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Parkinson's Disease
Parkinson´s disease (PD) is a chronic neurodegenerative disease 
that affects motor skills in more than 6 million people worldwide 
[1]. It is the second most common progressive disease, after 
dementia [2] caused by Alzheimer disease (AD) [3]. The 
occurrence of the PD is associated with age (increase with aging)
[4], sex (males are more effected than females), and race (whites 
are more diagnosed than African Americans and Latinos) [1]. The 
PD symptoms can be categorized in motor and non-motor group. 
Motoric PD symptoms differ with the stage of the disease, and 
are usually manifested after the 80% of neurodegeneration [1]. 
They include bradykinesia (slow initiation of movement), tremor, 
inability to pass over the obstacles, problems with balance, and 
forward-leaning gait [1,5]. Non-motor symptoms associated with 
the PD are dementia, mood swings, hypersexuality, depression, 
apathy, anxiety, impulsiveness, and others [1]. Recently it was 
suggested that loss of olfactory ability is associated with onset of 

the PD and olfactory tests can be potentially used as early sensitive 
clinical marker [6].

The PD is mostly idiopathic disease, yet 15% of the affected 
patients have member of their family with the PD. The PD has four 
stages: (i) premotor PD stage (olfactory impairment, cognitive and 
mood problems, slower bowl movement); (ii) early PD (rigidity, 
restlessness, tremor, and bradykinesia); (iii) moderate PD (motor 
symptoms increase, constipation, and mood disorders); and (iv) 
advanced PD (motor and non-motor problems worsen, occurrence 
of gait, and dementia) [1,7]. 

Epidemiological risk factors for the PD are: age (the most 
prominent), environmental factors such as exposure to pesticide 
rotenone and/or herbicide Agent Orange, heroin use (via MPTP that 
is 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), and genetics 
[1]. Surprisingly enough, smoking (nicotine) and consumption 
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ABSTRACT
The Parkinson’s (PD) disease is a difficult health problem. Aging is the only probable cause of PD without clearly 
identified underlying molecular mechanisms. Still, it seems that oxidative stress and mitochondrial damage combined 
with harmful genetic and environmental factors are the main origins of death in dopaminergic neurons from 
substantia nigra pars compacta. While influx of new findings on pathogenesis, and development of new diagnostics 
for PD is increasing, still it diagnosis mostly depends on the physical examination and clinical diagnostic criteria 
with high misdiagnose rate. This is further complicated with fluctuation of the PD symptoms over the time and 
hinders objective and unbiased monitoring of the disease progression. PD is often diagnosed in the advanced 
stage and when majority of dopaminergic neurons are lost, so neuroprotective therapies are not possible. Given 
the difficulties with clinical diagnosis of the PD there is a pressing need to identify reliant diagnostic biomarkers. 
Intensively tested biomarker candidates are α-synuclein, DJ-1, 8-hydroxy-2'deoxyguanosine, 8-hydroxy-
guanosine, glutathione S-Transferase Pi protein for oxidative damage, and homocysteine with C-reactive protein 
as inflammatory biomarkers. Currently none of them are not enough specific and selective. Biomarkers with 
potentially good specificity, selectivity and accessibility are miRNAs, able to provide precise and non-invasive 
diagnosis. More fundamental research is warranted to provide critical data to determine real reasons behind the 
PD. Parallel to obtaining data for the origins of the PD, development of the suitable clinical biomarkers should 
follow.
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of coffee (caffeine) showed protective roles against the PD [8], 
however risk factors for other chronic conditions overweight the 
benefits of smoking  associated with the PD [1]. Much healthier 
protectants are bioactive compounds (e.g. polyphenol quercetin) 
from foods [9] that can act as antidote for some of abovementioned 
risk factors (e.g. for rotenone) in normal/damaged neurons 
[10]. Epigallocatechin-3-gallate found in green tea prevents 
conformational changes in α-synuclein associated with formation 
of Lewy bodies (LB). As explained below, the LB are one of the 
potential culprits for the neurodegeneration in PD [1]. Berry fruits 
and their products are good sources of various polyphenolics [11-
13] that have protective roles on mitochondrial function greatly 
involved with etiology of the PD [9].

Etiology of The Parkinson's Disease
It is known that the motoric impairments in PD are associated with 
lack of dopamine in the brain. Currently no cure exists for the PD, 
but only disease modifying treatments that help patients improve 
quality of their lives [14]. Classical approach to PD treatment is 
dopamine replacement therapy (with L-DOPA), but effectiveness of 
this approach declines with years of treatment [15]. Novel approaches 
include deep brain stimulation, cell based therapies and others [1].

Conscious movements in human body are executed by muscles and 
ligaments through two neural projection pathways. Both pathways 
originate in primary motor cortex (anterior to central sulcus) and 
are either direct (excitatory) or indirect projections (inhibitory) 
[1]. Basal ganglia is additional neural structure involved with 
movement and consisted of 5 parts that are all components of 
telencephalon: (i) caudate nucleus (CN), (ii) putamen (Put), (iii) 
nucleus accumbens (Acb), (iv) globus pallidus internal (GPi); 
and (v) globus pallidus external (GPe) cumulatively named 
corpus striatum. Subthalamic nucleus (STN) and substantia nigra 
(SN) are the key components for the PD pathology located in 
diencephalon. The SN has 2 parts, pars compacta (SNc) and pars 
reticulata (SNr) that by globus pallidus and thalamus responses 
influence corresponding part of motor cortex. The SNc contains 
dopaminergic neurons with black pigment (neuromelanin), hence 
the name.  By direct pathway striatum sends inhibitory projections 
to the GPi, the GPi inhibits thalamus that causes excitation 
projections in the motor cortex. Striatum in indirect pathway sends 
inhibitory projections to the STN via GPe which excites the GPi, 
and then inhibits the thalamus and the motor cortex. Both indirect 
and direct pathway are coordinated by the dopamine release from 
the SNc. In summary, it can be said that the basal ganglia inhibits 
willful movement in humans. That effect is inhibited by the release 
of dopamine from the SNc [1]. In the PD, pigmented dopaminergic 
neurons perish from the SNc over the time [16], as a consequence 
production of dopamine is impaired, conscious movement tends to 
be increasingly inhibited, and that causes gradual deterioration of 
cardinal motor skills in those affected [1].

Molecular Mechanisms of the PD
The underlying mechanisms and causes for PD are still not clear 
but it is proposed that the PD is multifactorial disease with many 

unidentified factors [17]. Known factors associated with PD 
are oxidative stress, mitochondrial damage [1] environmental 
influences, genetics, and excitotoxicity [4]. Further, it remains a 
mystery why such small and specific population of dopaminergic 
neurons from SNc tends to perish in a course of disease while the 
rest of the brain remains intact [18]. 

On the molecular level, dopaminergic input in direct pathway is 
controlled by the expression of the D1 receptors, while indirect 
pathway is controlled by the D2 receptors. D1 receptors via 
guanine nucleotide binding protein and adenylate cyclase increase 
production of cAMP while D2 does the opposite [19]. Increased 
concentrations of the cAMP increase excitatory activity in striatal 
neurons by uptake of the Na+/Ca2+ [20]. The SNc neurons do not 
have dedicated proteins to bind excess of Ca2+, so toxic levels 
of this ion and corresponding apoptosis is avoided by pumping 
it out of the cell. That process requires large amounts of cellular 
energy and is heavily dependent on the solid ATP production 
by mitochondria [1]. On the other hand, mitochondria tends to 
produce small quantities of reactive oxidative species (ROS) 
during oxidative phosphorylation that is able to damage its own 
mDNA and other molecular structures. Additionally, oxidation of 
dopamine can also increase concentration of the ROS and induce 
neural death [21]. 

Calcium imbalance is influenced by the age, environmental factors 
(e.g. elevated levels of pesticides, toxic metals, neurotoxins, 
and inflammatory agents), genetics (mutations in mitochondrial 
proteins), and other [17,22,23]. These are all are various sources of 
oxidative stress or mitochondrial damage, that cumulatively with 
Ca2+ disbalance may cause neurodegeneration in the PD [22].

Pathophysiological hallmarks for the PD are LBs that contain 
densely packed α-synuclein and  straight filaments [24]. The LBs 
are found in surviving SNc neurons called Lewy neurites and in 
other midbrain regions, cerebrospinal fluid (CSF) and plasma. 
The α-synuclein is a presynaptic neuronal protein associated with 
PD and numerous theories how it contribute to PD pathogenesis 
[25]. Still, the most frequent opinion is that it forms damaging 
oligomeric conformations that are detrimental for cellular balance 
and induce neuronal death [26]. The connection of α-synuclein 
with PD is not clear, for instance 10% of elderly over 60 years 
have incidental LBs in their brains, but only small number of 
them develops PD symptoms [27]. Nonetheless, it is certain 
that α-synuclein is important molecule in PD pathogenesis [28]. 
Structurally speaking, α-synuclein from cytosol does not have any 
tertiary structure, however when bind with phospholipid membrane 
it forms α-helix. Overexpression of this protein drives α-helix to 
β-sheet formation which may form sticky amyloid globules similar 
to those from Alzheimer’s disease [1]. 

Genetic research identified that mutation in six human genes is 
cause of monogenetic PD [29]. These are following cellular 
proteins (4/6 are mitochondrial): (i) α-synuclein (SCNA) 
[30,31]; (ii) LRRK2 leucine-rich repeat kinase 2 (PARKS); (iii) 
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PINK1 PTEN-induced putative kinase 1 (PARK6); (iv) Parkin 
E3 ubiquitin ligase (PARK 2); (v) protein DJ-1 oxidative stress 
sensor (PARK7); and (vi) ATP13A - possibly cation-transporting 
ATPase (ATP13A2) [29]. Genetic mutation in α-synuclein 
increases expression of this protein with increased formation of 
synaptic vesicles and extension of dopamine release [32]. That 
results with overproduction of the LBs and fast progression of 
the PD. It is interesting to note that whether or not α-synuclein is 
overexpressed or mutated in transgenic animals it did not cause 
death of the neurons [33]. Recent study showed that this might be 
due to animal models that differ between wild type genes and those 
found with familial PD. Judging by the loss of the dopaminergic 
neurons, animal models with familial PD and gene A53T more 
effectively established PD model [34]. 

Other gene responsible for the development of the PD is LRRK2. 
Similar to the α-synuclein its function is not clear. It is a large 
protein with kinase activity and protein-protein interactions [1].

As mentioned before, maintenance of mitochondrial function is 
crucial for survival of neurons. PINK1 and Parkin are two proteins 
responsible for such monitoring and protein recycling. PINK1 
is a protein maintained at low levels at healthy mitochondria 
(probably cleaved from the surface of mitochondria by some 
unidentified protease). Due to the loss of electrical charge from the 
mitochondrial surface, PINK1 remains attached by some unknown 
mechanism while Parkin binds to the PINK1, hence targeting such 
nonfunctional mitochondrion for destruction by the lysosomes 
[35]. Genetic mutation in PINK1 and Parkin disables cellular 
damage control, and paves the way for agglomeration of the ROS 
and other detrimental compounds within the neurons, that can lead 
to the cell death and the PD.

DJ-1 and ATP13A are yet two other proteins involved with 
etiology of the PD via maintenance of mitochondrial function by 
some unidentified mechanisms. DJ-1 is a small molecule that seem 
to act as cellular sensor for the oxidative damage, and the ATP13A 
is lysosomal protein [1]. 

It is important to note that one of the main reasons that mechanisms 
and causes of PD are still not known, is the location of the PD 
pathology that is problematic to investigate and due to fluctuations 
in clinical phenotype [27]. Additional layer that distorts the real 
picture behind the PD is aging. Although known, that older age 
is strongest predictor of the PD still it is not clear why such long 
time is needed to develop PD symptoms [4]. Normal brain aging 
and development of PD share commonalities e.g. influence on 
mitophagy and mitochondrial damage, formation of α-synuclein, 
UCH-L1, and DJ-1. Cells such as astrocytes, stem cells and 
microglia from the subventricular zone show similar physiological 
responses with aging and the PD [36].

Based on above mentioned, aim of this review was to give insight in 
the current state of literature with regards to available biomarkers 
for biochemical detection of the PD.

Biochemical Biomarkers of Parkinson’s Disease
A  biomarker is a “characteristic that is objectively measured 
and evaluated as an indicator of normal biological processes, 
pathogenic processes or pharmacological responses to a 
therapeutic intervention [37].” Therefore, an ideal PD biomarker 
must: (i) differentiate amongst all subtypes of the PD in the 
premotor stages; (ii) follow changes with the all disease stages; 
(iii) be useful for monitoring the effects of novel therapies; (iv) 
differentiate PD from other neurodegenerative diseases (e.g. 
progressive supranuclear palsy (PSP), multiple system atrophy 
(MSA), corticobasal degeneration (CBD), essential tremor (ER), 
etc.); (v) be reproducible, and (vi) be inexpensive and non-invasive 
[38,39]. For instance, early differentiation among PD and MSA 
symptoms has important therapeutic repercussions (both clinical 
and prognostic), and assessment may be confounded if it is based 
only on clinical examination [5,27]. Besides the MSA, diagnosis of 
PD in early stages may be confounded by other medical conditions 
with overlapping symptoms (e.g. ER and PSP) [5]. 

Biomarkers are typical for particular condition and they can 
be used as indicators of biological processes relevant to some 
diseases. Further, they should have a positive predictive value 
which provides risk assessment that patient with a positive result 
has the disease [40]. Naturally, true positive predictive value 
of a biomarker should be increased by increasing its sensitivity 
(probability that patients has biomarker and disease) and/or by 
increasing specificity (probability that patients does not have 
biomarker and disease) [41,42]. 

The PD has poor clinico pathological correlation, meaning it 
is difficult to predict clinical phenotype just by knowing the 
pathology, and vice versa [43]. In other words, levels of biomarkers 
capable of detecting PD pathology may not correlate with relevant 
clinical data [27]. Example of a good biomarker is C-reactive 
protein used for prediction of coronary artery disease, as its levels 
rise (positively correlate) with increased chances for getting this 
disease, and drop with application of the successful medical 
treatment [44]. Currently such specific/ideal PD biomarker(s) are 
not yet known, nor the best method for their identification [27,38].

Existing biomarkers for the PD can be divided in clinical biomarkers 
(correspond to non-motor symptoms), neuroimaging biomarkers 
(e.g. SPECT- single-photon emission computed tomography; PET-
positron emission tomography; and fMRI-functional magnetic 
resonance imaging), and biochemical biomarkers (that are in focus 
of this review). The clinical biomarkers can serve as additional 
confirmation of the specific and sensitive premotor biomarkers, but 
sole use in diagnostics is not sensitive and specific enough [45]. 
Neuroimaging markers are expensive and inaccessible besides, 
imaging can detect neurodegeneration only with full development 
of PD symptoms. Biochemical markers (especially blood based and 
saliva) are the most promising option with minimal invasiveness 
and costs [46]. With regards to their objectives, there are two main 
groups of the PD markers, those able to: (i) differentiate predisposed 
individuals from healthy population prior development of the PD 
symptoms, and (ii) identify PD with established symptoms [27]. 
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Sensitivity of available clinical tests for the PD (symptomatic 
cases) is roughly 91%, even in highly specialized centers [47]. 
Therefore more accurate biomarkers are needed in order to 
objectively diagnose and follow all stages of the PD and applied 
medical treatments [48]. According to the recent pathological 
studies, it is considered that presymptomatic phase of PD lasts 
five years [44,49]. During that period patients may develop subtle 
clinical prodromal syndrome lasting 4-6 years [49]. Moreover this 
timeframe can be used for early diagnosis that will precede onset 
of characteristic extrapyramidal motor symptoms [27].

Biomarkers of Aberrant Protein Aggregation and 
Degradation
α-synuclein
The CSF, blood, gastrointestinal tract and salivary glands are 
potential matrices for measuring levels of skin neuro protein 
[28]. Intensive efforts to study α-synuclein in CSF as a diagnostic 
PD biomarker have been underway with some promise [50,51]. 
However, the assessment yielded conflicting results. One set of 
results reported that levels of α-synuclein decreased in PD patients 
vs. control group [52,53] while the other reported no differences 
among those groups [54].

Levels of oligomeric species of α-synuclein, total α-synuclein, 
and α-synuclein were measured in plasma with aim to develop 
blood based biomarkers. Results showed that plasma levels 
of phosphorylated α-synuclein can potentially be used for the 
PD diagnostic. In addition, total levels of α-synuclein can be 
applied as substitute marker for the PD development [14]. 
This is supported with reported positive correlation between 
the levels of non-phosphorylated α-synuclein in blood plasma 
with the PD progression [14]. Regardless of the physiological 
background, abovementioned findings imply that diagnostic of 
‘total α-synuclein’ or ‘non phosphorylated α-synuclein’ may 
be employed as surrogate marker for the progression of PD 
[14]. Likewise, levels of α-synuclein could be used in potential 
clinical trials for testing drugs targeting α-synuclein pathology 
and advancement of the PD. However, hemolysis interferes with 
accuracy of α-synuclein levels in the CSF or plasma. To that end, 
Wang et. al. examined α-synuclein oligomer in red blood cells by 
enzyme linked immunosorbent assay. In their study they showed 
that the ratio of α-synuclein oligomer/total RBC protein was higher 
in the PD patients vs. controls, while no significant difference was 
found for α-synuclein oligomer/total protein ratio between PD and 
MSA [55].

Uric Acid
Relevance of the Uric Acid (UA) in the PD pathophysiology 
was first suggested by the putative antioxidant properties of the 
UA [56]. Recognition of the UA as potential biomarker was first 
documented by analyses of the UA levels and incidence of PD 
among 7,968 men enrolled in the Honolulu Heart Program [31]. 
Theoretic framework for involvement of the UA in reduction of 
oxidative stress is through several mechanisms. For instance, UA 
is the antioxidant soluble in water that binds free ROS and main 

electron-transfer entities able to generate free radicals (e.g. iron) 
[57]. Lolekha et al. compared the UA serum levels across three 
groups of patients two were PD groups (tremor dominant (TD) 
and non-tremor dominant (NTD)) vs. control group [58]. The UA 
serum was higher in the in the PD vs. controls with lower UA in 
the NTD vs. TD group. Lastly levels of the UA decreased with 
severity of the PD.

Coenzyme Q10
Coenzyme Q10 (CoQ10) is another marker associated with 
oxidative stress. Recently, blood CoQ10 was associated with 
decreased redox ratio in PD vs. controls [59,60]. Also, in the CSF 
the percentage of oxidized -to-total CoQ10 increased in subjects 
with PD [60]. Deficiency of CoQ10 in PD should be further 
explored as a potential blood biomarker of antioxidant status in 
the PD [61]. However, the other conditions affecting the status of 
CoQ10 indicated that the reduction is not specific to the PD [61].

For instance dietary supplementation and individual needs 
confounds clinical PD status and progression of the disease with 
regards to CoQ10. To that end, researchers conducted a functional 
test, (Functional Intracellular Assay (FIA), Spectra Cell Lab, 
Houston, TX) on 22 PD patients, from 2004-2008 [62]. It was 
concluded that CoQ10 should be pursued as candidate for the 
peripheral biomarker of antioxidant status in PD. The FIA test 
demonstrated that PD cells showed better function in a presence 
of supplementation with CoQ10, so these test may prove useful 
to identify groups of the PD patients that may benefit from 
supplementation [62].

Biomarkers of Mitochondrial Dysfunction and Oxidative 
Stress 
As explained in the section “MOLECULAR MECHANISMS OF 
THE PD” there is a strong connection between oxidative stress, 
mitochondrial dysfunction and etiology of the PD [63]. The PD has 
many known sources of ROS and mechanisms for their production 
including dopamine metabolism, mitochondrial dysfunction, iron, 
neuroinflammatory cells, calcium, and aging. It is believed that 
alterations in oxidative stress contribute to development of the PD 
[63]. Also, brain of patients affected with the PD showed increased 
levels of DNA, lipids and protein oxidation markers [64-66]. 

DJ-1
The DJ-1 emerged as potential biomarker for the PD after 
identifying mutations in the PARK7 gene [67]. Previous research 
showed that overall DJ-1 levels decreased in the CSF, but stayed 
constant in human plasma for the PD patients vs. controls [68]. 
Despite identified post-translational modifications, it is possible 
to develop specific and sensitive assay for the 4-hydroxy-2-
nonenal (4-HNE) modification of DJ-1 [69]. All this data strongly 
suggests that oxidative metabolites can be excellent candidates for 
biomarkers for the PD.

Glutathione S-Transferase Pi Protein 
One of the major components of the anti-oxidant system is 
glutathione that acts through association with a glutathione 
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S-transferase to bind and reduce ROS [61]. Study on a small 
population of PD patients found that expression of Glutathione 
S-Transferase Pi Protein (GSTP) increased number of leukocytes 
as a reaction to oxidative stress [61]. This was not observed in the 
erythrocytes or plasma. This suggests that baseline blood levels of 
GSTP are not altered with PD; rather they are regulated either at 
the mRNA or translational level. This study examined small group 
of PD patients while larger studies are needed to confirm suitability 
of this protein as a biomarker in general and PD population [61]. 
Such studies should include newly diagnosed, non-medicated 
patients and unaffected controls with genetic relatedness to 
individuals with the PD. 

Other study showed connection between GSTP and progression 
of the PD by changes in expression of GSTP1, SH3GL2 and 
CNPase. Cultured cortical neurons responded to the stress 
with overproduction of the GSTP1 in order to reduce oxidative 
and endoplasmic reticulum stress. It was also reported that 
concentrations of this protein tend to decrease with progression of 
the PD [70]. Additional study reported postmortem comparison of 
the CSF in PD group vs. controls and confirmed reduction of the 
GSTP in PD group [71]. 

8-hydroxy-2'deoxyguanosine and 8-hydroxyguanosine
Diagnostic of 8-hydroxy-2'deoxyguanosine (8-OHdG) and 
8-hydroxy-guanosine in plasma or urine may have controversial 
significance [72]. For instance, concentrations of 8-OHdG depends 
on both on oxidative rate and efficacy of the DNA repairing 
systems [73]. Data showed that urine samples differed in PD vs. 
controls for both, sole 8-OHdG and for the 8-OHdG/2-dG ratio. 
In plasma samples, only this ratio was significantly higher among 
studied groups, implying that it might be reliable diagnostic tool 
that captures DNA oxidative damage with the PD [73,74]. Other 
literature data showed no difference in urine and/or plasma samples 
for the 8-OHdG among PD vs. controls. Authors of this study 
suggested that further research is needed in order to strengthen the 
power of the proposed observation [73]. Given the significance 
of this parameter in other clinical conditions (various cancers and 
other degenerative diseases) in which oxidative stress plays a key 
role in pathogenesis of the PD, we believe that the role of this 
molecule as PD biomarker is still insufficiently investigated.

Protein carbonyls
The protein carbonyls (PC) were largely studied in connection 
with the traumatic brain injuries (TBI) and they tend to increase 
in animas with the presence of TBI [75]. It was proposed that 
carbonyl assay can be used to assess oxidative damage in the 
human brain as it was observed that the postmortem brain tissues 
PD vs. controls have higher levels of the PC [76]. Similarly, 
elevated PC were also detected in brain regions initially not 
predicted as PD targets (e.g. caudate nucleus and putamen). This 
might suggest that biosynthesis of the PC is somehow connected 
with induction of oxidative activity in neurons. Also there might 
be association between L-DOPA treatment and the PC, as subjects 
with incidental LBs disease (putative presymptomatic PD) did 
not have increased PC in any parts of their brains. These findings 

imply that brain tissue affected by the PD shows extensive signs 
of oxidative damage in later stages of disease, and/or that L-DOPA 
therapy promotes oxidation of proteins [76].

MicroRNAs
MicroRNAs (miRNAs) are short (20-25 nucleotides) non-coding 
RNA molecules, that regulate genetic expression [77]. It is 
predicted that they control approximately 60% of all the protein-
coding genes [78,79]. Database with more than 25K of various 
miRNAs sequences (human and other) can be found in “miRbase” 
[79]. Further, miRNAs are able to impede expression of proteins 
by translational control [80,81], thus influence survival and 
function of the neurons [82]. They also regulate the expression of 
various genes at the posttranscriptional level with important roles 
in various cellular processes, including regulation of epigenetic 
machinery, cell proliferation, differentiation, and apoptosis [83]. 
Such mechanisms target proteins involved in DNA methylation 
and histone modifications by controlling whether or not chromatin 
is in its accessible form [84].

Given the importance of miRNAs in various biological processes, 
it is reasonable to expect that deregulated miRNA expression is 
associated with a number of medical conditions [84], and that 
many diseases can be diagnosed with miRNAs as biomarkers 
[85]. Alterations of miRNA expression were observed in a 
neuropsychiatric conditions such as schizophrenia, bipolar disorder, 
major depression, PD and Alzheimer's disease [78]. It was reported 
that blood miR-30c was down regulated in PD vs. controls [85]. 
Recent data showed that some miRNAs expressed in human brain 
may control genetic expression related to AD and PD [86,87]. PD 
related dementia showed association with reduced concentrations of 
miR-205 in the frontal cortex and striatum for the PD vs. controls 
[88,89]. Similarly miR-34b and mir34c production was inhibited in 
several other brain regions for the PD patients [88-90]. 

Vallelunga et al. (2014) reported the first study with data analyzing 
global miRNAs expression in serum of PD and MSA patients vs. 
controls [86]. Authors employed TaqMan Low Density Array 
technology and analyzed 754 miRNAs. They validated set of 4 
differentially expressed circulating miRNAs (cmiRNAs) for the 
above groups, and found that 9 cmiRNAs differed for PD/MSA vs. 
controls. More precisely, miR-339-5p was down regulated, while 
miR-223, miR-324-3p, and miR-24 were upregulated for both 
PD and MSA. Further, cmiRNAs were deregulated for PD (down 
regulation of both miR-30c/miR-148b) and in MSA (upregulated 
miR-148b). The MSA vs. PD serum had 3 upregulated cmiRNAs 
(miR-24, miR-34b, and miR-148b). Aforementioned data proposed 
that cmiRNA signatures are able to segregate among PD, MSA, 
and healthy individuals. Hence they can be considered specific, 
noninvasive biomarkers for differential diagnosis [86]. It was 
suggested that this promising implications should be more toughly 
tested on a larger population of the subjects [86].

Inflammatory Markers as PD Biomarkers
Homocysteine (Hyc), C-reactive protein (CRP) are the two of the 
most important PD inflammatory biomolecules.  They have been 



Volume 3 | Issue 1 | 6 of 10Neurol Res Surg, 2020

extensively studied over the last decade and it was concluded that 
elevated plasma Hcy levels presents a risk factor for dementia and 
cognitive impairments. Furthermore their association with mild 
cognitive impairment (MCI), Alzheimer's disease, and PD was 
well documented. Similar to the Hyc, increased plasma CRP is 
correlated with number of diseases, including the PD. There are 
also studies that have examined the combination of Hcy and CRP in 
the PD that concluded that contribution of these two biomolecules 
in PD pathogenesis might be equal [91].

Genomics, Proteomics, And Metabolomics
Genomics is an important area of research for development of PD 
biomarkers [92]. Genetic analysis resulted in the identification 
of numerous mutations, connected with familial or sporadic PD. 
The main targets for genetic profiling are above mentioned genes 
associated with the PD pathophysiology [27,29-31,33-35]. 

Mass spectrometry is one of the approaches used in proteomics 
for detection of pathologic proteins resulted from the PD 
genetic mutations. Such methods were able to identify bioactive 
neuropeptides that activate G-coupled receptor in murine brains. 
Additional data is warranted for this methods to be applied for 
diagnostic purposes [93].

Metabolomics is recent discipline that observes influence of the 
proteins on the production of metabolites in cellular systems. 
Metabolites can be excellent source of potential biomarkers that 
are able to monitor entire course of the disease (including the onset 
and influence of therapy). Another advantage is that metabolic 
biomarkers are readily accessible from the CSF, saliva, skin, 
serum and urine [15].

Conclusions
In conclusion, PD is serious public health problem that will 
continue to burden human lives and medical healthcare systems 
[15]. Currently, aging is the only probable cause of the PD 
without clearly identified underlying molecular mechanisms [4]. 
Nevertheless, it is believed that oxidative stress and mitochondrial 
damage favored by the detrimental genetic and environmental 
factors are the main origins of death in dopaminergic neurons 
from SNc [17,94]. Hence, fundamental research (epidemiologic, 
genetic, animal, etc.) is need to provide this critical data in order 
to determine real reasons behind the PD. Parallel to obtaining 
data for the origins of the PD, development of the suitable 
clinical biomarkers should follow. Although there are plenty of 
new data on pathogenesis, pathoanatomy, and development of 
new diagnostic for the PD (SPECT, PET, fMRI), still diagnosis 
of the PD heavily depends on degeneration of the SN cells [36] 
and the physical examination and clinical diagnostic criteria. 
Unfortunately misdiagnose rate is fairly high (10-50%) even by 
movement disorder specialist [47,95]. This is further complicated 
as PD symptoms tend to fluctuate with time and hinder objective 
and unbiased monitoring of disease progression [27]. This disease 
is often diagnosed when degenerative process is in the advanced 
stage and when more than 80% of dopaminergic neurons of the SN 
are lost [1]. In that stage a potential neuroprotective therapies are 

not possible, only symptomatic ones. Given the difficulties with 
clinical diagnosis of the PD (particularly in earlier stages of the 
disease when neuropretection is possible), there is a pressing need 
to identify reliant diagnostic biomarkers [96].

The development of biomarkers that will predict, diagnose, 
evaluate, and prognosticate PD is essential for patient’s health 
care and research [27]. In addition, unbiased discovery is 
underway using techniques including metabolomics, proteomics, 
and transcriptomics (gene profiling) [97]. Recently, it was also 
suggested that post-transcriptional regulation has important role in 
molecular mechanisms for PD [86]. Several potential biomarkers 
identified in other diseases or in other types of biological fluids are 
investigated as blood-based biomarkers for the PD. 

Among multiple adducts of nucleoside oxidation, 8-OHdG and 
8-hydroxy-guanosine are two of the most common modifications 
of nucleic acids under oxidative stress [72]. Therefore 8-OHdG is 
recognized as a biomarker of oxidative DNA damage caused by 
the ROS, and logically it was believed that it might also serve as 
good biomarker for the PD [73].

Based form the current data on PD pathogenesis, α-synuclein 
is the first candidate for the potential biomarker [98]. Next to 
α-synuclein, DJ-1 is the second major candidate [67] for the 
possible PD biomarker in both CSF and plasma/serum [48].

It is believed that UA has a protective effect on the central nervous 
system, against oxidative damage [58,99] with levels of the UA 
responding to the severity and type of the PD. This suggests that 
the UA may be useful biomarkers able to specify risk, intensity 
and PD subtype.

Data implies that GSTP can be useful biomarker for the PD, however 
it should be considered as gauge of the general neurodegeneration 
rather than disease specific biomarker. Also increased levels of the 
GSTP with the PD suggests that neurodegeneration is prevented 
by some “redox compensatory mechanism” that may explain 
reduction of this protein in the CSF.

The PC occurs as a product of the oxidative stress where ROS 
(carbonate radical) binds with proteins (primary with proline, 
arginine, histidine, and glutamic acid) and forms PC [75]. As a 
consequence, newly formed PC have different structure and 
function and may serve as oxidative stress biomarker.

miRNAs are accessible for diagnosis as they are present in the 
circulating blood, plasma, serum, CSF, saliva, and elsewhere  
[78,100-104]. Potentially good specificity and accessibility makes 
miRNAs an excellent candidates for the PD biomarker able to 
provide precise and non-invasive diagnosis [78].

Inflammation is important pathophysiological process in the PD 
and various inflammatory markers were studied as a potential 
predictive biomarker for this disease. Two of the best biomarkers 
for PD associated inflammation are Hyc and CRP [91].
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Due to documented involvement of several genes in the pathology 
of the PD it is likely that polygenetic mutations are risk factors for 
the development of PD. These mutations result in formation of 
tissues, proteins and peptide that with acceptable specificity and 
selectivity may became useful biomarkers for the PD [105].
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