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Abstract 

Background: Hospitalized patients with SARS‑CoV2 develop acute kidney injury (AKI) frequently, yet gaps remain 
in understanding why adults seem to have higher rates compared to children. Our objectives were to evaluate the 
epidemiology of SARS‑CoV2‑related AKI across the age spectrum and determine if known risk factors such as illness 
severity contribute to its pattern.

Methods: Secondary analysis of ongoing prospective international cohort registry. AKI was defined by KDIGO‑
creatinine only criteria. Log‑linear, logistic and generalized estimating equations assessed odds ratios (OR), risk dif‑
ferences (RD), and 95% confidence intervals (CIs) for AKI and mortality adjusting for sex, pre‑existing comorbidities, 
race/ethnicity, illness severity, and clustering within centers. Sensitivity analyses assessed different baseline creatinine 
estimators.

Results: Overall, among 6874 hospitalized patients, 39.6% (n = 2719) developed AKI. There was a bimodal distribu‑
tion of AKI by age with peaks in older age (≥60 years) and middle childhood (5–15 years), which persisted despite 
controlling for illness severity, pre‑existing comorbidities, or different baseline creatinine estimators. For example, 
the adjusted OR of developing AKI among hospitalized patients with SARS‑CoV2 was 2.74 (95% CI 1.66–4.56) for 
10–15‑year‑olds compared to 30–35‑year‑olds and similarly was 2.31 (95% CI 1.71–3.12) for 70–75‑year‑olds, while 
adjusted OR dropped to 1.39 (95% CI 0.97–2.00) for 40–45‑year‑olds compared to 30–35‑year‑olds.

Conclusions: SARS‑CoV2‑related AKI is common with a bimodal age distribution that is not fully explained by known 
risk factors or confounders. As the pandemic turns to disproportionately impacting younger individuals, this deserves 
further investigation as the presence of AKI and SARS‑CoV2 infection increases hospital mortality risk.
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Background
The SARS-CoV2 pandemic has killed more than 2.7 mil-
lion people as of March 2021 [1]. Infection leads to a 
wide clinical spectrum from asymptomatic to severe 
multi-organ failure and death. Kidney involvement 
is increasingly recognized as an important complica-
tion of SARS-CoV2 infection, resulting in proteinuria, 
hematuria, and acute kidney injury (AKI) [2–5]. Kidney 
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involvement is theorized to parallel severity of disease 
and associated common risk factors of hypoperfusion, 
ischemia and nephrotoxins. However, another hypothesis 
for kidney sequelae is related to the virus’ affinity for the 
ACE2 receptor with high density in the kidney [2, 6].

SARS-CoV2-related AKI has been reported in 25–60% 
of those critically ill, including up to 37% of critically ill 
children [7–10]. AKI has been associated with worse out-
comes in those with Coronavirus Disease 2019 (COVID-
19), the disease caused by SARS-CoV2. Initially, adult 
hospitals saw a rapid rise in the need for acute dialysis 
during COVID-19 waves [11, 12], yet this was not seen 
in pediatric hospitals. Overall, children seem less suscep-
tible to infection and severe disease, so one hypothesis 
proposes lower rates of AKI/dialysis needs in children 
is a function of disease severity. Assessment of SARS-
CoV2-related AKI across the age spectrum has not previ-
ously been reported.

The purpose of this study was to evaluate the incidence 
and epidemiology of SARS-CoV2-related AKI across the 
age spectrum and determine if age is an independent risk 
factor for AKI development in patients hospitalized with 
SARS-CoV2.

Methods
Study Design & Setting
This is a secondary analysis of the observational, inter-
national, prospective Viral Infection and Respiratory 
Illness Universal Study (VIRUS), initiated by Society of 
Critical Care Medicine (SCCM) in January 2020. VIRUS 
seeks to ascertain a wide range of clinical and outcome 
characteristics of patients hospitalized with SARS-CoV2 
infection. The unique aspect of this registry is it captures 
both critically and non-critically ill hospitalized children 
and adults in the same cohort facilitating comparative 
evaluations.

Patients included in this analysis were admitted 
between January 2020 and March 2021; exact admission 
dates are confidential and not provided to investigators. 
Detailed methodologies have previously been described 
[13]. As this was deployed as a rapid registry early in the 
pandemic, detailed hospital-level characteristics are not 
available to investigators. Briefly, 298 centers from 26 
countries contribute comprehensive pediatric and adult 
data from hospitalized patients encompassing inten-
sive care units (ICUs) and non-ICUs. Ethical oversight 
was obtained at each local center and de-identified data 
stored in REDCap [14].

Patient population
We evaluated all participants in the registry if they 
had PCR- or antibody-confirmed presence of SARS-
CoV2 infection, complete age and 28-day hospital 

outcome data, and at least one serum creatinine value. 
We excluded patients with clinical suspicion but no labo-
ratory confirmation of SARS-CoV2, current pregnancy, 
chronic dialysis, or chronic kidney disease (CKD) stage 5.

Potential Bias
As this is an ongoing cohort registry, rapidly deployed 
during an evolving global pandemic, analyses were con-
ducted by complete case analysis methods which could 
introduce some biases towards the more severe cases 
or because of imminent deaths. Nevertheless, the major 
exclusions were those without creatinine values or miss-
ing 28-day hospital outcomes as we assumed these 
patients to have the least complete data entry and highest 
risk for potential data entry errors.

Outcomes
The primary outcome of interest was AKI development 
as defined by Kidney Disease Improving Global Out-
comes (KDIGO) serum creatinine-only criteria within 
the first 7 days of hospitalization [15]. AKI is defined 
as a rise in serum creatinine ≥0.3 mg/dL or > 50% from 
baseline. Urine output is considered part of the KDIGO 
AKI definition, but the registry data was determined to 
be insufficient as > 60% of our cohort was missing urine 
output values. We also further stratified AKI into stages 
and receipt of dialysis. Additional outcomes of interest 
included hospital mortality, hospital and ICU length of 
stay (LOS), and hospital-related complications.

The registry did not capture baseline creatinine  (Crb) 
values (prior to hospitalization). It is therefore standard 
practice to estimate  Crb [15–17]. However, the estimation 
of  Crb is not standardized across the age spectrum. Using 
KDIGO guidelines for adults (≥18 years), we estimated a 
 Crb by assuming an eGFR of 75 ml/min/1.73m2 and back 
calculating a creatinine with the modification of diet in 
renal disease (MDRD) equation [15]. No standard inter-
national guideline for estimating a  Crb in children exists. 
We used the validated method of assuming eGFR of 
120 ml/min/1.73m2 for children 2–17 years and median 
normative-based eGFR-for-age in children < 2 years and 
back calculating creatinine with the height-independent 
equation [18–20]. For patients with CKD, we used the 
minimum serum creatinine within the first 7 days of hos-
pitalization as  Crb estimation.

Though these are standard assumptions in AKI 
research in their respective fields of adult and pediatric 
nephrology [15–17], there is no standard acceptance of 
estimating  Crb in the transition period from adolescents 
to adulthood. Therefore, given the lack of standardization 
for estimating  Crb across the age spectrum, we conducted 
two sensitivity analyses: [1] using the full age spectrum 
(FAS) equation for both adults and children that does not 
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assume a fixed eGFR by age but instead changes across 
the age spectrum to overcome this limitation [21] and [2] 
using the minimum serum creatinine as an assumed  Crb 
for all patients. The FAS equation is limited as it has only 
been validated in Caucasian populations. The assump-
tion of minimum creatinine as a baseline is limited as it 
assumes all patients return to their baseline within 7 days 
of hospitalization. In addition, we conducted a sensitivity 
analysis where race was removed from the MDRD calcu-
lation for adults [22].

Exposure
Primary exposure of interest was age; it was entered as 
years and months (children< 5 years), years (participants 
5–90 years), and limited to ‘> 90’ for those > 90 years of 
age for privacy. For analysis, those > 90 were classified as 
95 years. Age was evaluated as a continuous variable by 
years and categorical variable by 5-year and 20-year age 
increments to explore potential non-linear associations.

Additional variables
As this was an exploratory analysis, we included a variety 
of additional demographic, pre-hospital, and hospital-
related variables from the registry. Sex and race/ethnicity 
were categorical. The registry de-identified center loca-
tion except whether the center was in the United States 
or elsewhere. CDC classifications were used for weight 
categorization (underweight, normal weight, over-
weight, obese, severely obese) using BMI data for adults 
≥18 years, BMI percentiles for children 2–17 years, 
and weight-for-height percentiles for children < 2 years 
[23]. CDC does not provide pediatric classification for 
severely obese, so those are grouped with obese for those 
< 18 years. SARS-CoV2 testing was determined by local 
centers. Other clinical data captured included comor-
bidities and recent pre-hospital medications as well as 
inpatient medications within the first 7 days. Comorbidi-
ties, including CKD, were determined by medical chart 
review by local investigators.

Illness severity was categorized by variables that span 
the age spectrum. Severe illness was defined as a com-
posite of received invasive mechanical ventilation, 
vasopressor(s) and/or inotrope(s), and/or extracorporeal 
membrane oxygenation (ECMO). Moderate illness was 
defined by ICU admission without any organ support 
therapies listed above. Mild illness was defined as hospi-
talization but without an ICU admission nor organ sup-
port therapies as listed above. As some of these therapies 
may be clustered within centers, we accounted for this 
potential in our analyses described below. More tradi-
tional markers of illness severity were captured but do 
not translate across pediatric and adult patients so are 
not the primary marker assessed in this analysis (e.g., 

sequential organ failure assessment (SOFA) scores for 
adults and pediatric risk of mortality (PRISM) scores for 
children).

Statistical analyses
Descriptive statistics compared demographic, pre-hos-
pital and inpatient clinical characteristics within the first 
7 days of hospitalization among those with and without 
AKI. Wilcoxon rank sum tests and chi-square tests were 
used for continuous and categorical variables, respec-
tively. Given the large sample size which leads to highly 
significant p-values, Cohen’s effect size estimates were 
calculated for continuous variables to better express the 
magnitude of differences (small effect 0.1–0.3, medium 
effect 0.3–0.6, large effect > 0.6). Univariate risk differ-
ences (RD), odds ratios (OR), and 95% confidence inter-
vals (CIs) were calculated for hospital mortality by AKI 
stage. To account for common clinical practices, clus-
tering within centers was used via generalized estimat-
ing equations (GEE) with logistic regression models to 
determine if age is an independent risk factor for the 
development of AKI in SARS-CoV2-related hospitaliza-
tions, with adjustments for the potential confounding of 
sex, hypertension, diabetes mellitus, cancer, CKD, race/
ethnicity, and severity of illness as defined above. Deter-
mination for potential confounders to include in mod-
els were determined by a priori clinical knowledge and 
directed acyclic graphs. Significance was set at an alpha-
level of 0.05. Sensitivity analyses were conducted using 
different equations for estimating a  Crb and stratifications 
by comorbidities and whether center was U.S.-based. All 
analyses were conducted in SAS, version 9.4 (SAS Insti-
tute, Inc., Cary, North Carolina).

Results
Demographics
6874 patients from 142 centers met inclusion criteria 
(Fig.  1). 28% of participants were from non-U.S. cent-
ers (Table 1). A total of 39.6% (n = 2719) developed AKI 
within the first 7 days of hospitalization; this was sig-
nificantly higher among patients in ICUs (1926/4075, 
47.3%) compared to non-ICUs (793/2799, 28.3%), 
p-value< 0.0001. Almost 60% of the cohort were admit-
ted to the ICU (n = 4075). The median age was 60 years 
(range 0–95 years) and 9.0% (n = 621) were < 20 years 
(Table  1). Those with AKI were more likely to be older 
(median age 65 years) than those without AKI (median 
age 55 years), p-value< 0.0001 and effect size 0.45, and 
more likely to have comorbidities (median 3 versus 1 
in those without AKI), p-value< 0.0001 and effect size 
0.37. Among those < 20 years, 28% (171/621) developed 
AKI. Differences in AKI risk based on race/ethnicity 
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(p-value< 0.0001) were noted. Supplementary Table  1 
includes hospital-related associations with AKI.

Comparing patients excluded to those included 
revealed no significant difference by age, sex, or location 
of center (i.e., U.S.-based). However, those excluded were 
more likely to have no comorbidities (26%) compared 
to those included (20%), and only 31% of the excluded 
group were admitted to the ICU (compared to 59% in this 
analysis). As expected, those missing creatinine values 
were often missing other key variables; BMI data missing 
for 50% of excluded patients compared to 24% of patients 
in this analysis.

Hospital complications
Among participants with AKI (n = 2719), 64% had Stage 
1, 14% Stage 2, 19% Stage 3 without dialysis, and 4% 
Stage 3 with dialysis (Table 2). Of the patients requiring 
dialysis, the median duration was 5 days (IQR 2.4–12.4) 
ranging from 0.2–31.8 days (duration missing for 25/104 
patients). Only 7% (n = 7) of those who received dialy-
sis in the first week were from non-U.S. centers. Across 
AKI stages, there was a significant increase in hospital 
and ICU LOS (effect sizes 0.48 and 0.38, respectively), 
with the greatest increase being among those receiv-
ing dialysis; hospital LOS median 31 days (IQR 22–48) 

for those on dialysis compared to median 6 days (IQR 
4–11) for those with no AKI (p-values all < 0.0001). Sig-
nificant differences across AKI stages were also seen for 
intubation, new home oxygen requirement on discharge, 
vasopressor(s)/inotrope(s) use, development of thrombo-
ses, and inpatient mortality. The absolute risk of hospital 
mortality increased significantly (p-values< 0.0001) for 
each AKI stage compared to no AKI. Overall, the OR of 
hospital mortality in those with AKI compared to those 
without AKI was 4.0 (95% CI 3.5–4.5). These associations 
did not change significantly when alternative  Crb estima-
tors were used.

Association of age with AKI risk
Figure  2 depicts a bimodal distribution of AKI risk by 
age with those of young adolescence (10–15 years) hav-
ing a higher risk than both very young children (< 5 years) 
and older adolescents/young adults (15–35 years), while 
those over age 65 years also have a high risk of AKI. Even 
after adjusting for potential confounders (sex, pre-exist-
ing hypertension, diabetes mellitus, cancer, CKD, race/
ethnicity, and severity of illness) there remains increased 
risk of AKI in a bimodal distribution (odds ratio inset in 
Fig.  2). This pattern of AKI distribution did not change 
when using alternative  Crb estimators (Supplementary 

Fig. 1 Participant Inclusion Flow Diagram by STROBE Reporting Guidelines
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Table 1 Demographics of Participants in VIRUS Registry by AKI status

Total No AKI AKI
6874 4155 (60.5) 2719 (39.6)

Age, years, median (IQR) 60 (44–71) 55 (39–68) 65 (53–75)

Age Categories

  < 20 years 621 (9) 450 (11) 171 (6)

 20 to < 40 years 772 (11) 615 (15) 157 (6)

 40 to < 60 years 2038 (30) 1359 (33) 679 (25)

 60 to < 80 years 2647 (39) 1375 (33) 1272 (47)

  ≥ 80 years 796 (12) 356 (9) 440 (16)

BMI  categorya

 Underweight 137 (2) 78 (2) 59 (2)

 Normal 1270 (19) 832 (20) 438 (16)

 Overweight 1620 (24) 965 (23) 655 (24)

 Obesity 1666 (24) 921 (22) 745 (27)

 Severe Obesity 552 (8) 302 (7) 250 (9)

 Unknown 1629 (24) 1057 (25) 572 (21)

Sex (male)b 3998 (58) 2327 (56) 1671 (62)

Race/Ethnicityb

 White, non‑Hispanic 2189 (32) 1273 (31) 916 (34)

 White, Hispanic 523 (8) 335 (8) 188 (7)

 Black, non‑Hispanic 1353 (20) 700 (17) 653 (24)

 Black, Hispanic 50 (0.7) 37 (0.9) 13 (0.5)

 Asian American 95 (1) 53 (1) 42 (2)

 South Asian 1027 (15) 842 (20) 185 (7)

 East Asian 36 (0.5) 20 (0.5) 16 (0.6)

 West Asian 106 (2) 61 (2) 45 (2)

 Other/mixed 845 (12) 511 (12) 334 (12)

 White, ethnicity not specified 402 (6) 184 (4) 218 (8)

 Black, ethnicity not specified 76 (1) 36 (0.9) 40 (2)

Location of Center

 United States 4984 (73) 2872 (69) 2112 (78)

 Non‑United States 1890 (28) 1283 (31) 607 (22)

Number of Comorbidities, median (IQR) 2 (1, 4) 2 (1, 4) 3 (1, 5)

Healthy (no comorbidities) 1356 (20) 1020 (25) 336 (12)

Comorbiditiesc

 Hypertension 3404 (50) 1722 (41) 1682 (62)

 Diabetes 2279 (33) 1169 (28) 1110 (41)

 Heart Disease 1577 (23) 732 (18) 845 (31)

Chronic Kidney Disease 754 (11) 339 (8) 415 (15)

 Asthma 757 (11) 478 (12) 279 (10)

 Chronic lung disease, not asthma 1395 (20) 770 (19) 625 (23)

 Stroke/ Neurological disorder 818 (12) 447 (11) 371 (14)

 Cancer 904 (13) 497 (12) 407 (15)

Pre‑Hospital Medications

 ACE‑I/ARBs 1497 (22) 756 (18) 741 (27)

 Diuretics 179 (3) 77 (2) 102 (4)

 NSAIDs 610 (9) 377 (9) 233 (9)

 Aspirin 1127 (16) 554 (13) 573 (21)

Severity of  Diseased

 Mild disease 2710 (39) 1950 (47) 760 (28)
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Table 1 (continued)

Total No AKI AKI
6874 4155 (60.5) 2719 (39.6)

 Moderate disease 2064 (30) 1389 (33) 675 (25)

 Severe disease 2100 (31) 816 (20) 1284 (47)

Ever admitted to ICU (yes) 4075 (59) 2149 (52) 1926 (71)

SARS‑CoV2 Testing

 PCR+ 6409 (93) 3858 (93) 2551 (94)

 Antibody+ 98 (1) 45 (1) 53 (2)

 PCR and antibody+ 367 (5) 252 (6) 115 (4)

Data presented as number (column percentile), except where specified. ACE-I = angiotensin-converting enzyme-inhibitors; AKI Acute kidney injury, ARB Angiotensin 
receptor blockers, BMI Body mass index, ECMO Extracorporeal membrane oxygenation, ICU Intensive care unit, IQR Interquartile range, NSAID Non-steroidal anti-
inflammatory drugs, PCR Polymerase chain reaction, VIRUS Viral Infection and Respiratory Illness Universal Study
a BMI Category defined by CDC. Weight-for-height percentiles used for those < 2 years of age, BMI percentiles used for those 2–17 years of age and categorized as 
underweight for < 5%, normal for 5–85%, overweight for 85–95%, obesity for > 95%. BMI categories for those ≥18 years of age defined as underweight <BMI 18.5, 
normal BMI 18.5- < 25, overweight BMI 25- < 30, obesity BMI 30- < 40, and severe obesity BMI ≥ 40
b Missing data: Sex missing for 1 participant. Race/ethnicity data missing for 172 participants
c Multiple comorbidities allowed. Most common ones presented. Heart disease defined as heart failure, coronary artery disease, arrythmias, valvular disease
d Severity of disease is defined as: severe disease is a composite of the use of invasive organ support therapy (ventilation, use of vasopressor(s) and/or inotrope(s), 
and/or use of ECMO); moderate disease is defined as patient admitted to an ICU but did not have any of the invasive organ support therapies as defined for severe 
disease; and mild disease is defined as neither an ICU admission nor invasive organ support therapies for severe disease

Table 2 Hospital Complications by AKI Stages for Patients Admitted with SARS‑CoV2 Infection

Data presented as number (percentiles), except where specified. AKI Acute kidney injury, AKI-1 AKI stage 1, AKI-2 AKI stage 2, AKI-3 AKI stage 3, CI Confidence intervals, 
ECMO Extracorporeal membrane oxygenation, ICU Intensive care unit, OR Odds ratio, RRT  Renal replacement therapy
a Of those never admitted to the ICU, n = 139 died (5.0%) and n = 30 (1.1%) discharged to hospice care
b Length of stay only among survivors (n = 5560). Hospital length of stay missing for 91 patients. Intensive care unit length of stay among only those who were ever 
admitted to ICU and survived (n = 2900). ICU length of stay missing for 81 patients
c Defined by pre-selected categories of stroke, cerebrovascular accident, deep vein thromboses, and free text entry of the same plus thrombosis, clot, and pulmonary 
embolism

Total No AKI AKI-1 AKI − 2 AKI-3 (no RRT) AKI-RRT 
6874 4138 (60.2) 1733 (25.2) 382 (5.6) 517 (7.5) 104 (1.5)

Age Categories

  < 20 years 621 (9) 450 (11) 103 (6) 23 (6) 44 (9) 1 (1)

 20 to < 40 years 772 (11) 614 (15) 116 (7) 10 (3) 25 (5) 7 (7)

 40 to < 60 years 2038 (30) 1351 (33) 467 (27) 73 (19) 110 (21) 37 (36)

 60 to < 80 years 2647 (39) 1369 (33) 773 (45) 191 (50) 259 (50) 55 (53)

  ≥ 80 years 796 (12) 354 (9) 274 (16) 85 (22) 79 (15) 4 (4)

Admitted to ICU

 Yes 4075 (59) 2136 (52) 1116 (64) 282 (74) 437 (85) 104 (100)

  Noa 2799 (41) 2002 (48) 617 (36) 100 (26) 80 (16) 0 (0)

Hospitalization length of 
stay (days), median (IQR)b

7 (4, 13) 6 (4, 11) 9 (5, 17) 11 (6, 22) 13 (7, 23) 31 (22, 48)

ICU length of stay (days), 
median (IQR)b

5 (2, 11) 4 (2, 9) 6 (2, 13) 8 (2, 18) 6.5 (2.5, 16) 22 (11, 38)

Intubation 1899 (28) 720 (17.4) 596 (34) 185 (48) 298 (58) 100 (96)

Discharged on Oxygen 594 (9) 334 (8) 186 (11) 28 (7) 35 (7) 10 (10)

Vasopressors/ Inotropes 1203 (18) 380 (9) 374 (22) 134 (35) 222 (43) 93 (89)

ECMO 78 (1) 24 (0.6) 32 (2) 10 (3) 10 (2) 2 (2)

Thrombosesc 337 (5) 140 (3) 112 (7) 22 (6) 40 (8) 23 (22)

Mortality 1314 (19.1) 434 (10.5) 399 (23.0) 157 (41.1) 255 (49.3) 69 (66.4)

RD of Mortality (95% CI) Reference 12.5% (10.3–14.7) 30.6% (25.6–35.6) 38.8% (34.4–43.2) 55.9% (46.7–65.0)

OR of Mortality (95% CI) Reference 2.6 (2.2–3.0) 6.0 (4.7–7.5) 8.3 (6.8–10.1) 16.8 (11.1–25.6)
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Figs. 1, 2, 3 and 4), including the full-age spectrum equa-
tion. The pattern of AKI distribution held when evalu-
ating those with no comorbidities versus those with 
comorbidities (Fig. 3) and again when we evaluated only 
those in the United States (Supplementary Fig. 5). Table 3 
depicts a snapshot of representative age ranges and their 
adjusted OR of developing AKI in these different scenar-
ios, i.e., by different  Crb estimators and in a population 
with no pre-existing comorbidities. The data consistently 
shows an almost 2.5-fold increased odds of developing 
SARS-CoV2-related AKI for 10–15-year-olds and for 
70–75-year-olds when compared to young adults (30–
35 years old).

Discussion
In a large and diverse cohort evaluating AKI in COVID-
19, we found a high incidence of AKI (39.6%) and that it 
varies across the age spectrum with a bimodal distribu-
tion. Given our cohort’s wide age span, we demonstrate 
a more nuanced view of SARS-CoV2-related AKI than 
previous evaluations. In every context of our evaluations, 

there was consistently a bimodal age distribution of 
AKI risk with the older population and early adolescent 
(10–15 years) population at higher risk compared to the 
young adult populations. This is an interesting phenom-
enon as to date there are only descriptions of a linear 
relationship between age and COVID-19 severity and 
its complications [24, 25]. Other known risk factors for 
AKI were seen in this cohort, such as sex, pre-existing 
comorbidities (i.e., hypertension, diabetes mellitus, can-
cer), and race/ethnicity. However, even after control-
ling for these potential confounders, there remained 
an association producing a bimodal age distribution in 
AKI risk; a 10–15-year-old had a similar odds of AKI 
as a 70–75-year-old (compared to 30–35-year-olds). 
The bimodal distribution also persisted after control-
ling for severity of illness and within-center correlations, 
which suggests something additional is contributing to 
the AKI risk. This contradicts an early study on SARS-
CoV2-related AKI that found illness severity to be the 
key risk factor for SARS-CoV2-related AKI, but it was a 
small study (n = 223) with results from the early waves 

Fig. 2 Age Distribution of Hospitalized Patients with SARS‑CoV2 who Experienced AKI within First 7 days of Hospitalization. Main figure presents 
percentage per age bracket who developed acute kidney injury (AKI) among all hospitalized patients and further stratified by severity of illness 
status. Severe illness is defined as a composite indicator of invasive ventilation, use of vasopressor(s)/inotrope(s), and/or use of extracorporeal 
membrane oxygenation. Moderate illness is defined as admitted to an intensive care unit but without use of above organ support measures. Mild 
illness is defined as patient required hospitalization but not in an intensive care unit and without use of above organ support measures. Insert 
presents the adjusted odds ratio (OR) with 95% confidence intervals (CI) of developing AKI within the first week of hospitalization by age bracket 
compared to young adults (30–35‑year‑olds) as the referent category. Adjusted for sex, pre‑existing hypertension, diabetes mellitus, cancer, chronic 
kidney disease, race/ethnicity, and severity of illness. AKI defined per KDIGO guidelines
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(March–June 2020), and excluded children [26]. Interest-
ingly this bimodal distribution differs from previous non-
SARS-CoV2 AKI literature which suggests a U-shaped 
distribution (peaks in infancy and older adults) [27–29].

The differences in AKI risks across the age spectrum 
found here were not explained by different  Crb estima-
tors. KDIGO is a standard guideline for defining AKI, 
yet it lacks a standard method for estimating a  Crb in 

children when one is not known. We therefore evaluated 
variety of  Crb estimators in pediatric and adult popula-
tions. Yet, a bimodal distribution of AKI risk by age 
remained even with several sensitivity analyses, includ-
ing a  Crb estimator (FAS) validated across the age spec-
trum of 2–90 years. The FAS equation assumes a slow 
transitional change in eGFR from childhood into adult-
hood [18–20]. In addition, the bimodal age distribution 

Fig. 3 Age Distribution of Hospitalized Patients with SARS‑CoV2 who Experienced AKI within First 7 days of Hospitalization Stratified by Presence 
or Absence of Comorbidities. Presents percentage of hospitalized patients who developed acute kidney injury (AKI) among all hospitalized patients 
and further stratified by presence of any comorbidity versus no pre‑existing comorbidities. AKI defined per KDIGO guidelines

Table 3 Adjusted Odds Ratios of Developing AKI by Different Definitions/Populations

Table presents snapshot of odds ratios (95% confidence intervals) for developing acute kidney injury (AKI) compared to 30–35-year-olds. Odds ratios adjusted for 
sex, race/ethnicity, hypertension, diabetes mellitus, cancer, chronic kidney disease, and severity of illness. Original column defines AKI per KDIGO guidelines when 
making assumptions about estimating a baseline creatinine. Full-age spectrum column defines AKI per KDIGO guidelines but assumes a more gradual change in 
eGFR across the age spectrum and uses the previously validated full age spectrum equation to estimate a baseline creatinine. Modified MDRD column defines AKI per 
KDIGO guidelines when making assumptions about estimating a baseline creatinine, but for adult patients does not include race as a variable in the MDRD equation. 
The final column only includes hospitalized patients with no pre-existing comorbidities, as such its adjustment model is limited to sex, race/ethnicity, and severity of 
illness

* p < 0.0001

**p < 0.001

***p ≤ 0.05

Age Bracket Original Full-Age Spectrum Modified MDRD No Pre-Existing 
Comorbidities

10–15-year-olds 2.74 (1.66–4.56)* 2.49 (1.47–4.22)** 2.66 (1.60–4.41)** 5.35 (2.42–11.81)*

40–45-year-olds 1.39 (0.97–2.00) 1.34 (1.00–1.80)*** 1.48 (1.03–2.11)*** 1.24 (0.65–2.37)

70–75-year-olds 2.31 (1.71–3.12)* 2.79 (2.09–3.94)* 2.48 (1.87–3.29)* 2.34 (1.13–4.84)***
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of SARS-CoV2-related AKI development persisted when 
evaluating only hospitalized patients with no pre-existing 
comorbidities or evaluating only U.S.-based centers, sug-
gesting that comorbidity differences nor center or coun-
try specifics do not explain the bimodal pattern.

The persistence of the bimodal pattern by age, despite 
multiple iterative analyses, suggests there may be some-
thing unique about SARS-CoV2 and its relationship with 
AKI. One could hypothesize that the propensity of the 
SARS-CoV2 virus to attack the endothelium could also 
contribute to the differences seen in the older popula-
tion and their risk with AKI beyond illness severity [30], 
though it does not explain the higher risk in early ado-
lescence. There may be a hormonal influence in early 
adolescence that makes the endothelium more prone 
to injury compared to younger adults, but this would 
not fully explain the higher AKI rates in the elderly. We 
postulate that the bimodal AKI distribution could per-
haps be a combination of SARS-CoV2-related vascu-
lopathy and hormonal influences. There may also be yet 
unknown biological mechanisms that are contributing to 
this bimodal pattern. For example, we could not account 
for the different strains or clinical spectrum of SARS-
CoV2 presentations which may be an important driver of 
the bimodal age pattern. A recent report of 2600 hospi-
talized adults with SARS-CoV2 infection found similarly 
that high AKI rates are not fully explained by known risk 
factors and need further exploration [31]. Fully under-
standing the bimodal age distribution of SARS-CoV2-
related AKI risk is even more important now as countries 
are seeing a shift in age distribution of SARS-CoV2 infec-
tions as children are not yet eligible worldwide for vac-
cinations and new variants may disproportionately affect 
younger populations. Further in-depth epidemiological 
studies and animal models may be needed to understand 
the biological mechanisms underpinning the age distri-
bution in SARS-CoV2-related AKI.

Similar to other studies [7–9, 32], this cohort demon-
strates a high rate of AKI in COVID-19 patients; among 
ICU patients the AKI rate was 47.3% and in non-critically 
ill patients was 28.3%. Only a few studies report SARS-
CoV2-related AKI rates outside of ICUs [33], and our 
results suggest a high-percentage of non-critically ill 
patients are at risk.

Other literature has found that SARS-CoV2-related 
AKI has an increased risk of mortality [4, 8, 9, 34]. In 
addition to this, we report a strong relationship with 
mortality and other hospital complications that is pro-
portional to AKI’s severity and seen even in non-criti-
cally ill patients and those with mild increases in serum 
creatinine (≥0.3 mg/dL). Very few reports thus far have 
explored the complications associated with the vary-
ing degrees of AKI severity [2, 10]. This is important as 

even the slightest degree of AKI may be associated with 
long-term morbidity and mortality among those hos-
pitalized with SARS-CoV2. Interestingly, though young 
adolescents had higher risks of AKI compared to mid-
dle adulthood, the rates of dialysis were higher in mid-
dle adulthood (20–40 years) compared to children 
(< 20 years). These may be related to center practice dif-
ferences or the overall small sample of dialysis needs in 
both of these groups in this cohort (n = 7 for 20–40 year-
olds and n = 1 for < 20 year-olds).

Limitations
The VIRUS registry has been a real-time assessment of 
the COVID-19 pandemic, so we may have introduced 
bias by excluding participants missing data. However, 
the large sample size provides real-time insight to ongo-
ing trends and allows comparisons across the ages. 
Comparing the cohort of those with and without creati-
nine values, we found that we likely had some selection 
bias toward sicker patients; however, 40% of our par-
ticipants were never in the ICU. A limitation of evaluat-
ing AKI across the age spectrum is the lack of standard 
 Crb estimators, but our results were similar when using 
multiple estimators, suggesting there is a true phenom-
enon of bimodal age distribution in SARS-CoV2-related 
AKI that deserves further exploration. The registry 
includes multiple centers and as such risks introducing 
bias through practice pattern differences between pedi-
atric versus adult centers and regional variations, but 
we controlled for this in our analyses by accounting for 
clustering within centers. However, evaluating data from 
across multiple regions and centers allows a broader 
view of the epidemiology of SARS-CoV2-related AKI, 
which is needed to plan for more in-depth case-control 
or randomized clinical trials evaluating different manage-
ment and treatment strategies for improved outcomes in 
SARS-CoV2-related AKI.

Conclusions
Patients hospitalized with SARS-CoV2 have a high risk of 
AKI, irrespective of illness severity. We demonstrate an 
interesting phenomenon of a bimodal age distribution of 
SARS-CoV2-related AKI risk – high in the elderly and 
early adolescence – that deserves more in-depth explo-
ration as it was not explained by pre-existing comor-
bidities, illness severity, eGFR equations, or clustering 
within centers. Our study reiterates other findings that 
SARS-CoV2-related AKI at any stage increases patients’ 
morbidity and mortality. However, as the pandemic lin-
gers, outbreaks will continue, and while younger children 
remain unvaccinated, it is even more important to under-
stand if there are biological reasons or other unexplored 
risk factors behind this bimodal age distribution of AKI 
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risk that may guide clinical care improvements in the 
management of SARS-CoV2 infections and/or provide 
insights into the pathophysiology of this unique virus.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12882‑ 022‑ 02681‑2.

Additional file 1: Supplementary Table 1. Initial Hospital‑related 
Associations with SARS‑CoV2 ‑related AKI. These therapies or complica‑
tions occur within the first 7 days of hospitalization when SARS‑CoV2‑
related AKI is defined. Data presented as number (column percentiles), 
except where specified. ACE‑I = angiotensin‑converting enzyme‑
inhibitors; AKI = acute kidney injury; ARB = angiotensin receptor blockers; 
IVIG = intravenous immunoglobulin; NSAID = non‑steroidal anti‑inflam‑
matory drugs; PRISM = Pediatric Risk of Mortality Score; SOFA = Sequential 
Organ Failure Assessment. aInitial PRISM score missing for 497 pediatric 
patients. Baseline SOFA score missing for 2741 adult patients; maximum 
SOFA score missing for 2016 adult patients.

Additional file 2: Supplementary Fig. 1. Age Distribution of Hospitalized 
Patients with SARS‑CoV2 who Experienced AKI within First 7 days of Hos‑
pitalization‑different baseline creatinine estimators. Main figure presents 
percentage per age bracket who developed acute kidney injury (AKI) 
among all hospitalized patients. The original AKI definition (blue) assumes 
a baseline creatinine based on KDIGO guidelines for adults (eGFR 75 ml/
min/1.73m2 and back calculates using MDRD equation) and common 
pediatric definitions assuming an eGFR of 120 ml/min/1.73m2 and back 
calculating using height‑independent equation, except for patients with 
CKD when minimum serum creatinine during first 7 days of hospitalization 
is assumed to be their baseline creatinine value. Orange line assumes that 
the minimum creatinine during the first 7 days of hospitalization is the 
baseline creatinine for all participants. Gray line uses the KDIGO guidelines 
but back calculates the baseline creatinine for all participants using the 
FAS equation. Yellow line uses the original definition but uses the MDRD 
equation minus the race variable. Abbreviations: AKI = acute kidney injury, 
CKD = chronic kidney disease, eGFR = estimated glomerular filtration 
rate, FAS = full age spectrum, KDIGO=Kidney Disease Improving Global 
Outcomes, MDRD = modification of diet in renal disease.

Additional file 3: Supplementary Fig. 2. Age Distribution of Hospital‑
ized Patients with SARS‑CoV2 who Experienced AKI within First 7 days of 
Hospitalization‑baseline creatinine estimator FAS equation. Main figure 
presents percentage per age bracket who developed acute kidney injury 
(AKI) among all hospitalized patients and further stratified by severity of 
illness status. Severe illness is defined as a composite indicator of invasive 
ventilation, use of vasopressor(s)/inotrope(s), and/or use of extracorporeal 
membrane oxygenation. Moderate illness is defined as admitted to an 
intensive care unit but without use of above organ support measures. 
Mild illness is defined as patient required hospitalization but not in an 
intensive care unit and without use of above organ support measures. 
Insert presents the adjusted odds ratio (OR) with 95% confidence intervals 
(CI) of developing AKI within the first week by age bracket compared 
to young adults (30–35‑year‑olds) as the referent category. Adjusted for 
sex, race/ethnicity, pre‑existing hypertension, diabetes mellitus, cancer, 
chronic kidney disease, and severity of illness. AKI defined per KDIGO 
guidelines, but baseline creatinine estimator uses full‑age spectrum (FAS) 
equation for all participants.

Additional file 4: Supplementary Fig. 3. Age Distribution of Hospital‑
ized Patients with SARS‑CoV2 who Experienced AKI within First 7 days of 
Hospitalization‑baseline creatinine estimator MDRD equation removing 
race. Main figure presents percentage per age bracket who developed 
acute kidney injury (AKI) among all hospitalized patients and further strati‑
fied by severity of illness status. Severe illness is defined as a composite 
indicator of invasive ventilation, use of vasopressor(s)/inotrope(s), and/or 
use of extracorporeal membrane oxygenation. Moderate illness is defined 
as admitted to an intensive care unit but without use of above organ sup‑
port measures. Mild illness is defined as patient required hospitalization 

but not in an intensive care unit and without use of above organ support 
measures. Insert presents the adjusted odds ratio (OR) with 95% confi‑
dence intervals (CI) of developing AKI within the first week by age bracket 
compared to young adults (30–35‑year‑olds) as the referent category. 
Adjusted for sex, race/ethnicity, pre‑existing hypertension, diabetes mel‑
litus, cancer, chronic kidney disease, and severity of illness. AKI defined per 
KDIGO guidelines, but baseline creatinine estimator uses modified MDRD 
equation removing race component for adults (≥18 years) and height‑
independent equation for children (< 18 years).

Additional file 5: Supplementary Fig. 4. Age Distribution of Hospital‑
ized Patients with SARS‑CoV2 who Experienced AKI within First 7 days of 
Hospitalization‑baseline creatinine estimator as minimum serum creati‑
nine. Main figure presents percentage per age bracket who developed 
acute kidney injury (AKI) among all hospitalized patients and further strati‑
fied by severity of illness status. Severe illness is defined as a composite 
indicator of invasive ventilation, use of vasopressor(s)/inotrope(s), and/or 
use of extracorporeal membrane oxygenation. Moderate illness is defined 
as admitted to an intensive care unit but without use of above organ sup‑
port measures. Mild illness is defined as patient required hospitalization 
but not in an intensive care unit and without use of above organ support 
measures. Insert presents the adjusted odds ratio (OR) with 95% confi‑
dence intervals (CI) of developing AKI within the first week by age bracket 
compared to young adults (30–35‑year‑olds) as the referent category. 
Adjusted for sex, race/ethnicity, pre‑existing hypertension, diabetes mel‑
litus, cancer, chronic kidney disease, and severity of illness. AKI defined per 
KDIGO guidelines, but baseline creatinine estimator uses minimum serum 
creatinine value within first 7 days of hospitalization for all participants.

Additional file 6: Supplementary Fig. 5. Age Distribution of Hospitalized 
Patients with SARS‑CoV2 who Experienced AKI within First 7 days of Hos‑
pitalization Stratified by U.S. versus non‑U.S. Hospital. Presents percentage 
of hospitalized patients who developed acute kidney injury (AKI) among 
all hospitalized patients and further stratified by hospital center based in 
the United States versus not in the United States. AKI defined per KDIGO 
guidelines.
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