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SUMMARY

Cells in our body can induce hundreds of antiviral
genes following virus sensing, many of which remain
largely uncharacterized. CEACAM1 has been previ-
ously shown to be induced by various innate sys-
tems; however, the reason for such tight integration
to innate sensing systems was not apparent. Here,
we show that CEACAM1 is induced following
detection of HCMV and influenza viruses by their
respective DNA and RNA innate sensors, IFI16 and
RIG-I. This induction is mediated by IRF3, which
bound to an ISRE element present in the human,
but not mouse, CEACAM1 promoter. Furthermore,
we demonstrate that, upon induction, CEACAM1
suppresses both HCMV and influenza viruses in
an SHP2-dependent process and achieves this
broad antiviral efficacy by suppressing mTOR-medi-
ated protein biosynthesis. Finally, we show that
CEACAM1 also inhibits viral spread in ex vivo human
decidua organ culture.
INTRODUCTION

Non-immune cells play a critical role in the host response to

viral infection and are equipped with intrinsic sensing and

antiviral mechanisms that confer a broad resistance to a

variety of viruses (Desmet and Ishii, 2012; Honda et al., 2006;

Stetson and Medzhitov, 2006). A prominent sensor that

detects viral DNA is IFI16, which has been shown to detect

infection by human cytomegalovirus (HCMV) (Li et al., 2013).

Cells are also equipped with RNA sensing systems, such as

RIG-I, that detect a host of viruses, among them the influenza
Cel
This is an open access article under the CC BY-N
virus (Kato et al., 2006). Many of these systems converge on

IRF3 (Desmet and Ishii, 2012), which is recognized as the

master regulator of the first line of antiviral defense (Hiscott,

2007). IRF3 is constitutively expressed in almost all cells and

is poised to rapidly undergo phosphorylation, dimerization,

and translocation to the nucleus. Once in the nucleus, IRF3 ini-

tiates a limited set of primary antiviral genes such as IFN-b,

which upon secretion orchestrates the larger secondary wave

of cellular antiviral genes (Honda et al., 2006). Surprisingly,

while the ability of cells to activate effective antiviral mecha-

nisms has been known for over half a century (Isaacs and Lin-

denmann, 1957), most of the antiviral genes remain largely

uncharacterized.

Carcinoembryonic antigen-related cell adhesion molecule 1

(CEACAM1) forms homophilic interactions which deliver inhibi-

tory signals through the SHP1 (mainly in hematopoietic cells)

and SHP2 phosphatase through CEACAM1s’ immunoreceptor

tyrosine based inhibitory motifs (ITIMs) (Gray-Owen and Blum-

berg, 2006; Huber et al., 1999; M€uller et al., 2009; Nouvion

et al., 2010). Studies have shown that CEACAM1 expression

is induced very rapidly on endothelial and epithelial cells by

the NF-kB pathway following TLR4-dependent sensing of

N. gonorrhoeae infection (Muenzner et al., 2001). CEACAM1

has also been shown to be induced by IFN-g, which is selectively

secreted by T and NK cells, resulting in direct binding of IRF1

to an interferon-stimulated response element (ISRE) in the

CEACAM1 promoter (Chen et al., 1996).

Whereas theN. gonorrhoeae-mediated induction of CEACAM1

has been shown to benefit the pathogen by facilitating its binding

and infection, it remains unclear why CEACAM1 has been wired

directly to pathogen sensing systems in non-immune cells. In

the current study, we demonstrate that CEACAM1 is rapidly

inducedby innate sensingof extremely divergent viral pathogens,

the HCMV and influenza viruses, and functions as a broad sup-

pressor of viral infection.
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Figure 1. HCMV DNA Induces IFI16-Mediated CEACAM1 Expression during HCMV Infection

(A) FACS staining for CEACAM1 expression at 8 and 24 HPI, on mock (Mock) or HFF cells infected with HCMV (HCMV) strains TB40/E (left) and AD169 (right)

at moi 3.

(B) Real-time PCR quantification of newly synthesized CEACAM1 transcripts in infected and 4-Thiouridine pulsed HFF cells at the designated HPI.

(C) Analysis of CEACAM1 expression on HFF cells transfected with 1 mg/ml of purified TB40/E DNA (DNA) or on HFF cells transfected with 1 mg/ml purified

UV-inactivated TB40/E DNA (UV-DNA). The Mock is HFF cells treated with transfection reagent only.

(D) Intracellular FACS analysis of IFI16 expression in TB40/E infectedHFF cells (moi 3) stably transducedwith two shRNAs targeting IFI16 (aIFI16.1/2, empty black

and red histograms) or control (Control, empty gray histogram) sequence.

(E) Quantification by FACS of the fold induction of CEACAM1 expression following infection with the TB40/E virus on cells from (D) at 3 DPI. The dotted line

represents basal mean fluorescence intensity (MFI) level on mock treated control cells that was set as 1 and to which the fold increase in expression was

compared to.

(F) Analysis of CEACAM1 expression in mock (Mock) or TB40/E (TB40, moi 3) infected ARPE-19 cells that were stably transduced with control empty vector

(empty gray histogram) and two IFI16 isoforms B (IFI16IsoB, empty black histogram) and C (IFI16IsoC, empty red histogram). The background staining was

conducted with isotype matched control antibody (background, filled gray histogram).

(A and C) The empty black and red histograms depict staining for CEACAM1 following indicated treatments (HCMV, A, DNA, or UV-DNA, C) and empty gray

histogram depicts CEACAM1 staining on mock treated cells (Mock).

(A, C, D, and F) The filled gray histogram indicates background staining with control isotype matched antibody (Bckgnd). The figures show one representative

experiment out of seven (A) or three (C, D, and F) performed.

(B and E) An average ±SD of triplicates are presented (*p < 0.05 and **p < 0.01).
RESULTS

IFI16-Mediated Sensing of HCMV Infection Induces
Expression of CEACAM1
We observed that CEACAM1 expression is induced on the sur-

face of HFF cells 24 hr post infection (HPI) with HCMV laboratory

strains AD169 and TB40/E (Figure 1A) or with a clinical isolate

(Figure S1A). Analysis of transcription kinetics of newly synthe-

sized CEACAM1 mRNA showed an extremely rapid response

that was visible at 1–2 hr following infection (Figure 1B). Since a

replication-defective UV-inactivated virus, which can infect cells,

but not induce de novo viral gene transcripts, inducedCEACAM1

(Figure S1B, left histogram), we concluded that a component in

the virion was involved in CEACAM1 upregulation, but ruled out

the involvement of secreted factors since supernatant transfer

did not induce CEACAM1 (Figure S1B, right histograms). Addi-

tionally, CEACAM1 mRNA was induced even upon protein
2332 Cell Reports 15, 2331–2339, June 14, 2016
translation inhibition (Figure S1C), demonstrating that cellular

machinery mediating the induction was pre-formed. Importantly,

transfecting viral DNA, UV-treated or not, robustly induced the

expression of CEACAM1 (Figure 1C). This prompted us to check

whether IFI16, the innate sensor of HCMV DNA, was involved in

the induction of CEACAM1 by knocking this sensor down. Infect-

ing HFFs expressing IFI16 specific small hairpin (sh)RNAs, with

HCMV, resulted in decreased CEACAM1 induction (Figure 1E).

This indicated that IFI16 played a role in the induction of

CEACAM1. The decreased induction was specific to lack of

IFI16, as the cells were still fully responsive to other stimuli such

as polyI:C (an RNA analog that triggers the RNA sensors; Desmet

and Ishii, 2012), which induced CEACAM1 in these cells (Fig-

ure S1D). The involvement of the RNA sensing RIG-I pathway is

studied below. The ARPE-19 cell line, which is also permissive

to HCMV infection, has low levels of IFI16, and indeed,

CEACAM1 was not induced upon infection (Figure 1F). Thus,
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Figure 2. CEACAM1 Induction Is Directly Mediated by IRF3 and Occurs Also by RIG-I Sensing of Influenza Virus Infection

(A) Assessment by western blot of IRF3 levels in TB40/E infected ARPE-19IFI16IsoB cells that underwent IRF3 targeted shRNA knockdown by two clones

(aIRF3.1/2) or were transduced with control shRNA (Control, set as 100%). The upper image depicts the quantification of IRF3 levels in the lower image,

normalized to GAPDH.

(B) The TB40/E infected (3 DPI) ARPE-19IFI16IsoB cells from (A) were analyzed by FACS for induction of CEACAM1.

(C) Relative luciferase activity in ARPE-19IFI16IsoB cells, following infection with TB40/E (moi 3). The cells were transfected with either naive firefly luciferase

encoding vector (No Promoter), luciferase fused downstream to a 600 bp genomic sequence encoding the WT CEACAM1 promoter (WT pCEACAM1), or

luciferase fused to the CEACAM1 promoter mutated in the predicted IRF3 binding site (IRF3Mut pCEACAM1). The results were normalized to co-transfected

renilla luciferase and were compared to ‘‘No promoter’’ which was set as 1.

(D) Real-time PCR quantification of CEACAM1 promoter DNA sequences in anti-IRF3 ChIP of mock (Mock) and TB40/E (TB40) infected HFF cells at 4 HPI.

(E) FACS staining of A549 cells for CEACAM1 expression following infection with PR8 virus strain at moi 3 (empty black histogram) compared to mock treated

cells (empty gray histogram) or isotype matched control antibody (Bckgnd, filled gray histogram).

(F) Western blot analysis for RIG-I (aRIG-I) and IRF3 (aIRF3) expression in PR8-infected A549 cells expressing two shRNAs targeting RIG-I (aRIG-I.1/2), IRF3

(aIRF3.1/2), or control sequence (Control). The upper image is expression quantification relative to GAPDH levels.

(G and H) A549 cells infected by PR8 (3 DPI) expressing two clones of shRNAs anti-RIG-I (aRIG-I.1/2) (G) and anti-IRF3 (aIRF3.1/2) (same cells from F) (H) were

examined by FACS for the induction of CEACAM1expression.

(I) Abundance of CEACAM1 promoter sequences in anti-IRF3 ChIP of A549 cells following infection with PR8 (PR8) or mock treatment (Mock) at 3 HPI and as

quantified by real-time PCR.

(B, G, and H) The induction of CEACAM1 was calculated as the fold increase in MFI of CEACAM1 staining in shRNA-expressing cells compared to the mock

treated control shRNA transduced cells, which was set as 1 (dotted line).

(D and I) Presented values are the sequence abundance relative to the abundance in the sample prior to the ChIP (percent of input) and normalized to a quantified

control region upstream to the CEACAM1 promoter. The data presented are a representative of three (A–D, F, and I), six (E), an average ±SD of three (G and H)

independent experiments performed, and an average ±SD of three triplicates (B–D, F, and I) (**p < 0.01 and ***p < 0.001).
we overexpressed in these cells the two dominant isoforms of

IFI16 (that differ in the length of the hinge region between the

DNA sensing domains; Unterholzner et al., 2010; and may affect

viral sensing efficiency). Importantly, overexpression of the IFI16

isoforms (TB40-IFI16IsoB/IsoC) was sufficient to induce CEACAM1

(Figure1F) duringHCMV infection, directly indicating that sensing

of HCMV DNA by IFI16 mediates this process.
IRF3 Mediates CEACAM1 Expression
Using the IFI16-transfectant ARPE-19 cells, we next saw that

knock down of IRF3, downstream mediator of IFI16, (Figure 2A)

disrupted the upregulation of CEACAM1 during infection

(Figure 2B). This effect was specific to IRF3, and other path-

ways such as IFN-g, which induces expression of class I MHC

in an IRF3-independent manner, remained fully operational
Cell Reports 15, 2331–2339, June 14, 2016 2333



(Figure S2A). Previous studies have characterized an interferon

stimulated response element (ISRE) in the CEACAM1 promoter

that binds IRF1 in response to stimulation with IFN-g (Chen

et al., 1996). Using the MatInspector algorithm (Cartharius

et al., 2005), we identified this ISRE to potentially be compatible

with the IRF3 binding sequence (Figure S2B). To investigate this

ISRE, we conducted reporter assays in which 600 bp of the wild-

type CEACAM1 promoter sequence and a promoter sequence

mutated in the ISRE site predicted to be bound by IRF3 (IRF3Mut;

Figure S2B) were fused to luciferase. While the wild-type pro-

moter sequence mediated a strong induction of luciferase activ-

ity following HCMV infection (Figure 2C), the mutation entirely

abrogated all promoter activity (Figure 2C). To check whether

IRF3 bound the CEACAM1 promoter directly, we performed

chromatin immunoprecipitation (ChIP) of IRF3. We observed

that pull down of IRF3 co-precipitated enriched CEACAM1 pro-

moter sequences in HCMV infected compared to mock cells, as

quantified by real-time PCR (Figure 2D), demonstrating that IRF3

bound the promoter directly.

Notably, the sequence and position of the ISRE in the

CEACAM1 promoter was conserved in higher primate species,

although no such site was identified in the murine promoter (Fig-

ure S2C). In line with this, no significant mCEACAM1 induction

was observed 48 HPI in various MCMV-permissive cell lines in-

fected with murine CMV (strain C3X) (Figure S2D). The antibody

used was fully functional and readily detected expression of

mouse CEACAM1 in the PD1.6 cell line (Figure S2E).

CEACAM1 Is Induced during Influenza Virus Infection
IRF3 is a component in numerous innate sensing cascades (Fig-

ure S3A). Additionally, CEACAM1 expression was seen to be up-

regulated following sensing of polyI:C (Figure S1D). Therefore,

we next checked whether CEACAM1 is induced in response to

RNA viruses such as influenza. The influenza virus can efficiently

infect only a limited number of cell lines in vitro, one of which is

lung epithelial A549 (but not HFF or ARPE-19 cells; Li et al.,

2009; that we used to study HCMV). Notably, infecting A549 cells

with the influenza A PR8 virus strain led to a robust CEACAM1

cell surface expression (Figure 2E). Knock down of the RIG-I

sensor, the RNA sensor that was shown to detect the influenza

A virus (Kato et al., 2006) (Figure 2F), showed that the induction

was dependent on this sensor (Figure 2G). This decreased

activity was specific to knock down of RIG-I since transfecting

UV-inactivated TB40/E DNA to these cells still showed a fully

operational DNA sensing response that led to a robust induction

of CEACAM1 (Figure S3B). Similar to IFI16, RIG-I also operates

through IRF3 (Figure S3A; see Desmet and Ishii, 2012) and dur-

ing CEACAM1 induction, since knock down of IRF3 (Figure 2F)

significantly inhibited its expression during the influenza virus

infection (Figure 2H). Once more, the decreased response was

specific to knock down of IRF3, as all cells were fully responsive

to IFN-g, which induces an alternative IRF3-independent

pathway (Figure S3C). Furthermore, IRF3 ChIP analysis demon-

strated direct binding of IRF3 to the CEACAM1 promoter in PR8

infected A549 cells that had enriched promoter sequences (Fig-

ure 2I). Thus, because CEACAM1 expression is paired to IRF3, it

is robustly induced by diverse innate sensing systems in

response to different viruses.
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CEACAM1 Suppresses HCMV and Influenza Virus
Production
Next, we pursued to explore why CEACAM1 is upregulated by

innate immune systems. To examine whether CEACAM1 affects

viral infection, we silenced CEACAM1 expression in HFF cells

(Figure 3A) and then infected these cells with HCMV. Importantly,

we observed that CEACAM1 suppresses HCMV, as silencing its

knockdown led to a significant elevation in virus production

(Figure 3B).

HCMV is a master of immune evasion and has recently been

shown to use its pp65 protein to evade the IFI16 innate cellular

antiviral responses (Li et al., 2013). We speculated that HCMV

might also be using the pp65 protein to evade the full antiviral ca-

pacity of CEACAM1. In linewith this, while infecting HFF cells at a

low moi with wild-type (WT) HCMV virus that did not induce

expression of CEACAM1 (compared to higher moi in previous

experiments), infection with HCMV virus deleted in the pp65 pro-

tein (Dpp65) led to a robust induction (Figure 3C). Given that

CEACAM1 is induced more efficiently on cells infected by the

Dpp65 as compared to WT HCMV, infecting CEACAM1 knock-

down cells with the Dpp65 virus could demonstrate the full anti-

viral capacity of CEACAM1. To test this, we compared the fold

change increase in viral titer in HFF cells that underwent

CEACAM1 knockdown following infection with either a WT or

Dpp65 virus. In the absence of pp65, the Dpp65 virus had a

10-fold higher fold increase in viral titer following CEACAM1

knockdown than that of the WT virus (Figure 3D). Strikingly,

CEACAM1 also suppressed the influenza virus, as knock down

of its expression in A549 cells (Figure 3E) led to a consistent

increase in influenza viral titer when infecting these cells

(Figure 3F).

Next, we investigated the mechanism of CEACAM1-mediated

inhibition of virus production. Previous studies have established

that the SHP2 phosphatase delivers the CEACAM1-inhibitory

signals in non-immune cells (Huber et al., 1999; M€uller et al.,

2009; Nouvion et al., 2010). We observed CEACAM1 to operate

through SHP2 during infectionwith HCMV and influenza, as it co-

immunoprecipitated with CEACAM1 in HFF and A549 cells

infected by these viruses (Figures S3D and S3E). Indeed,

CEACAM1 suppression of viral titer was dependent on SHP2,

as knocking down of SHP2 (Figures 3G and 3I) recapitulated

the knock down of CEACAM1 and resulted in increased viral pro-

duction during HCMV infection (Figure 3H) and influenza virus

infection (Figure 3J). Notably, knocking down SHP2 in ARPE-

19 cells, which do not induce expression of CEACAM1 upon

infection (Figure 1F), did not have any affect on HCMV viral titer

(Figures S3F and S3G). This indicated that SHP2 antiviral func-

tion was CEACAM1 dependent.

CEACAM1 Suppresses Viral Production by Regulating
Mammalian Target of Rapamycin-Mediated Cellular
Protein Translation
To understand howCEACAM1 inhibits virus production, we used

a fluorescent phospho-specific antibody array to quantify the

phosphorylation status of key components in signaling pathways

in HFF and A549 cells, in which CEACAM1 expression was

knocked down using two shRNAs and then infected with

HCMV and influenza, respectively (Figure 4A). We observed
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Figure 3. CEACAM1 Expression Suppresses Viral Replication through SHP2
(A and G) HFF cells were stably transduced with two shRNAs against CEACAM1 (A, aCEACAM1.1/2), SHP2 (G, aSHP2.1 and aSHP2.1/2), or with a control

(Control) shRNA. Knockdown was confirmed by extra- and intracellular FACS staining for CEACAM1 and SHP2, respectively, following infection with TB40/E

at moi 3.

(B and H) Plaque assay-based quantification of viral load in the supernatants of infected cells expressing CEACAM1 (B) or SHP2 (H) specific shRNAs (same cells

from A and G, respectively).

(C) Cell surface expression of CEACAM1 on HFF cells following infection (moi 0.5) with either a WT (AD169, empty gray histogram) or pp65-deleted virus (Dpp65,

empty black histogram). No staining was observed staining AD169 infected cells with isotype matched IgG (Bckgnd, filled gray histogram).

(D) Fold increase in viral titer in HFF cells (same cells from A) expressing two shRNAs against CEACAM1 (aCEACAM1.1/2) compared to viral titer in supernatant of

cells expressing control shRNA. The cells were infected with either a WT (WT) or pp65-deleted (Dpp65) AD169 virus. The fold increase in cells expressing the

aCEACAM1.1 shRNA clone infected with a WT virus was set as 1.

(E and I) A549 cells were subjected to control (Control), CEACAM1 (E, aCEACAM1.1/2), or SHP2 (I, aSHP2.1/2) specific shRNA-mediated knock down of two

clones as confirmed by FACS staining, following PR8 infection at moi 3.

(F and J) Following infection with the PR8 virus (moi 3) of cells from (E) and (I) expressing CEACAM1 or SHP2 specific shRNAs, respectively, the influenza viral titer

in supernatant was determined by an ELISA based assay. The amount of the virus present in the control transduced cells (B, F, H, and J) was set as 1. The

experiments shown are a representative of three (A–D, G, and H) and five (E, F, I, and J) independent experiments with similar results and an average ±SD of four

(B, D, and H) or eight (F and J) replicates (*p < 0.05, **p < 0.01, and ***p < 0.001).
the upregulation of an activating Serine2448 phosphorylation of

mammalian target of rapamycin (mTOR) that was common dur-

ing infections with both viruses (Figure 4A). mTOR is a key regu-

lator of global cellular protein translation levels, and increased

activity of this modulator could lead to higher rates of protein

biosynthesis, which may facilitate the observed increase in viral

production (Figure 3). Investigating this option, we observed that

HFF and A549 cells stably expressing CEACAM1 and SHP2-tar-
geting shRNAs, and infected with HCMV (Figure 4B) or influenza

virus (Figure 4C), exhibited a higher protein production capacity.

The observed increase in protein production was dependent on

mTOR activity, as blockingmTORwith its specific inhibitor, rapa-

mycin, prevented this increase in cells that underwent either

CEACAM1 or SHP2-knockdown during both HCMV (Figure 4B)

and influenza virus (Figure 4C) infections. We also observed

that in reciprocal experiments, overexpression of CEACAM1
Cell Reports 15, 2331–2339, June 14, 2016 2335
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Figure 4. CEACAM1 Suppresses Cellular Protein Translation through Downregulation of mTOR-Activating Phospho-Serine2448 and Sup-

presses HCMV Dissemination in Human Ex Vivo Organ Culture

(A) Stably knocked down CEACAM1 (black and blue columns, aCEACAM1.1/2) or stably expressed control shRNA (gray columns, Control shRNA) in HFF

(HFFTB40) and A549 cells (A549PR8) was studied for its effects on the phosphorylation of key cellular kinases following 3 days of infection with TB40/E or PR8,

respectively, at moi 3. The cell lysates were prepared and then probed on an antibody array with specific antibodies for the phosphorylated isoforms of the

kinases listed. Using a far-red array scanner, levels of phospho-proteins were then quantified based on measurement of fluorescence emission.

(B and C) HFF cells infected with TB40/E (moi 3, B) and A549 cells infected with PR8 (moi 3, C) stably expressing control (Control), CEACAM1 (aCEACAM1.1/2), or

SHP2 (aSHP2.1/2) specific shRNAswere analyzed for total cell protein production capacity by assessing the rate of [35S]Methionine incorporation. The cells were

also administered with rapamycin at the indicated doses (Rapamycin) or with DMSO only as control treatment (Vehicle). The CPM values of cells expressing the

control shRNA were set as 100%.

(D) Confocal microscopic analysis of ex vivo organ cultured decidua at 2 DPI, which underwent infection with TB40/EGFP. The tissue sections were stained for cell

nucleus with DAPI, CEACAM1 (aCEACAM1), and cells infected with a virus were visualized by the presence of GFP (TB40-GFP). The arrowhead depicts the

HCMV infected GFPPositive cell co-expressing CEACAM1.

(E) Isolated cells from TB40/EGFP infected (TB40/EGFP, black empty histogram) and mock treated (Mock, gray empty histogram) decidua organ culture were

stained for CEACAM1 expression. The TB40/E infected cells stained with an isotype-matched control antibody served as background (Bckgnd, gray filled

histogram) staining.

(F) Cells isolated from TB40/E-infected decidua were stained with either isotype-matched control IgGs (left) or dually stained for CEACAM1 and HLA-G

expression (right).

(G and H) FACS dotplot of isolated cells from TB40/EGFP (TB40-GFP)-infected decidua organ cultures treated either with CEACAM1-Ig (CEACAM1-Ig) or control

Ig fusion protein (Control) as determined by FACS at 4 DPI and 8 DPI by (G). The number of GFPPositive cells in the gated area in the histogramwas quantified in (H).

The data are an average of three (A and C) or representative of five (B, D, and E) or three (F–H) independent experiments, and an average ±SD of three (A and H) or

six (B and C) replicates (not significant: N.S., *p < 0.05, **p < 0.01, and ***p < 0.001).
(Figure S4A) and SHP2 (Figure S4C) in HFF cells led to a comple-

mentary effect of suppressed global protein production during

HCMV infection (Figures S4B and S4D). Similarly, overexpres-

sion of CEACAM1 (Figure S4E) and SHP2 (Figure S4G) in influ-

enza virus-infected A549 cells was also seen to significantly

suppress cellular protein production capacity (Figures S4F and

S4H). As viruses critically depend on the cellular protein produc-

tion machinery for their replication, we thus concluded that
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CEACAM1 suppresses HCMV and influenza virus infections by

regulating mTOR activation and subsequent levels of cellular

protein translation.

CEACAM1 Suppresses HCMV Infection in Human
Ex Vivo Organ Culture
Our final goal was to assess the physiological role of CEACAM1

in vivo. However, since mouse CEACAM1 is not induced



following infection (as it does not contain the IRF3 binding site;

Figures S2C and S2D), we proceeded with a human ex vivo

decidua (a tissue that is naturally targeted by HCMV infections

in its human host) organ culture model for HCMV infection (Fig-

ure S4I). We observed that following infection with a GFP encod-

ing TB40/E virus (TB40/EGFP), some GFPPositive infected cells

also co-expressed CEACAM1, while others did not (Figure 4D).

Staining mock and HCMV infected single cell homogenized

decidual tissues showed that following infection, CEACAM1

was also being induced in the ex vivo organ culture (Figure 4E).

To analyze which cells in the decidua upregulate CEACAM1

following infection, we stained the decidua organ cultures for

HLA-G, a marker for trophoblasts (Kovats et al., 1990). We

observed that 26.3% of HCMV-infected decidual cells were

CEACAM1Positive (9.33% CEACAM1PositiveHLA-GNegative added

to 16.97% CEACAM1PositiveHLA-GPositive cells), of which the

majority (64.5%) were HLA-GPositive 64.5% (16.97% of HLA-

GPositiveCEACAM1Positive out of 26.3% CEACAM1Positive cells)

(Figure 4F).

Finally, to test what degree of involvement CEACAM1 may

have in control of viral spread in the decidua culture, we used a

CEACAM1-Ig fusion protein, composed of the extracellular

domain of CEACAM1 fused to human IgG1 and can block

CEACAM1 function (Markel et al., 2004). To confirm the blocking

function of CEACAM1-Ig, we used the BWCEACAM1 mouse

thymoma reporter cell line, in which a construct of an extracellular

human CEACAM1 domain fused to an intracellular mouse zeta

chain was stably expressed (Figure S4J). These cells secrete

IL-2 upon crosslinking of cell surface CEACAM1, as occurred

when they were co-cultured with a CEACAM1 expressing trans-

fectant (721.221CEACAM1), but not parental (721.221Parental) cell

line (FigureS4K), given thatCEACAM1bindshomotypically.How-

ever, applying CEACAM1-Ig, and not a control fusion protein,

blocked the binding of CEACAM1 and led to a marked decrease

in the activation and IL-2 secretion by these cells (Figure S4K).

Next, we used the CEACAM1-Ig in the HCMV-infected

decidua organ cultures and determined the degree of HCMV

infection by the number of GFPPositive cells. This treatment did

not cause any observable changes in tissue structure or distribu-

tion of CEACAM1 expression (data not shown). Importantly,

however, we observed that blocking CEACAM1 interactions by

using CEACAM1-Ig led to an increased viral dissemination as

seen by an increase in the number of GFP expressing cells at 4

and 8 days (maximal days to sustain viable culture) post infection

(Figure 4G; summarized in Figure 4H). These results show ex vivo

evidence that CEACAM1 plays an important systemic role in

suppression of HCMV dissemination in infected human tissues.

DISCUSSION

In the current study, we demonstrate that CEACAM1 is strongly

integrated to innate cellular pathogen sensing systems by direct

binding of IRF3 to the CEACAM1 promoter following sensing of

HCMV by IFI16 and influenza virus by RIG-I. Given that IRF3 is a

master regulator that is activated by a wide range of innate sys-

tems, we propose that CEACAM1 is induced in response to a

very diverse spectrum of viruses. Following its expression,

CEACAM1 functions as an antiviral suppressor of both HCMV
and the influenza virus. Due to the lack of an in vivo model, we

also demonstrate that CEACAM1 is induced and plays a signifi-

cant role in controlling viral spread using a human ex vivo

decidual organ culture model for HCMV infection that we have

developed (Weisblum et al., 2011). Viruses, on the other hand,

have highly honed mechanisms to evade antiviral responses,

and we show that HCMV employs the recently demonstrated

pp65 immunoevasin (Li et al., 2013) to evade the full capacity

of CEACAM1 expression and antiviral suppression. Similarly,

the influenza virus subverts cellular antiviral systems with a key

viral protein, NS1 (Mibayashi et al., 2007), that we suspect is

used to subvert full CEACAM1 functionality.

We further demonstrate that CEACAM1 and SHP2 sup-

pressed mTOR activity, a central rheostat that dictates global

levels of cellular translation (Buchkovich et al., 2008). Conse-

quently, this led to suppression of protein production in HFF

and A549 cells that were infected with HCMV and the influenza

virus, respectively. Since all viruses are fundamentally depen-

dent on cellular protein biosynthesis machinery for replication,

blocking such cellular machinery by CEACAM1 is a strategy

that could potentially be effective against a very broad range of

viruses. Although viruses strongly manipulate the translation

machinery to maintain a functionality (Clippinger et al., 2011;

Moorman et al., 2008; Walsh and Mohr, 2011), both HCMV and

influenza viruses are known to depend on mTOR activity during

specific phases of their life cycle (Burgui et al., 2007; Clippinger

et al., 2011). This renders them susceptible to translation regu-

lating mechanisms such as mediated by CEACAM1/SHP2.

Although relieving the CEACAM1/SHP2 autoregulation mecha-

nisms led to an increase in translation and viral production, it is

hard to say whether this can be attributed to the bolstering of

the mTOR-dependent stages in their lifecycle or additive

mTOR activity to pre-existing translation capacity maintained

by the viruses. It is also noteworthy that previous studies have

found, in complementation to the current study, that SHP2 func-

tions as a regulator of mTOR (Marin et al., 2008; Schramm et al.,

2012; Zito et al., 2007). However, given that SHP2 is a tyrosine

phosphatase and mTOR is activated via serine residue, this indi-

cates that SHP2 is an upstream indirect pathway activator.

The co-evolution of viruses and their hosts has led to the

development of highly diverse and sophisticated cellular defen-

sive mechanisms and viral counter-measures, examples of both

are presented here. Due to homophilic binding and self-activa-

tion, we describe here the development of a cellular mechanism

that enables an immediate and broadly effective antiviral

response by upregulation of a single protein, CEACAM1.
EXPERIMENTAL PROCEDURES

Viruses, Infections, Titrations, Fluorescence-Activated Cell Sorting,

Antibody Array, Transfections, and BW Assay

HCMV, MCMV, and influenza viruses were grown, titrated, and used to infect

cells by standard procedures. Titrations were based on plaque assays for

TB40/E or ELISA based method for PR8. Stable transduction of CEACAM1,

IFI16, SHP2 transfectants, and shRNA clones (Sigma-Aldrich) was based on

lentiviral and retroviral expression systems. Fluorescence-activated cell

sorting (FACS) staining was standard protocols. For intracellular staining, a

methanol fixation based method was used. PathScan antibody array was per-

formed according to manufacturer’s instructions (Cell Signaling). Viral DNA
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was transfected at 1 mg/ml. For BW assay, a 3 day 1:3 E:T ration was used with

Ig-fusion concentration of 5 mg/ml followed by IL-2 measurement (BioLegend).

See also the Supplemental Information.

Real-Time PCR, shRNAs, and Luciferase Assay

Newly synthesized transcript analysis was previously described (Halenius

et al., 2011). All shRNAs and control scrambled sequence transduction was

performed according to manufacturer’s instructions (Sigma). Luciferase re-

porter assay was based on the pGL4.14 firefly reporter and pRL-CMV renilla

loading control luciferase vectors See also the Supplemental Information.

ChIP, Coimmunoprecipitation, and Protein Translation Assay

ChIPwas performed on the basis of Nelson et al. (2006) using an anti-IRF3 anti-

body (Santa Cruz). Coimmunoprecipitation (coIP) was performed by pull-down

with anti-CEACAM1 5F4 antibody (provided byR.S.B.) conjugated to protein G

sepharose (Santa Cruz) and probing with anti-SHP2 (Santa Cruz) according to

manufacturer’s instructions. For translation analysis, starved cells were then

administered with [35S]Methionine. See also the Supplemental Information.

Statistical Analysis

Statistical significance was determined by Student’s t test. p value of less than

0.05 was considered significant and indicated in figure and figure legends as

Not significant: N.S., *p < 0.05, **p < 0.01, or ***p < 0.001.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2016.05.036.
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