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NK cell cytotoxicity is controlled by numerous NK inhibitory and
activating receptors. Most of the inhibitory receptors bind MHC class
I proteins and are expressed in a variegated fashion. It was recently
shown that TIGIT, a new protein expressed by T and NK cells binds to
PVR and PVR-like receptors and inhibits T cell activity indirectly
through the manipulation of DC activity. Here, we show that TIGIT is
expressed by all human NK cells, that it binds PVR and PVRL2 but not
PVRL3 and that it inhibits NK cytotoxicity directly through its ITIM.
Finally, we show that TIGIT counter inhibits the NK-mediated killing
of tumor cells and protects normal cells from NK-mediated cytoxicity
thus providing an ‘‘alternative self’’ mechanism for MHC class I
inhibition.

inhibitory receptors � natural killers

In contrast to T cells, that possess a single dominant antigen
receptor (1), NK cells rely on a vast combinatorial array of

receptors to initiate effector functions (2). Both activating and
inhibitory receptors expressed on NK cells regulate their activity
when interacting with tumors, virus infected cells and bacteria, as
well as normal self-cells (2). MHC class I-expressing cells are
protected from NK-mediated lysis due to the recognition of various
MHC class I proteins by the inhibitory receptors KIR, LIR and
CD94-NKG2A (3). Other NK inhibitory receptors which do not
interact with MHC class I also exist, such as CEACAM1 and IRp60
(4–8). The significance, however, of these non-MHC class I inhib-
itory receptors in normal conditions is still unclear. All of the
inhibitory receptors share a common immune receptor tyrosine-
based inhibitory motif (ITIM) in their cytoplasmic regions, which
delivers the inhibitory signal (3).

The NK cell-mediated killing is extracted by specific receptors,
among which are the natural cytotoxicity receptors (NCRs), which
include the NKp30 that interacts with pp65 of human cytomega-
lovirus (CMV), BAT3 and the recently identified B7-family mem-
ber B7-H6 (9–11), and the NKp46/NKp44 receptors, which interact
with various viral hemagglutinins (12, 13). The NKG2D receptor
interacts with MICA, MICB and ULBP 1–5 (14) and NKp80
interacts with AICL (15). In addition, two other receptors,
DNAM-1 and CD96, enhance NK cytotoxicity (16, 17). Both
DNAM-1 and CD96 recognize PVR (CD155), whereas DNAM-1
also recognizes PVRL2 (CD112) (16, 17). It was recently shown
that a new receptor, named TIGIT, for T cell Ig and ITIM domain,
interacts with PVR and its related proteins and that TIGIT inhibits
T cell activity indirectly through the manipulation of DC activity
(18). Here, we show that TIGIT, through its ITIM, can directly
inhibit NK cytotoxicity.

Results
TIGIT Inhibits YTS Killing Through Its ITIM Motif. While searching for
new CD28 family-like receptors, based on bioinformatics analysis,
we observed that a protein named VSIG9 or VSTM3 in the
databases expresses an ITIM motif. We continued to work on this
protein and found that it interacts with PVR (CD155) but not with

any other NK ligands tested (supporting information (SI) Figs. S1
and S2). At the same time, Yu et al. (18) identified the same protein
and named it TIGIT. Because we observed that TIGIT is found on
all NK cells and because it also contains an ITIM motif, we
continued our analysis concentrating on the function of TIGIT in
NK cells.

To investigate TIGIT role in controlling NK activity, we initially
generated anti-TIGIT mAbs. For that purpose, we used the human
YTS NK cell line and transduced it with a lentivirus containing
TIGIT fused to an HA tag in its extracellular domain, to allow its
detection on the cell surface (Fig. 1A). Mice were injected with the
TIGIT-Ig fusion protein (described in Figs. S1 and S2) and hybrid-
omas supernatants were tested for specific recognition of the
YTS/TIGIT transfectants. Seven different mAbs were obtained
that recognized YTS/TIGIT but not the parental YTS cells (Fig.
1A) in moderate (mAb 1–3) and high (mAb 4–7) modes of
recognition.

To test whether TIGIT could directly inhibit NK cell cytotoxicity,
we evaluated the killing of YTS and YTS/TIGIT-HA cells. Because
YTS cells manifest a restricted killing toward 721.221 cells which is
mediated mainly through the interaction between the 2B4 receptor
on YTS cells and its ligand, CD48, on the target cells (19), it was
important to demonstrate, as shown in Fig. S3, that 2B4 is expressed
at equal levels on the parental YTS/eco and on YTS/TIGIT cells.
In addition, to allow the examination of TIGIT activity on NK cells
we expressed PVR in 721.221 cells and demonstrated that it is
indeed recognized by the anti-PVR mAb and by the TIGIT-Ig (Fig.
S3). Finally, we verified that CD48 is present in equal levels on all
721.221 cells (Fig. S3). All of these reagents were used in killing
assays and as demonstrated in Fig. 1B a strong inhibition of
YTS/TIGIT killing is observed when PVR is expressed on 721.221
cells and this inhibition could be blocked with mAb #4. The
increased killing observed with mAb #4 was due to blockage of
TIGIT and not due to ADCC, because 721.221 cells do not express
Fc receptors.

It was shown that the ITIM of the inhibitory receptors is critical
for their inhibitory activity (20, 21). To test whether the ITIM of
TIGIT is responsible for its inhibitory activity, we generated a
truncated form of the TIGIT receptor at position 231 in the ITIM
motif (named Y231stop) and also a point mutation in the 231
tyrosine reside mutating it into alanine (named Y231A). These
TIGIT proteins were expressed in YTS cells, and in addition, we
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generated control-transfected YTS cells expressing GFP. Expres-
sion levels of all TIGIT proteins were similar. The various YTS
transfectants were next assayed for killing of 721.221 and 721.221/
PVR cells. Importantly, although a strong PVR-mediated inhibi-
tion was observed with YTS/TIGIT, no major difference in the
killing of 721.221 and 721.221/PVR was noticed when the control
YTS/GFP, YTS/TIGIT Y231stop and YTS/TIGIT Y231A were
used (Fig. 2). Thus TIGIT is a direct inhibitory receptor for NK cells
and its inhibitory activity is depending on its ITIM.

Biochemical Characterization of TIGIT. Next, we used our YTS trans-
fectants for biochemical analysis of TIGIT and immunoprecipitated
TIGIT from YTS/TIGIT-HA cells by using anti-HA-agarose
beads, followed by immunobloting with anti-HA antibodies. Two
protein bands in sizes of �30 and 34 kDa, probably representing
different glycosylation forms of TIGIT, were noticed in the YTS/
TIGIT and in the YTS/TIGIT Y231A cells, whereas, as expected,
lower-weight protein bands were observed in the YTS/TIGIT
Y231stop cells (Fig. 3A). To further strengthen our analysis, we
used a specific mouse anti-TIGIT Ab for the immunoprecipitation
and again detected these two main protein products only in
YTS/TIGIT and not in YTS/eco cells. These products were ap-
proximately the same size as observed above (Fig. 3B).

TIGIT Function on Primary Immune Cells. We next analyzed TIGIT
expression on various immune cells by using our anti-TIGIT mAbs
and observed that TIGIT is expressed on NK, NKT, CD8�, Treg,
and memory CD4� T cells (Fig. 4A). Because it was previously
shown that PVR is also a ligand for the receptors DNAM-1 and
CD96 (16, 17), we determined the expression and function of all

three PVR-binding receptors on NK cells. We initially evaluated
their expression on freshly isolated and on IL-2 activated bulk NK
cells, and the expression of all of the PVR-binding receptors did not
significantly change after IL-2 activation, as can be seen in Fig. 4B.
Next, we performed a redirected killing assay to address the direct
function of each of the three PVR-binding receptors on NK cells.
As shown in Fig. 4C, both DNAM-1 and CD96 failed to indepen-
dently redirect NK cytotoxicity, whereas, in contrast, direct cyto-
toxicity was induced by 2B4 and NKp30 (Fig. 4C). Thus, in
agreement with previous publications (22), DNAM-1 and CD96
are coactivating receptors. On the other hand, TIGIT was shown to
be an inhibitory receptor on NK cells, as the redirected killing of the
IL-2 activated bulk NK cultures induced by anti-2B4 or anti-NKp30
mAbs was inhibited by cross-linking of TIGIT with anti-TIGIT
mAb #4 (Fig. 4D).

Next, we studied the TIGIT activity as part of the complex killing
machinery of NK cells when encountering tumor cells expressing
PVR. IL-2-activated bulk NK cell cultures were incubated with
721.221 and 721.221/PVR, and, as demonstrated in Fig. 4E, the
killing of 721.221/PVR was only slightly induced, indicating that the
PVR-CD96/DNAM-1 interactions are too weak in the context of
721.221/PVR cells to strongly up-regulate NK cytotoxicity. Impor-
tantly, blocking TIGIT-PVR interaction by mAb #4 and #5, but
not with #1 (which did not bind the NK cells, Fig. S4), resulted in
a significantly increased killing of the PVR expressing 721.221 cells,
indicating that TIGIT inhibition is indeed dominant over the
coactivation of CD96 and DNAM-1.

PVR and PVRL2 but Not PVRL3 Are Ligands for TIGIT. We next assayed
whether other PVR-like proteins, PVRL2 (CD112) and PVRL3
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Fig. 1. TIGIT inhibits YTS killing. (A) Flow cytometry analysis of the human NK cell leukemia cell line, YTS, transfected with ecotropic receptor only (YTS/eco,
Upper) or with TIGIT attached to HA tag (Lower) stained with anti-HA mAb (left histograms). The same cells TIGIT were stained with seven different antibodies
directed against TIGIT. Gray filled histograms, background staining with the secondary fluorescein-conjugated antibody only. Numbers indicate median
fluorescence intensity. (B) Killing of 721.221 cells or 721.221 cells expressing PVR (721.221/PVR), by YTS/TIGIT preincubated with mAb #4 directed against TIGIT
(black column) or a control anti-CD99 mAb (white column). The effector-to-target (E:T) ratio was 4:1.
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(CD113), would be recognized by TIGIT and whether such recog-
nition will lead to inhibition of NK cell killing. PVRL2 or PVRL3
proteins were expressed in 721.221 cells (Fig. 5A Top) and the
various transfectants were stained with TIGIT-Ig and with DNAM-
1-Ig. As can be seen in Fig. 5A and in agreement with Yu et al.
observations (18), TIGIT-Ig bound PVRL2 but with much lower
affinity as compared to PVR. Surprisingly, in contrast to the results
of Yu et al., TIGIT-Ig did not interact with PVRL3, despite the fact
that several PVRL3 transfectants were used (Fig. 5A Middle). As
was previously reported (19), DNAM1-Ig bound both PVR and

PVRL2, and, surprisingly, we also detected a weak interaction that
to the best of our knowledge was not observed before, of DNAM-1
to PVRL3 (Fig. 5A Bottom). Next, to confirm the staining results,
we used a cell-based reporter assay which utilizes the TIGIT-�
chimeric protein expressed in BW cells (BW/ TIGIT-�, shown in
Fig. S2). The BW parental cells and the BW/ TIGIT- � cells were
coincubated for 48 h with the different 721.221 transfectants and in
agreement with the Ig-fusion protein binding results (Fig. 5A), a
significant amount of mIL-2 was detected in the supernatant of BW/
TIGIT-� cells coincubated with 721.221/PVR and to a lesser extent
with 721.221/PVRL2 (Fig. 5B). In contrast, little or no mIL-2
secretion was observed with 721.221/PVRL3 cells.

Finally, we tested the functional relevance of the PVR-like
proteins-TIGIT interactions by using the YTS/TIGIT and YTS/
TIGIT Y231stop cells. As seen in Fig. 5C, whereas PVR showed the
strongest inhibition, the inhibition mediated by PVRL2 was less
efficient, and no inhibition was observed when PVRL3, was used
(Fig. 5C). The inhibition was ITIM dependent because no inhibition
was observed when YTS/TIGIT Y231stop (Fig. 5C) cells were used.
Thus, these combined results indicate that PVRL2 is a low-affinity
ligand for TIGIT as compared with PVR, whereas PVRL3 is not
a ligand for TIGIT.

TIGIT Provides an ‘‘Alternative Self’’ Mechanism for MHC Class I Inhibi-
tion. The expression of PVR and PVRL2 is up-regulated on tumor
cells (16, 23), and thus it was logical to assume that the interactions
of PVR and PVRL2 with their coactivating receptors will lead to
enhanced tumor killing. On the other hand, PVR and PVRL2 are
widely expressed on healthy normal cell types of epithelial origin
and on peripheral blood monocytes (24, 25) and it is of course
undesirable for NK cells to kill these normal cells. We therefore
hypothesized that the inhibitory interactions of TIGIT would be
dominant over the coactivating ones of DNAM-1 and CD96 to
prevent self killing. For that purpose, we used the primary human
foreskin fibroblasts cells which endogenously express PVR, PVRL2
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and PVRL3 (Fig. 6A Upper) and also MHC class I, detected by
KIR2DL1-Ig and LIR1-Ig (Fig. 6A Lower) and incubated them
with bulk NK cell cultures. No staining of the fibroblasts cells was
observed with KIR2DL2-Ig, indicating that the fibroblasts we used
from this particular infant do not expressed HLA-C proteins
characterized by the presence of the asparagine residue at position
80. As can be seen in Fig. 6B, the killing of the fibroblasts cells was
low even when MHC class I proteins were blocked by the fusion
proteins or when TIGIT was blocked by the anti-TIGIT mAb.
Importantly, however, when both MHC class I and TIGIT were
blocked (by the KIR2DL1-Ig and LIR1-Ig fusion proteins and
anti-TIGIT mAb, respectively), a significant killing was induced
(Fig. 6B). Thus, TIGIT is an inhibitory receptor which prevents
killing of self-normal cells by NK cells.

Discussion
The current manuscript, together with the findings of Yu et al. (18),
place TIGIT as a vital immunomodulator protein, able to control
the activities of both NK and T cells.

In NK cells, the inhibitory signal of TIGIT is mediated via its
ITIM. In addition, as TIGIT binds PVR with the highest affinity
compared with DNAM-1 and CD96 (18), TIGIT should also
physically interfere with DNAM-1 and CD96 binding. We still do
not know why, in T cells, TIGIT is not a direct inhibitory receptor
(18). However, it seems as if the inhibitory activity of TIGIT might
be different from other NK inhibitory receptors as we could not
precipitate TIGIT under nonreducing conditions (suggesting that it
might be found in complexes) and we could not precipitate SHP1
with TIGIT.

In agreement with Yu et al. data, we also observed that TIGIT
interacts with PVRL2 and that this interaction leads to the inhi-
bition of NK cell cytotoxicity. Surprisingly, and in contrast to Yu et
al. data, we demonstrate in our systems that TIGIT bind PVRL3,

even when using transfectants expressing high levels of PVRL3. We
currently have no explanation for this discrepancy but since we used
several systems, including functional assays, we think that the
PVRL3-TIGIT interactions, if exist, are not functional.

Remarkably, two additional coactivating receptors expressed on
NK and T cells, DNAM-1 and CD96, also bind PVR, and DNAM-1
shares another ligand with TIGIT, PVRL2 (16, 17). This situation
is a reminiscent of T cells, in which the coinhibitory receptor
CTLA-4 binds the same ligands (B7-1 and B7-2) as the coactivating
receptor CD28 (26–29). This apparent conflict is resolved in T cells
due to the fact that expression of CTLA-4 is increased after T cell
activation (30). In addition, CTLA-4 binds its ligands in a much
higher affinity than CD28, resulting in the inhibition of T cell
functions (27). Another example for pairwise receptors is the killer
Ig-like receptor (KIR) family (31) that also includes activating
counterparts named KARs (32). Currently, few KARs share the
same MHC class I ligands as the KIR (33), but they interact with
the appropriate MHC class I proteins with lower affinity (34, 35).
Thus, in both CTLA-4/CD28 and KIR/KAR pairs, inhibition is
dominant and as we and Yu et al. (18) show by functional and by
binding assays, the TIGIT-PVR interaction is dominant over that of
CD96/DNAM1-PVR.

Interestingly, staining 721.221 transfectants with TIGIT-Ig and
with DNAM1-Ig, unexpectedly demonstrated weak binding of
DNAM1-Ig to 721.221 cells expressing PVRL3, suggesting that
PVRL3 might be an additional ligand for DNAM-1. Thus, the
PVR-binding receptors might be balanced not only by the strength
of their binding but also by the variegated expression of their
ligands.

In the original paper describing DNAM-1-PVR interaction (19),
PVR blockade resulted in a strong reduction of cytolysis by
DNAM-1-expressing YT cells. Here, we used the YT derivative
YTS and, surprisingly, observed no increase in the killing of
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721.221/PVR cells by the parental YTS cells. To resolve this
discrepancy, we stained YTS cells with an anti-DNAM-1 antibody
and, surprisingly, observed that indeed YTS cells express DNAM-1
(Fig. S5). However, when we stained YTS cells with PVR-Ig, no
binding was observed, whereas YTS/TIGIT cells were recognized
by PVR-Ig (Fig. S5). Thus, it seems as if, although DNAM-1 is
expressed on YTS cells, for an as yet unknown reason, it cannot
interact with PVR.

As we show here, TIGIT is an inhibitory receptor expressed by
all NK cells and PVR, PVRL2 and even PVRL3 are expressed on
normal cells of an epithelial origin, such as endothelial cells.
Endothelial cells are continuously encountered by NK cells when,
for example, NK cells extravasate to the tissues. Thus, we suggest
that under normal conditions, PVR and PVRL2 provide an alter-
native self mechanism preventing self destruction of normal cells by
NK cells.

Interestingly, enhanced expression of PVR and PVRL2 is
also observed in various tumors (16, 23, 36) and several recent
reports demonstrated that PVR and PVRL2 expression on
tumors might enhance NK cytotoxicity (37–40). Furthermore,
it was recently demonstrated that knockout of DNAM-1
resulted in enhanced tumorgenicity (22, 41). In light of our

observations, we think that these previous works should be
reevaluated as it seems as if the function of PVR and PVRL2
on tumor cells is not to be better recognized by NK killer and
inhibitory receptors, but maybe, as suggested previously to aid
tumor invasion and migration (36).

Materials and Methods
Cells and Transfectants. The cell lines used in the present study were YTS cells,
transfected with the ecotropic murine retrovirus receptor (YTS/eco), the human
EBV-transformedB-cell line721.221,721.221transfectants (33), themastocytoma
cell line P815 and P815 stably expressing PVR (a kind gift from M. Colonna,
Washington University.) and the murine thymoma BW cell line. Human fibro-
blasts were obtained from primary cultures of foreskins. NK cells were isolated
from peripheral blood lymphocyte samples.

Antibodies. The mAbs used in this work were anti-CD155/PVR clone 300907 (R&D
Systems), anti-PVRL2/CD112 clone TX31 (BioLegend), anti-PVRL3/CD113 clone
N3.12.4 (Santa Cruz Biotechnology), 12E7 directed against CD99 (used as an
isotype control, was a gift from A. Bernard, INSERM, France), 12CA5 directed
against HA, anti-2B4 clone C1.7 (Beckman–Coulter), anti-NKp30 clone 210845
(R&D Systems), and anti-DNAM-1 clone 102511 (R&D Systems).

BW Assay and Cytotoxicity Assay. For measurement of IL-2 production resulting
from the interaction between TIGIT and the PVR-family proteins, we used the BW
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assay as described previously (42), and in SI Text. The cytotoxic activity of primary
NK cells, YTS/eco and YTS transfectants against 721.221 parental cells and trans-
fectants, P815 and primary human foreskin fibroblasts target cells was assessed in
5-h 35S release assays as previously described (42).

Immunoprecipitation and Western Blot Analysis. YTS cells as well as YTS transfec-
tants were lysed with 1% (vol/vol) Nonidet P-40 [140 mM NaCl, 10 mM NaPO4( pH
7.2)] containing Complete Mini protease inhibitors (Roche). In some experiments,
RIPA buffer was used. Lysates were cleared by centrifugation, precleared with 40
�L of G-Sepharose, and then immunoprecipitated with either 50 �L of anti-HA
agarose (Sigma) or with 5 �g of TIGIT-specific antibodies, followed by 50 �L of

G-Sepharose. Immunoprecipitated proteins were separated on 11% PAGE and
then immunoblotted with POD-labeled rat anti-HA mAbs (clone 3F10; Roche)
followed by POD-labeled anti-mouse IgG. Membranes were developed by using
a BM Chemiluminescence Western Blotting kit (Roche).
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