consideration of both

urban development and geographical specifics of each location.

The terrain of the Croatian coast is mostly of karst type and character-

ized by high porosity and numerous subterranean channels, which makes it

very vulnerable to pollution since surface water can quickly and easily enter

groundwater (Pikelj and Juračić, 2013). Investigation of E. coli pollution in

karst was conducted in a number of studies (Davis et al., 2005; Laroche et al.,

2010). Sources of groundwater contamination can include landfills (Kogovšek

and Petrič, 2013), sewage outflows (Heinz et al., 2009; Stange and Tiehm,

2020), agricultural or urban land-use type (Reed et al., 2011; Buckerfield

et al., 2019), etc. For this reason, the water quality of karst aquifers used for

drinking water is regularly monitored with special care, while karst aquifers

not used for drinking water are not regularly monitored due to their reduced

importance.

With growing interest in increased protection of water surfaces, predic-

tion modeling is being used to provide information to the general public

regarding potential health risks. He and He (2008) used Artificial Neural

Network (ANN) to predict water quality regarding stormwater runoff with
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reported less than 10% false positive or negative rates. In de Souza et al.

(2018b) and de Souza et al. (2018a) regression models for predicting fecal

indicators in coastal waters are developed and optimized, where cumulative

solar radiation and cumulative rainfall values were shown to greatly influence

the prediction of fecal pollution. He et al. (2019) used Multiple linear regres-

sion (MLR) model to predict pathogen contamination using environmental

data collected during the storm event. Grbčić et al. (2021) investigated the

efficiency of different machine learning algorithms to predict E. Coli and

enterococci values based on environmental features.

The main premise of the proposed work is that a prediction model can be

created which would use meteorological data for predicting E. coli values, by

use of which forecasts could be made and warnings to the general public can

be given in advance. The main contribution to this goal was made by utilis-

ing Random Forest classifier to predict water quality based on meteorological

data. Data used for model training is obtained from available measurements

of water quality during the bathing seasons 2009-2020 for Rijeka, Croatia.

An investigation of different clustering methods of bathing locations was con-

ducted with the addition of feature analysis. Additionally, a novel cascade

prediction model framework, aimed at classifying measurements as excellent

water quality, is proposed. Due to comprising a series of prediction models,

it enables model fine-tuning for different physical processes with increased

prediction accuracy. The proposed model provides great flexibility and as

such can be used on pollution measurement datasets with sparse cases of
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high pollution, which are the most common. In-depth analysis of measured

data indicated the potential influence of submerged coastal springs which

are specific for karst soil. In previous research (Vukić Lušić et al., 2017),

these springs were not considered as possible pollution sources because they

predominantly dry up during the bathing season. However, during the inves-

tigation of hydrogeological data for the monitored region, it was found that

some of them are active throughout the whole year. Considering these new

findings further research directions are presented in the discussion section.

2. Materials and methods

2.1. Data collection

The city of Rijeka is located in Kvarner Bay and is the third-largest

Croatian city with important industrial locations such as shipyard and port,

but with the increasing tendency to become a recognized touristic location.

The city has Mediterranean climate, with dry and warm summers, and its

surrounding is also characterized by a large amount of rainfall due to the

proximity of Dinaric Alps. In the city of Rijeka precipitation is estimated at

about 1540 mm per year, with 550 mm per year for period May to Septem-

ber. The average temperature of the warmest months (July and August) is

23.1◦C (Zaninović et al., 2008). The bathing season usually lasts from mid-

May until the end of September, and in that period regular measurements

of water quality are conducted. Measurements from 9 locations on the west

side of the city are considered for analysis with mentioned locations spread
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over roughly 2 km length of the coastline. Locations of the measurement

points can be observed in Figure 1. Regular measurements, with fortnightly

intervals, from 2009 to 2020, are used as data inputs for the prediction model.

Samples were taken from the boat in a short timeframe. Samples from all

considered measuring points were collected, on average, within 30 minutes.

Consequently, differences in atmospheric conditions are very small or nonex-

istent, between measurements taken on the same day. For each measurement

point, samples are taken at a similar distance (20 meters) from the coast.

During several months in 2012 and 2014, additional measurements were con-

ducted every 4 hours for 5 measuring points: KBW, KBE, KW, KE, and

3M (see Figure 1). Additional measurements taken in the morning, which

is the time when regular measurements are conducted, were also included in

the analyzed dataset to increase the number of measurements. Additional

measurements were always taken from the same location at the coast. Water

temperature, salinity, and air temperature were measured in situ and E. coli

value was analyzed in the laboratory from the collected sample. For E. coli

enumeration membrane filtration technique was used, according to the ISO-

9308-1 method for period 2009-2017 and temperature-modified ISO-9308-1

method for period 2018-2021. Cultivation was performed on CCA nutri-

ent media (Chromogenic Coliform agar, Biolife Italiana S.r.l., Milan, Italy)

for 4 h at 36 ± 2◦C followed by 20 h incubation at 44 ± 0.5◦C (Jozić and

Vukić Lušić, 2018; Jozić et al., 2018). Further details on data collection and

analysis are given in Vukić Lušić et al. (2017).
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Figure 1: Measurement locations in Rijeka Bay (Kvarner Bay, Croatia) (European Union,
2018).

In total, considered measurements have 1137 records. It must be noted

that not all measuring points have the same number of measurements, since

5 locations (KBW, KBE, KW, KE, and 3M) have additional measurements

and measurements for PNI started in 2019.
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2.2. Environmental parameters

Features chosen for prediction modelling were meteorological data ob-

tained during measurements: water temperature, air temperature, and salin-

ity. Additionally, solar irradiance as current Global Horizontal Irradiance

(GHI) and cumulative irradiance for the past 4 hours are also considered.

The chosen data was taken from Solcast (2021) database. The rainfall data

was obtained from the Croatian Meteorological and Hydrological Service

(DHMZ). Different combinations of cumulative rainfall values, such as previ-

ous 24 hours, previous 48 hours, etc., were also considered since in a number

of previous studies influence of rainfall, especially storm events, were investi-

gated (He et al., 2019; Weiskerger and Phanikumar, 2020). It was observed

that a very small number of measurements have any rainfall from the pre-

vious several days, thus cumulative sums from 4 − 7 and 7 − 14 days are

considered as a possible indication of soil saturation, which can happen if

a larger amount of rain is present during a longer period of time. If soil is

saturated, new rain can influence the activation of underground sources in

the sea, which can increase the amount of E. coli.

2.3. Data analysis and preparation

The considered measurement points are chosen for prediction modeling

since, historically, these locations have lower water quality than other bathing

locations in the city, even though only a small amount of these measurements

show less than excellent water quality. EU legislation (EC, 2006) prescribe
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two fecal indicator bacteria, E. coli and enterococci where in Vukić Lušić

et al. (2017) it was observed that E. coli criteria in Croatian legislation

(Directive, 2008) are more stringent. Thus in this work, the prediction models

are investigated considering only E. coli limits. Bathing water quality can be

divided into three categories, where, by Croatian standards, excellent water

quality is for E. coli measurements in the range 0-150 CFU/100 mL (in at

least 95% of samples), good water quality in E. coli range 150-300 CFU/100

mL in at least 95% of samples, and sufficient quality for the range up to 300

CFU/100 mL in at least 90% of samples. EU criteria allow E. coli values up

to 250 CFU/100 mL (in at least 95% of samples) for excellent water quality,

good water quality in the range 250-500 CFU/100 mL (in at least 95% of

samples) and sufficient water quality for E. coli values up to 500 CFU/100

mL in at least 90% of samples. If Croatian criteria is applied, and value for E.

coli contamination is taken as 300 CFU/100 mL, there are 21 records in the

dataset with E. coli values above that threshold. If contamination measure

is taken as 150 CFU/100 mL, 122 records have E. coli value above that

threshold. It can be observed that there is only 11% of less-than-excellent

and only 1.8% of less-than-sufficient water quality measurements. Thus,

an in-depth analysis of these cases is performed. Histogram of considered

measurements can be observed in the Figure 2.

It was observed that greater values of E. coli can be roughly grouped in

three types of pollution events. The first are unexpected and unexplained

surges in E. coli concentration during the monitoring. They are followed
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Figure 2: Histogram of E. coli measurements. Vertical lines indicate limits for excellent
and sufficient water quality.

by control measurements and are considered as an accidental event. These

measurements are considered outliers since they show no correlation with

meteorological data, thus it is reasonable to believe that these are singu-

lar incident events. Therefore these measurements are removed from the

data set to improve the prediction model performance. After this correction,

1133 measurement remained, with 17 records having E. coli value above 300

CFU/100 mL (1.5% of measurements) and 118 records above 150 CFU/100

mL (10.4% of measurements). The second group of events are typically oc-

curring during spring, where it was observed that water salinity is reduced

in all measuring points, which can be explained by the greater amount of

precipitation during the spring period which could lead to greater E. coli

concentrations. The average salinity value for the period from May to mid-
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June was 30.6 with an average E. coli value 72.3 CFU/100 mL, and for the

period from mid-June to September, average salinity was 34 with an average

E. coli value 46 CFU/100 mL, which supports the presented assumption.

The third type of events are the occurrences where it was observed that

some measuring points show higher E. coli value coupled with lower water

temperature and lower water salinity than other nearby measuring points,

during the same measurement period. This indicates the presence of local

sources of groundwater at these measuring points. It must be noted that not

all measurements with lower water quality can be put in these categories,

thus prediction modelling needs to be utilized to find additional correlations.

The mean value of salinity was analysed for all measuring points to inves-

tigate the possible correlation with E. coli value and results are presented in

Table 1. It can be observed that locations with greater average E. coli value

also have smaller average salinity. This can be explained by the fact that un-

derground water sources, which presence can be observed through reduced

water salinity, collect bacteria from the watershed area and transport them

into the seawater. However, this assumption needs to be further investigated.

2.4. Random Forest classifier

Machine learning algorithms are designed to find an underlying corre-

lation or patterns between the data input and data output to provide a

prediction for unseen data. Machine learning algorithms can be divided into

regression and classification algorithms, where the first group of algorithms
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Table 1: Salinity and E. coli characteristics of measuring points.
Measuring point E. coli (CFU/100 mL) Salinity

(number of measurements) Mean Median Mean Median
BRH (122) 36 5 35 36
KH (123) 47 7 34.5 35.7
KBW (144) 36 7 34.7 35.9
KBE (149) 26 5 34.8 36
KVN (119) 35.8 8 34.4 35.5
PNI (20) 56.8 26 31.8 34.5
KW (151) 78 35 31.6 33.3
KE (155) 86.4 60 30 32.2
3M (150) 72.3 25 30.5 32.9

aims to predict the exact value of the output variable, while the other try

to separate data into predefined groups. Since the problem considered in

this paper, by nature of corresponding regulation, deals with water qual-

ity groups, a classifier algorithm was considered for the prediction of water

quality. Prediction models were constructed with only two classes, i.e. a pre-

diction is made whether E. coli value is above or below the considered limit.

Random Forest classifier implementation in the Python library Scikit-learn

(Pedregosa et al., 2011) version 0.20.3 was used.

Random Forest classifier is an ensemble type of machine learning algo-

rithm which was first proposed by Breiman (2001). It consists of multiple

decision trees which stand as independent prediction models. The bootstrap

method is used to provide a unique subset for the training of each decision

tree while the aggregation method is used to count the class with the most

prediction occurrences which is then considered as the prediction of the Ran-

dom Forest model.
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Different combinations of Random Forest Classifier parameters were in-

vestigated, where best results were obtained for 100 estimators, maximum

depth of 10, and the minimum number of samples required to split an in-

ternal node equal to 6. All other parameters were kept at default values.

Considered parameters were obtained for prediction model trained on the

first group of uniformly distributed data with E. coli classification limit 150

CFU/100 mL which is Croatian criteria for excellent water quality.

2.5. Prediction models and sampling methodology

Based on different data clustering strategies, three different prediction

models were created. One where all measurements were taken as inputs for

a single prediction model since all measuring points are geographically near

each other. The second and third models were constructed for westernmost

5 and easternmost 4 measuring points respectively, where measuring points

with similar mean salinity values are grouped. The reasoning behind it is that

sources of groundwater considerably influence E. coli value, where physical

processes for locations with and for locations without those sources can be

considered different. If that premise is true, a single prediction model cannot

successfully predict for both considered behaviours.

The available data was split into two subsets: 80% data for training and

20% for testing. Since it is observed that less than 2% of measurements have

contamination levels above the regulation limit, it is expected that random

split of training and testing data, such as k-fold analysis, would greatly in-
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fluence prediction model accuracy, e.g. it is possible that all contaminated

measurements end up being sorted in the training set, resulting in high accu-

racy of prediction model trained on testing set with no measurements above

the limit. To take that into account, six different dataset splits of training

and testing data were investigated. For the first two datasets, all measure-

ments are sorted by E. coli value, and each fifth measurement is taken for

the testing set and remaining measurements are used for model training. In

this way, the same ratio of measurements above the considered limit is main-

tained both for the training and testing set. To take into account temporal

distribution, two different years are extracted from the dataset so as to serve

as test sets, one with smaller and one with a greater number of measure-

ments with reduced water quality where remaining measurements are used

as the training set. Similarly, to take into account spatial distribution, two

different measuring points are considered for prediction, one with a smaller

average E. coli value and one with a greater average E. coli value. For each

prediction model, 20 runs were conducted to take into account the influence

of prediction model parameter randomness and to test the stability of its

performance.

2.6. Cascade prediction model

Cascade prediction model is considered where classification at every stage

is based on the median value of the corresponding dataset which makes the

problem fully balanced throughout the cascade. The first stage of the cascade
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model is trained with the whole training set and the classifier predicts if the

measurement is above or below the median of the training set. In the training

set of every following stage, the measurements that are below 25th percentile

of E. coli value are removed from the training set, resulting in increased

median E. coli value of the dataset. 25th percentile and median value were

investigated as data reduction limit, however since the reduction of training

set size reduces model accuracy, 25th percentile value is chosen as a good

measure. This cascading strategy produces overlapping of training data in

several stages, which enables the gradual transition towards greater median

values and also a gradual reduction in training set size. Flowchart of the

proposed methodology can be observed in Figure 3.

With the proposed methodology, the model gradually filters measure-

ments that have low E. coli value. If the first stage fails to classify measure-

ment as excellent quality, as a consequence of the gradual transition towards

greater E. coli values, said measurement can be successfully discarded at the

subsequent stage. Additionally, different features’ importance is expected,

depending on E. coli value since the cascade model allows feature weights

adjustment at each stage. To improve model reliability, a threshold value

for the probability of prediction is introduced. Measurements are considered

as excellent quality only if prediction model certainty regarding E.Coli value

being below median value is greater than the chosen threshold percentage.

Different RF model parameters were investigated and it was observed that

change in model parameters greatly influences the efficiency of the threshold
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Figure 3: Flowchart of proposed cascade model.

approach. This is because model parameters evaluation based on classifica-

tion prediction accuracy only considers if classification is true or false, and

does not consider model certainty regarding prediction, which is the basis

for threshold approach utilisation. Ultimately, the best performance was ob-

tained for 800 estimators, a maximum depth of 10, and the minimum number

of samples required to split an internal node equal to 6. These parameters

are used for all cascade models and for all stages.

Although each stage of the cascade produces imperfect predictions on
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whether E. coli concentration is above or below the median value, these

wrong predictions are not problematic for the cascade model as a whole,

since ultimately what matters is whether the measurement value is above

or below the chosen quality limit. Cascade model was investigated for 250

CFU/100 mL limit, which is the EU limit for excellent water quality. This

results in 63 measurements (5.5% of all measurements) above the chosen

limit, with datasets still having considerable bias.

3. Results

3.1. Random forest classifier - all measuring points

Results for the first group of prediction models with all measurement

data for different testing-training data splits and for different classification

limits are presented in Table 2. Considered features are water salinity, water

temperature, air temperature, GHI, and cumulative GHI for the previous

4 hours which were meteorological data measured during the measurement

process with the addition of solar irradiance which is known to positively

affect E. coli decay (Whitman et al., 2004; Berney et al., 2006; Maraccini

et al., 2016). It can be observed that for the EU limit for excellent water

quality (250 CFU/100 mL) all models have only 20% of measurements above

the given limit correctly classified. That is expected since the number of

measurements with reduced water quality is considerably smaller than the

number of measurements with excellent quality, thus the prediction model’s

bias towards excellent quality class yields high model accuracy. When the
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national limit for excellent water quality (150 CFU/100 mL) was used, an

increased true positive rate can be observed, albeit it is still very low due to

a small number of measurements above the chosen limit. Different classifi-

cation limits were investigated with the addition of median value to create a

balanced split between classes. Results are presented in the Figure 4. It was

observed that with a lower classification limit problem becomes more bal-

anced and model accuracy increases while model accuracy and true positive

rate become similar in proximity to the median limit. To take into account

specifics of each training set, it is decided not to consider fixed classification

limits, instead, a median value is chosen which always provides a balanced

problem through all stages of the cascade model.

Table 2: Prediction model accuracy and true positive rate (TP) for different classification
limits of excellent water quality (given in rows) and for different testing sets with indicated
number of measurements above considered limit in testing set (given in columns). Results
are the average of 20 runs.

Uniform split Temporal split Spatial split
Set 1 Set 2 2019 2020 KBW KW

Number of testing
measurements 226 226 100 95 144 151

EU (250 CFU/100 mL)
Above limit 12 12 16 0 3 12

Model accuracy 94% 95% 83% / 97% 91%
TP 16% 15% 0% / 0% 15%

CRO (150 CFU/100 mL)
Above limit 23 23 26 3 7 25
Accuracy 89% 90% 78% 88% 95% 82%

TP 26% 28% 24% 25% 25% 15%

For each dataset and different classification limits, the analysis of feature
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Figure 4: Influence of classification limit on prediction model accuracy and true positive
rate for Set 1.

importance was conducted. A similar trend was observed for all considered

datasets, thus results are reported only for Set1 (Table 3). It was observed

that for both limits, salinity has the greatest importance, followed by GHI,

water temperature air temperature, and cumulative GHI for the last 4 hours.

Investigation of other classification limits indicated that the prediction model

is more uncertain about its decision about feature importance when a higher

classification limit is chosen, which can also be observed here with greater

standard deviation for features for EU (250 CFU/100 mL) limit for excellent

water quality.

3.2. Random forest classifier - separated models

Further analysis was conducted for two separated models, one with a

group of measuring points with higher average E. coli value and the second
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Table 3: Prediction model feature importance for Set1 for different classification limits of
excellent water quality. Results are average of 20 runs and numbers in brackets indicate
standard deviation.

Limit
Features EU (250 CFU/100 mL) CRO (150 CFU/100 mL)
Salinity 26% (0.8%) 29% (0.6%)
GHI 23% (1.1%) 21% (0.7%)

Cumulative GHI 16% (0.6%) 15% (0.6%)
Water temp. 18% (0.9%) 19% (0.6%)
Air temp. 17% (0.8%) 15% (0.5%)

for a group of measuring points with smaller average E. coli value. All models

were tested on Set1 with uniformly distributed E. coli measurements. In

order to account for the influence of the training dataset sizes, the datasets for

both the model for low E. coli values and the model for all measuring points

were reduced so as to be of the approximately same size as the model with

high E. coli values. Each n-th measurement is removed from the dataset,

so the uniform distribution of E. coli measurements is maintained. The

results are presented in Table 4. It can be observed that the classification

limit has the greatest influence on prediction model accuracy. Grouping

of similar measurement locations does not contribute to better prediction

accuracy, since for all combinations of grouping and number of inputs, the

true positive rate is still below 30%. The greatest true positive rate (82%)

is achieved for the prediction model with all measurement points and for

all available data when the median value is taken as a classification limit.

Although this behaviour should be investigated for other training-testing

splits, in the subsequent analysis of the cascade model, a single prediction
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model with all measurement points will be adopted for each stage, as it is

evident that the number of measurements, when compared to segregated

approach, contributes more to the overall accuracy.

Table 4: Prediction model average accuracy for 20 runs for the three considered mod-
els with approximately equal number of inputs and with unreduced dataset. Features
considered are salinity, water and air temperature, GHI and cumulative GHI for 4 hours.

Low E. coli 394 train, 99 test 526 train, 131 test
CRO Median (6.5) CRO Median (6.5)

Model acc 95% 70% 94% 71%
TP 16% 61% 13% 58%

High E. coli 381 train, 95 test
CRO Median (38)

Model acc 83% 75%
TP 19% 73%

All measuring points 383 train, 96 test 907 train, 226 test
CRO Median (14) CRO Median (13)

Model acc 79% 79% 89% 78%
TP 26% 78% 27% 82%

3.3. Feature analysis

Further investigation was conducted for rainfall features for the prediction

model with all measurement points and median as classification limit. It can

be observed from Table 5 that the inclusion of considered rainfall features

does not contribute to a significant change in prediction model accuracy. It

is interesting to observe that the cumulative sum that accounts for rainfall

from the 4th to 7th day prior has lower importance than the cumulative sum

that accounts for rainfall from the 7th to 14th day prior. Due to having the

lowest feature importance, precipitation features were not included in the
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cascade model testing. However, since it does not reduce model accuracy

either, further study should be conducted where inclusion of precipitation

features at higher cascade model stages, with greater median values, could

be more beneficial.

Table 5: Feature importance for prediction model with all measurement points with me-
dian value as classification limit. Results are average of 20 runs.

Features Group1 Group2 Group3 Group4
Salinity 38% 41% 40% 43%

Water temperature 11% 12% 11% 12.5%
Air temperature 10% 11% 10% 11.5%
Cumulative GHI 11% 13% 12% 14%

GHI 15% 17% 17% 19%
Rainfall 4-7 days 6% 7% / /
Rainfall 7-14 days 9% / 10% /

Model acc. 81% 80% 81% 80%
TP 83% 83% 83% 83%

3.4. Cascade model results

The cascade model was first tested on Set1 in order to calibrate the stage

parameters. The overview of stage metrics for Set1 can be observed in Table

6. Gradual reduction of training inputs and increase of median value through

stages can be observed. Six stages were chosen since it was decided that with

further stages the size of the training dataset would be too low for prediction

model training.

The cascade model was run 50 times, where average feature importance

through stages is presented in Table 7. It can be observed that at the first

stage water salinity has the greatest importance, although as prediction mod-
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Table 6: Stages parameters for Cascade model for training Set 1.
Stage Number of E. coli value

training inputs median 25% percentile training range
1 907 13 3 all
2 690 30 9 ≥3
3 520 55 20 ≥9
4 397 80 42 ≥20
5 298 120 70 ≥42
6 231 130 92 ≥70

els are trained on measurements with greater E. coli value, salinity impor-

tance decreases, where other features are given greater importance. This

indicates that the introduction of other features at higher level stages could

be beneficial for the prediction model.

Table 7: Feature importance for cascade model for training Set 1.
Features Stage

1 2 3 4 5 6
Salinity 43% 35% 31% 29% 22% 22%
GHI 18% 18% 20% 23% 25% 27%

Cumulative GHI 14% 18% 18% 18% 17% 17%
Water temperature 12% 14% 16% 18% 19% 20%
Air temperature 12% 14% 15% 13% 17% 15%

The influence of threshold value on model accuracy results can be ob-

served in Table 8. The same threshold value is set for all stages. Greater

number of measurements are predicted as excellent quality with a lower

threshold value, albeit with a greater percentage of wrong predictions. For

most datasets, the threshold value of 80% assures there is no elimination of

days with E. coli value greater than 250 CFU/100 mL, with the exception of
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a single measurement for the KW dataset which is still incorrectly predicted

even with a threshold of 85%. This measurement could be an outlier or ad-

ditional cascade model improvement could eliminate this wrong prediction.

Thus, for the purpose of further study, the threshold value of 80% is adopted.

Table 8: Influence of threshold value on cascade model accuracy for different datasets.
Numbers in brackets next to datasets indicate total number of measurements in testing
set and number of E. coli measurements above EU quality limit. Presented results are
average of 50 runs.

Set1 (226, 15) Threshold
Excellent quality prediction 85% 80% 75% 70%

True positive 72 (34%) 91 (43%) 106 (50%) 125 (60%)
False negative 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Set2 (226, 15)
True positive 65 (31%) 96 (45%) 117 (55%) 140 (66%)
False negative 0 (0%) 0 (0%) 0.28 (2%) 1 (7%)
KBW (144, 3)
True positive 82 (58%) 84 (59%) 96 (68%) 105 (74%)
False negative 0 (0%) 0 (0%) 0 (0%) 0 (0%)
KW (151,12)
True positive 34 (24%) 55 (39%) 71 (51%) 84 (61%)
False negative 1 (8%) 1 (8%) 1.7 (14%) 3 (25%)
2019 (100,16)
True positive 4 (5%) 11 (13%) 27 (32%) 41 (48%)
False negative 0 (0%) 0 (0%) 1 (6%) 2.3 (14%)
2020 (95, 0)
True positive 34 (36%) 50 (52%) 59 (62%) 70 (74%)
False negative 0 (0%) 0 (0%) 0 (0%) 0 (0%)

To further enhance the proposed model, a combination of threshold val-

ues for different stages was analyzed. Since in the first few stages the median

value is considerably low, it is reasonable to assume that a smaller thresh-

old value in those stages could still provide good results. For the first stage
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threshold value of 65% is considered, for the second stage 70%, for the third

stage 75%, and for all other stages 80%. Secondly, due to the overlapping

of training data through stages, an additional check is introduced: if both

in current and previous stage prediction model certainty is above the cho-

sen threshold, which is chosen to be lower than the threshold for the current

stage, then measurement can also be classified as below limit. This can be un-

derstood as that two weak certainties at subsequent stages can be considered

as one strong certainty in the current stage. The considered threshold values

were 70% for the second and third stage and 75% for the remaining stages.

Additionally, the influence of different features throughout the stages was

also considered. Due to its small feature importance in the first three stages,

the air temperature was removed as a feature and then introduced only in

the last three stages. Combinations of these methods were also investigated.

Overview of the obtained results can be seen in Table 9. It can be ob-

served that all proposed methods increase the number of excellent quality

predictions, where the combination of all three methods further increases that

number. It must be noted that only one combination for each method was

presented, where further investigation of more combinations could provide

better results, e.g. different features, different values of increasing threshold

value, etc.

Proposed improvement of the cascade model with all three adjustments

was tested on different datasets and results are presented in Table 10. It

can be observed that the number of correct predictions of excellent quality is
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Table 9: Influence of stage adjustment on cascade model for Set1. Presented results are
average of 50 runs with no wrong predictions of excellent water quality.

Remaining measurements Right prediction (%)
Feature change 136 43%

Additional deletion 125 48%
Increasing threshold (65-80%) 116 52%

All 113 54%

greatly influenced by the testing set. Also, for some datasets wrong predic-

tions are also observed, indicating that more rigorous adjustment of proposed

cascade model improvements should be conducted.

Table 10: Cascade model results for prediction of excellent water quality with all 3 methods
for different datasets.
Dataset Number of Measurements with True False

measurements reduced quality positive negative
2019 100 16 27 (32%) 0.02 (0.13%)
2020 95 0 61 (65%) 0 (0%)
KBW 144 3 71 (51%) 0 (0%)
KW 151 3 71 (51%) 0 (0%)
Set1 226 15 113 (54%) 0 (0%)
Set2 226 15 118 (56%) 1.24 (8%)

4. Discussion

4.1. Prediction modeling

From the conducted analysis it can be concluded that a single prediction

model for prediction of E. coli value being above or under limits 150 or 250

CFU/100 mL does not provide satisfactory results due to considerable data

bias. The prediction model tends to classify all measurements as excellent
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quality since they make a vast majority of the measurements. Thus, a cascade

model is introduced which is shown to work well as a filter of measurements

with excellent quality, without removing measurements above the chosen

limit. The proposed cascade model has balanced datasets at each stage

since the median value is considered as a classification limit at each stage.

However, different limits can also be explored to possibly further improve

model accuracy. It must be noted that in general, measurements considered

in this paper have overall excellent water quality, however, the presented

methodology can be used for different pollution values since the cascade

model is constructed to adapt to the provided data.

It was observed that the salinity feature has the greatest importance

in single prediction models, and also for several first stages of the cascade

model. However, in further stages, it was observed that salinity value is

not as important. It indicates that the salinity feature has the greatest

importance for predicting measurements with low E. coli value. Since the

majority of measurements for the single prediction model have low E. coli

value, a strong weight is put on the salinity value which is beneficial for the

majority of data but is not beneficial for the right prediction of high E. coli

measurements, which are in fact most important. Thus, the cascade model

enables adjustment of feature importance through stages for different levels

of pollution. Additionally, some features that could be important for the

right prediction of higher E. coli values would decrease accuracy for low E.

coli values, thus different features can be included at different stages. In
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order to maximize the capabilities of the cascade model approach, precise

feature engineering should be conducted.

It must be noted that RF model parameters were the same for all stages

and proposed improvements for the cascade model were investigated only for

one combination of parameters. Further investigation of model parameters

through stages and further study of different combinations of proposed im-

provements should be conducted to further increase cascade model efficiency.

Currently, both cascade and single prediction models are constructed with

measurements from multiple measurement points due to the small amount of

data. However, ultimately separated prediction models could be constructed

to establish a relation between E. coli value and specific processes for that

measurement point.

4.2. Data analysis

From in-depth analysis of measurement data, it was observed that sources

of groundwater are related with the greater value of E. coli. This was also

corroborated by the higher importance of salinity in the first couple of stages

of the cascade model. High salinity value corresponds to summer months

with longer dry periods, where E. coli values are very low (as are classification

limits for the first several stages), where the prediction model heavily relies on

that information to consider a measurement as excellent quality. As salinity

value decreases, it most often corresponds to spring months where the sea is

still influenced by longer periods of rainfall, or alternatively to measurements
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influenced by coastal springs. For both of these occurrences, it is important

to consider solar irradiation and both water and air temperature, which is

supported with more evenly distributed feature importance at higher stages.

Groundwater springs are of great interest when they can be used as a

source of drinking water. Since coastal springs that are of interest in this

study are brackish springs, smaller and with seasonal character there is no

study of their characteristics in the literature. Additional in-field investiga-

tion of 3M location was conducted during May 2021 after a longer period of

rain where a considerable number of submerged spring sources were observed

(Figure 5). Although the occasional presence of springs is well known since

they can be experienced as cold areas during swimming, they were not pre-

viously considered as being of strong importance and were thought to dry

up during summer. However, observation of these springs is mentioned in

Stražičić (1999), where two big springs which are active throughout the whole

year are said to exist at the 3M location. Furthermore, another three springs

are mentioned, where the eastern spring, which is closest to the bathing lo-

cation, is active yearlong and the other two usually become inactive only by

the end of summer. In KE location one strong spring is mentioned with the

addition of the number of smaller springs throughout the coast.

Additionally, in the immediate vicinity of the beach 3M is greater spring

Cerovice (Figure 6) which is located inside shipyard "3. Maj". It consists of

several springs that are active throughout the whole year, but since micro-

biological pollution was observed that water is only used as technical water.

30



Figure 5: Detail of 3M beach location with indicated some of the springs locations. Loca-
tion C is collector of multiple springs.

This could explain reduced water quality for measurement locations 3M and

KE, which are specific since they have a considerable amount of springs active

yearlong, probably with water quality similar to spring Cerovice. Reduced

water quality in KW location could be due to the influence of KE springs

since wind and sea currents can cause transport of contamination. Addi-

tionally, in the study by Biondić et al. (2009) risk assesment of underground

water was conducted, where it was indicated that landfills in the hinterland

of city Rijeka can influence coastal springs in the area considered in this

study (Figure 6).

These observations indicate that current data, comprising both from reg-

ular measurements taken from the boat (approximately 20 m from the coast-

line) and additional measurements taken from the coast, could give consider-

ably different results under the same meteorological conditions if additional

sampling is conducted in the immediate vicinity of the spring location. Both

31



Figure 6: Locations of spring Cerovice and landfills in the hinterland of measurement
locations.

types of measurements were included to increase the teaching dataset which

should lead to improved model accuracy, however with these new findings,

this could in fact reduce prediction model accuracy. Thus, several directions

of further research are suggested.
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4.3. Further research

First, analysis of the coastal area should be conducted in order to inves-

tigate the number and locations of possible coastal springs. It is known that

some sources are active only for some periods, where some sources are active

almost all year. Thus, an investigation of the source activation period should

be conducted. Observation of these sources presented in Stražičić (1999) only

notes their existence and locations while activation periods and discharge val-

ues should be also known so as to assess their influence on bathing locations.

Also, these observations should be revised and adjusted, due to changes in

city infrastructure (such as drainage and sewage systems reconstructions)

conducted in the period of the last 20 years or more. Additionally, every

beach location has its specific geomorphology, where the number and size of

springs are different, as well as its openness to the sea. In this study, 3M

location was further inspected (Figure 5) which is a closed, small port, and

as such under a strong influence of the observed springs. Other locations,

which are less enclosed, are expected to show a smaller influence of springs,

however, this premise should be further investigated.

The second direction of future research should investigate rainfall influ-

ence and watershed area more extensively. Different rainfall correlations

with increased microbial pollution are found through literature, e.g. previ-

ous 24 hours (Mallin et al., 2001), 48 hours (Kelsey et al., 2004), 7 days

(Lipp et al., 2001), 5.5-9.5 days (de Souza et al., 2018b) and even 30 days

(Pandey et al., 2012). This is a strong indication that geological specifics
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must be taken into consideration. Precipitation considered in this work was

only from a single location for the city center of Rijeka, which can influence

short-term water influx to the sea. However, during summer periods it can

be expected that dry ground absorbs a great amount of rainfall. This could

explain why there was no considerable correlation with cumulative sums of

rainfall from several previous days in the city center. Additionally, karst

groundwater is greatly influenced by precipitation from the whole watershed

area. For example, tracer tests were conducted in Biondić et al. (2005) where

the tracer was injected in V. Snežnik (Slovenia) where underground water

connection with Kvarner Bay area was identified, including measurement lo-

cations considered in this study, indicating transboundary characteristics of

the investigated area. Thus, further research should include an investigation

of correlations between coastal springs’ activation and wider regional area’s

precipitation, as these distant rainfalls are expected to possibly be more in-

fluential for coastal spring activity than local rainfall. It is also important

to mention that a boundary between two watersheds is passing through the

center of the city of Rijeka, thus bathing locations on the east side of the

city are expected to show a different behaviour, and different locations for

rainfall measurements should be considered.

Ultimately, the measurement process of E. coli could be improved on the

grounds of these new observations. If a stronger influence of groundwater

sources is observed for some bathing locations, and if those sources are ob-

served to often have reduced water quality, a unique measurement method-
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ology should be established for these locations, where multiple locations,

contrary to the current single measurement location, should be investigated

to give a better description of the considered bathing location. Addition-

ally, in Rukavina (2007) the bathing locations in the east part of Rijeka were

analysed, and springs were found to have unusually and considerably greater

value of E. coli then values observed at the monitoring location. Follow-up

investigation led to the identification of one business located approximately

2 km upstream, with inappropriate wastewater connection as a source of

pollution which was connected with observed springs. This indicates that

springs are a great vulnerability of bathing locations, especially if they have

a greater outflow and are influenced by greater watershed area where periodic

monitoring of such springs should also be considered.

5. Conclusion

In the presented paper, in-depth data analysis of E. coli measurements

and related data was conducted and a predictive machine learning modeling

strategy was proposed. Due to a very small amount of measurements with

reduced water quality in the database, it was shown that a single predic-

tion model has reduced prediction accuracy due to bias toward classifying

all measurements as excellent quality. Thus, a cascade model approach is

proposed which classifies measurement as excellent quality only if it is highly

certain regarding its decision. Other measurements remain suspect, therefore

the proposed method can be considered as a filter method, which can be fur-
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ther improved to be used as a standalone model. The following observations

regarding the prediction model can be made:

• Grouping of measurement points does not provide improvement in pre-

diction model accuracy since an increased number of inputs is more

beneficial.

• Due to bias of input data it is difficult for a single prediction model to

confidently predict occurrences of subpar bathing water quality.

• Cascade model can provide a predictive data filter in which excellent

water quality can be predicted with high accuracy, based on meteoro-

logical data, solar irradiation, and seawater salinity.

• Due to the high flexibility of cascade model, multiple strategies of its

improvement could possibly lead to it being eventually used as a stan-

dalone prediction model.

• Ultimately, a separate prediction model for each measurement point

could be constructed, to capture the uniqueness of each beach, which

is especially important in the karst type of terrain.

Conducted study indicates a strong need for an interdisciplinary approach

for the given problem. The karst type of soil with its specific underground

landscape absorbs rainfall from a large watershed area, indicating not only

rainfall period but also rainfall measurement locations are important. Addi-

tionally, E. coli measurements could be conducted for the number of known
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springs to indicate which springs contribute to the coastal seawater pollu-

tion and in which amount. Regarding E. coli measurements, the following is

observed:

• Submerged groundwater sources, active yearlong, are observed which

could correlate with greater E. coli value.

• Number of groundwater sources and their intensity should be investi-

gated at the considered bathing locations.

• New sampling methodology should be established to take into consid-

eration the mixing of microbiologically contaminated submerged spring

water and seawater.
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