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Abstract: The biodrying process is a well-established method in solid waste management
for reducing the moisture content of municipal solid waste (MSW), facilitating its mechani-
cal treatment, enhancing energy recovery efficiency, and simplifying disposal. However,
challenges such as variability in drying efficiency, seasonal fluctuations, and operational
inconsistencies limit its optimization and broader applicability. This study undertakes a de-
tailed evaluation of biodrying operations using Statistical Process Control (SPC) techniques
to improve process stability and identify key factors influencing efficiency. Data collected
over a one-year period from a waste management facility employing Herhoff Rotteboxes®

reveal an average drying efficiency of 28%, with notable seasonal trends showing reduced
efficiency during summer and fall. A regression model analyzing waste load, operational
parameters, and seasonal effects accounted for 25% of the variability in drying efficiency,
suggesting additional factors like waste composition and microbial activity significantly
impact the process. This study highlights the value of SPC tools in monitoring process
stability and demonstrates how targeted optimization strategies—such as seasonal adjust-
ments and refined loading practices—can enhance biodrying outcomes. By addressing gaps
in current practices, these findings contribute to the advancement of waste management
technologies and support the development of more efficient and sustainable systems for
handling municipal solid waste.

Keywords: biodrying performance; process stability analysis; municipal solid waste treatment;
Herhoff Rotteboxes® technology; seasonal effects on biodrying; waste moisture reduction

1. Introduction
The biodrying process is a well-established method for reducing the moisture content

of municipal solid waste (MSW). It is considered a relatively new method compared to
traditional drying or stabilization techniques used in solid waste management, such as
composting or direct thermal drying. While the concept of using biological activity to
generate heat for moisture reduction has been explored, its application as a standalone
technique for large-scale municipal solid waste (MSW) management has only gained
traction over the past two decades. This is largely due to advancements in process control
technologies and the increasing demand for efficient pre-treatment methods that align
with resource recovery goals and energy efficiency. In particular, biodrying integration
with refuse-derived fuel (RDF) production systems has been a recent focus of research and
development [1,2]. For more details, readers can refer to related studies, including those
that explore its engineering and environmental applications [2–6].
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The drying methods for municipal solid waste (MSW) have evolved significantly over
the years, with various techniques employed to reduce moisture content and improve
waste management efficiency. Traditional methods like solar drying and hot air drying
have been widely used due to their simplicity and low operational costs. However, these
methods often suffer from long drying times, poor quality control, and inefficient energy
use [7]. More advanced techniques have emerged to address these limitations.

Thermal drying, including convective and conductive methods, has been extensively
studied for its ability to rapidly reduce moisture content in MSW. While effective, this
approach can lead to high energy consumption and a potential loss of volatile organic
compounds [8]. Biodrying has gained attention as a more sustainable alternative, lever-
aging microbial activity to generate heat and facilitate moisture removal. This method
has shown promise in reducing waste volume and increasing calorific value, making
it suitable for producing refuse-derived fuel [9]. The process is primarily employed in
solid waste management to reduce the moisture content of waste, transforming it into a
more manageable material [3]. The process leverages heat produced during the aerobic
decomposition of organic matter to drive convective evaporation and facilitate drying.
The primary objective of biodrying is to lower the moisture content of waste, reducing
its mass and volume, thereby improving its suitability for mechanical processing, energy
recovery, or disposal [10]. Biodrying provides several advantages, including substantial
volume reduction, with studies indicating decreases in waste volume of up to 56.5% [11,12].
Additionally, the process can increase the substrate’s bulk density by up to 52%, resulting
in a more compact material that is easier to handle [13]. The moisture content of the waste
is significantly reduced, with average reductions of approximately 20% being commonly
reported [14]. Although biodrying is being increasingly adopted, maintaining the stability
and consistency of the process is essential to maximize its efficiency. Variability in process
outcomes, such as inconsistent weight reductions, can result in inefficiencies, increased
operational costs, and fluctuations in the quality of the final product. Biodrying efficiency
can be affected by factors such as aeration rate, waste composition, and environmental con-
ditions [4]. Variations in these parameters can directly affect the rate of moisture removal,
the consistency of the process, and the overall quality of the final output [15]. Consequently,
continuously monitoring and precisely controlling parameters such as initial moisture
content, airflow rate, and temperature are essential to maintaining optimal performance
in the biodrying process. This ensures that the system operates within specified limits,
minimizes variability, and achieves consistent efficiency, ultimately leading to improved
waste management outcomes.

An effective approach to maintaining process stability and efficiency is the use of
Statistical Process Control (SPC) tools. SPC employs statistical methods to monitor and
control processes, minimizing variation and ensuring consistent performance. Techniques
such as control charts are particularly useful for detecting shifts or trends in the process
before they lead to significant deviations. In the context of biodrying, SPC provides a
framework for tracking critical parameters, such as moisture reduction, to evaluate the
process’s stability over time. Understanding and controlling process variability allows
waste management facilities to optimize biodrying operations, resulting in more efficient
resource utilization and a reduced environmental footprint. This is especially critical given
biodrying’s potential to address the challenges posed by the high moisture content in
municipal solid waste, which can impede both waste-to-energy conversion and mechanical
treatment processes [16,17].

It has to be stated that emerging technologies like electrohydrodynamic (EHD) drying
offer potential advantages in terms of energy efficiency and product quality preservation,
though they remain largely in the research phase [18]. Each drying method presents a
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unique set of advantages and challenges, highlighting the need for continued innovation in
waste drying technologies to meet the growing demands of sustainable waste management.

2. Study Design and Objectives
The primary objective of this study is to assess the stability of the biodrying process

using Herhoff Rotteboxes®, a specialized system designed for moisture reduction in mu-
nicipal solid waste (MSW). This is achieved through the application of Statistical Process
Control (SPC) techniques to monitor and analyze process performance. This study aims to
determine the long-term stability of the biodrying process by monitoring key performance
indicators, such as weight reduction, throughout the biodrying cycle. Conducted at the
municipal waste management facility “Marišćina” in Croatia, this research focuses on the
biodrying of MSW using a series of Herhoff Rotteboxes® prior to mechanical treatment
of waste. The Herhoff Rottebox® system is specifically designed to facilitate the aerobic
degradation of the organic fraction of MSW, reducing both moisture content in the waste
and its overall mass. The process actively circulates air through the waste to accelerate
microbial activity, generating heat that drives moisture removal by convective evaporation.
Each batch of organic waste undergoes a seven-day biodrying cycle before proceeding to
mechanical treatment. The system’s performance is evaluated primarily by measuring
the reduction in total waste mass before and after the biodrying cycle, providing critical
insights into its efficiency and operational consistency. The results of this study provide
valuable insights into the performance of the biodrying process using Herhoff Rotteboxes®.
They are practical tools for waste management operators that enhance process stability and
control. These findings contribute to the broader objectives of sustainable waste manage-
ment and resource recovery by improving the efficiency of waste treatment facilities and
minimizing the environmental footprint associated with waste management operations.

3. Materials and Methods
Data were collected from 12 individual Herhoff Rotteboxes® over a one-year period to

evaluate the stability of the biodrying process. For each biodrying cycle, key parameters
were systematically recorded, including the initial mass (tonnage) of waste loaded into the
Rottebox® prior to drying and the final mass (tonnage) of waste after the drying period.
From these measurements, the weight reduction was calculated as the difference between
the initial and final mass for each cycle, along with the percentage reduction in weight as a
key performance indicator.

The weight reduction (Wr) is calculated as follows:

Wr = Minitial − Mfinal (1)

where:

• Wr = weight reduction (tons)
• Minitial = initial mass of waste loaded into the Rottebox® (tons)
• Mfinal = final mass of waste after drying (tons)

The percentage weight reduction (%Wr) is calculated as follows:

%Wr = (Wr/Minitial) × 100 (2)

Measurements were taken across multiple biodrying cycles for each Rottebox®, re-
sulting in a comprehensive dataset to assess the stability and efficiency of the process.
This dataset serves as the basis for statistical analysis and process control evaluation, pro-
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viding valuable insights into the consistency of biodrying performance under real-world
operational conditions.

The composition of MSW in Croatia is primarily characterized by high quantities
of mixed food waste (30.9%), mixed paper waste (23.2%), and plastics (22.9%), based on
national averages derived from sampling campaigns conducted during 2014–2015. Other
waste fractions include mixed green waste (5.7%), textiles (3.7%), metals (2.1%), glass (3.7%),
and miscellaneous categories (6.3%). These values reflect country-wide averages, as no site-
specific data are available. While no published data are available for the moisture content of
Croatian MSW, it is estimated to be approximately 50% based on expert judgment and data
from comparable regions [19]. This estimate is consistent with the high fraction of mixed
food and green waste, which are typically associated with elevated moisture levels. In
addition to moisture content, the estimated higher heating value (HHV) of Croatia’s MSW
is around 14 MJ/kg, with the lower heating value (LHV) estimated to be approximately
12 MJ/kg when accounting for the high moisture content [20].

The municipal solid waste (MSW) used in this study was pre-shredded prior to the
biodrying process to enhance the efficiency and uniformity of drying. Pre-shredding
reduces the size of the waste particles, increasing the surface area available for heat and
air exchange during the biodrying process. This step is critical for facilitating the removal
of moisture through convective and evaporative mechanisms. Additionally, shredding
ensures a more homogenous distribution of the waste material, which minimizes the
formation of air pockets and improves the consistency of airflow throughout the biodrying
chambers. These improvements contribute to a more stable and efficient biodrying process,
ensuring better control over key parameters such as temperature and moisture reduction
rates. Pre-shredding is an established best practice in waste management facilities to
optimize downstream processes, including mechanical treatment.

Herhoff Rotteboxes® are designed to handle 155–161 tons of waste per cycle as part of
the biodrying process, and there are 12 such boxes in the facility. The dimensions of the
boxes are as follows: 17.5 m in length, 5 m in width, and 5.5 m in height.

A flow diagram of this study is shown in Figure 1.
The biodrying process parameters were systematically monitored throughout this

study to ensure consistent operational performance. The key parameters included the
temperature within the Rotteboxes, airflow rates, and weight reduction over the drying
period. The air velocity was controlled to optimize the convective removal of moisture,
while temperature was monitored as a critical indicator of microbial activity and the heat
generated during aerobic decomposition. The pH of the waste was not directly measured
but is known to remain relatively stable during biodrying due to the buffering effect
of organic matter degradation. These parameters were recorded consistently across all
biodrying cycles to ensure uniformity and reliability in the process outcomes. Although
this study did not explicitly investigate the influence of external factors, such as seasonal
variations or fluctuations in waste composition, the results provide valuable insights into
the stability and efficiency of the biodrying process under typical operational conditions.

3.1. Control Chart Development

A 3-sigma control chart was developed to monitor weight reduction values across
multiple biodrying cycles for each Rottebox®. The 3-sigma control limits are statistical
thresholds used to identify whether a process is operating within normal parameters. These
limits are based on the average weight reduction values and the variability of the data, as
measured by standard deviation. The upper control limit (UCL) represents the highest
value that would be expected under normal operating conditions, while the lower control
limit (LCL) represents the lowest expected value. These limits are set far enough from the
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average to account for natural variations in the process. In this case, the 3-sigma limits
encompass approximately 99.73% of the data points, assuming a stable and consistent
process. Data points that fall outside of these limits are considered outliers and may
indicate unusual circumstances, such as changes in waste composition or operational
inconsistencies, that require further investigation. The use of 3-sigma control limits allows
for a reliable assessment of process stability by distinguishing between normal variations
and potential problems, thereby ensuring a robust monitoring system.
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Figure 1. Overview of the study investigation, illustrating the key stages of the biodrying process. The
figure includes (1) the input stage where municipal solid waste (MSW) is collected, pre-shredded, and
loaded without sorting; (2) the processing stage where the waste is subjected to biodrying in Rotteboxes
for a 7-day cycle, with parameters such as weight and temperature being monitored; (3) the output stage
where the final mass, weight reduction, and moisture content are evaluated; and (4) the analysis stage,
where performance indicators are calculated and conclusions are drawn.

Key metrics, including the mean and standard deviation (σ) of the weight reduction
values, were calculated. Control limits were then established at three standard deviations
above the upper control limit (UCL) and below the lower control limit (LCL) of the mean,
defining the acceptable range for process variability. Data points falling outside of these
control limits were flagged as potential indications of special cause variations, requiring
further investigation to identify and address underlying factors. Given that the process
aims to achieve a minimum moisture reduction of 30%, an additional SPC analysis was
conducted with a lower control limit (LCL) explicitly set at 30%. This secondary analysis
ensured that the process met its operational requirements and provided a complementary
perspective on performance consistency.

3.2. Data Visualization

The weight reduction values were visualized on the control chart, with each point
representing the weight reduction achieved in an individual Rottebox® during a single
biodrying cycle. The chart prominently displays the mean, UCL, and LCL, enabling a
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clear assessment of the process’s stability over time. Outliers—data points exceeding the 3-
sigma limits—were easily identifiable, facilitating a rapid assessment of process deviations.
Additionally, the control chart was examined for any emerging trends or cyclical patterns
that might indicate underlying shifts in the process.

3.3. Process Stability Assessment

The stability of the biodrying process was determined by evaluating whether the
weight reduction values remained consistently within the 3-sigma control limits. A stable
process was defined by the absence of patterns, trends, or cycles that could suggest systemic
or external influences. Any deviations, such as data points outside of the control limits or
runs of values consistently above or below the mean, were flagged for further investigation.
These deviations were analyzed as potential indicators of process instability or special
cause variations, which could arise from factors such as inconsistent waste composition,
operational changes, or environmental conditions.

This approach allowed for a robust assessment of the biodrying process, ensuring
that variability was effectively monitored and controlled. The use of SPC tools not only
provided insights into process performance, but also helped to identify opportunities for
optimization, contributing to improved efficiency and operational reliability.

3.3.1. Statistical Software

All data analyses, including the generation of control charts, were performed using
Python, leveraging the capabilities of the Matplotlib library (version 3.7.1) for data visualiza-
tion. Descriptive and inferential statistics were calculated using the Pandas library (version
1.5.3), which provides efficient tools for data manipulation and statistical computations.

3.3.2. Study Assumptions

Several key assumptions underpinned the analysis to ensure the validity and con-
sistency of the findings. First, it was assumed that the biodrying process operated under
steady-state conditions, free from significant external influences that could impact the
performance of the Herhoff Rotteboxes®. This included the presumption that factors such
as ambient temperature, humidity, and operational parameters remained stable and did
not introduce variability beyond normal process fluctuations. Furthermore, it was assumed
that the initial composition and moisture content of the waste batches remained relatively
uniform throughout the study period. Consistency in these characteristics was critical
for enabling the direct comparison of weight reduction values across multiple cycles and
Rotteboxes®. Variations in waste composition or moisture levels could otherwise confound
the results, making it difficult to isolate the effects of the biodrying process itself. These
assumptions provided a foundation for the statistical analyses conducted, ensuring that any
observed variability in the process outcomes could be attributed primarily to the biodrying
system rather than external or uncontrolled factors. However, it is acknowledged that
deviations from these assumptions, such as unforeseen changes in waste composition or
environmental conditions, could introduce variability and should be addressed in future
studies for a more comprehensive understanding of process performance.

3.3.3. Limitations of This Study

This study does not incorporate the potential influence of external factors, such as sea-
sonal variations in waste composition, fluctuations in ambient temperature and humidity,
or changes in microbial activity, all of which can significantly impact the biodrying process.
These factors are known to contribute to variability in drying efficiency and process stability,
yet their effects were not directly measured or controlled in this analysis.
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4. Results
4.1. Descriptive and Inferential Statistics and Data Distribution

To assess the normality of the data, the Kolmogorov–Smirnov (K-S) test was employed.
The K-S test evaluates the maximum distance between the cumulative distribution function
(CDF) of the sample data and the CDF of a specified theoretical distribution—in this case,
the normal distribution. The parameters of the normal distribution (mean and standard
deviation) were estimated directly from the dataset. The K-S test statistic was calculated
as 0.0245, with an associated p-value of 0.9282. Since the p-value is significantly greater
than the conventional threshold of 0.05, we rejected the null hypothesis, suggesting no
statistically significant evidence of deviation from normality.

Analysis of Variance (ANOVA) and post hoc tests were deployed to examine the
differences in drying efficiency across months and seasons, providing insights into the
influence of seasonal variation on the biodrying process. ANOVA is a statistical technique
used to compare means across multiple groups by analyzing the variability within groups
relative to the variability between groups.

A multiple linear regression model (Equation (3)) was employed to explore the re-
lationships between drying efficiency (the dependent variable) and three key predictor
variables, as follows: the amount of waste loaded into the bioboxes, the operational month
(representing seasonal variations), and the biobox number. This statistical technique is
used to quantify how each predictor influences the outcome variable, drying efficiency,
while controlling for the effects of the other predictors in the model. By isolating the
contribution of each variable, regression analysis allows for a deeper understanding of the
factors driving variability in the biodrying process.

The descriptive statistics on biodryig parsed per bioboxes are shown in Table 1.

Table 1. Summary of descriptive statistics for the percentage of moisture removed during the
biodrying process across individual Herhof Rotteboxes®. The term “counts” refers to the number of
biodrying cycles recorded for each Rottebox over the study period, with each cycle lasting approx-
imately 7 days. The 25%, 50%, and 75% values correspond to the first quartile, median, and third
quartile, respectively, representing the spread of the data.

Herhof Rottebox® Count Mean Std Min 25% 50% 75% Max

1 38 0.25 0.05 0.14 0.22 0.25 0.3 0.37
2 43 0.24 0.07 0.08 0.19 0.24 0.28 0.4
3 41 0.24 0.05 0.15 0.21 0.24 0.27 0.35
4 41 0.23 0.05 0.12 0.2 0.23 0.26 0.39
5 39 0.27 0.07 0.12 0.23 0.26 0.31 0.5
6 40 0.25 0.05 0.12 0.22 0.25 0.28 0.36
7 40 0.25 0.05 0.14 0.2 0.25 0.29 0.33
8 40 0.25 0.05 0.16 0.21 0.25 0.29 0.34
9 40 0.25 0.05 0.14 0.21 0.24 0.29 0.38

10 39 0.25 0.07 0.1 0.21 0.25 0.28 0.46
11 40 0.25 0.06 0.14 0.2 0.25 0.28 0.42
12 38 0.23 0.07 0.05 0.19 0.25 0.27 0.34

4.2. Process Stability and Control

The X-bar control chart illustrated in Figure 2 shows the drying efficiency across the
bioboxes over time, with the mean drying efficiency represented with a green dashed line
and the control limits (±3σ) marked with red dashed lines. The outliers, identified as points
exceeding the control limits, are highlighted with red “X” markers.



Appl. Sci. 2025, 15, 1432 8 of 16

Appl. Sci. 2025, 15, x FOR PEER REVIEW  7 of 17 
 

4.2. Process Stability and Control 

The X-bar control chart illustrated in Figure 2 shows the drying efficiency across the 

bioboxes over time, with the mean drying efficiency represented with a green dashed line 

and  the  control  limits  (±3σ) marked with  red dashed  lines. The outliers,  identified  as 

points exceeding the control limits, are highlighted with red “X” markers. 

 

Figure 2. Control chart showing drying efficiency across observations for individual bioboxes. The 

range of 0–500 on the x-axis represents the sequential numbering of recorded observations, where 

each observation corresponds to a biodrying cycle for a specific biobox. The green dashed line indi-

cates the mean drying efficiency (~28%), while the red dashed lines mark the upper and lower con-

trol limits (±3σ). Outliers exceeding the control limits are highlighted with red “X” markers. 

The analysis reveals a mean drying efficiency of approximately 28%, with the upper 

and lower control limits set at ±3 standard deviations (σ) from the mean. These control 

limits define the boundaries within which the process is expected to operate under normal 

conditions, providing a  clear  framework  for assessing process  stability. The biodrying 

process demonstrates statistical control, as the majority of data points fall within the es-

tablished control limits. However, several outliers—extreme drying efficiency values—are 

apparent on the chart, indicating occasional occurrences of special cause variation. These 

deviations suggest that certain cycles may have been influenced by irregular factors, such 

as variations in waste composition, operational inconsistencies, or environmental condi-

tions. Although the process is generally stable, it consistently underperforms relative to 

the desired  lower specification  limit of 30% drying efficiency. This  indicates a need  for 

further optimization of the biodrying process to achieve higher and more consistent effi-

ciencies. Addressing  the  factors contributing  to outliers and overall underperformance 

could enhance both the stability and effectiveness of the system, ensuring it meets opera-

tional and environmental goals.   

Figure 2. Control chart showing drying efficiency across observations for individual bioboxes. The
range of 0–500 on the x-axis represents the sequential numbering of recorded observations, where
each observation corresponds to a biodrying cycle for a specific biobox. The green dashed line
indicates the mean drying efficiency (~28%), while the red dashed lines mark the upper and lower
control limits (±3σ). Outliers exceeding the control limits are highlighted with red “X” markers.

The analysis reveals a mean drying efficiency of approximately 28%, with the upper
and lower control limits set at ±3 standard deviations (σ) from the mean. These control
limits define the boundaries within which the process is expected to operate under normal
conditions, providing a clear framework for assessing process stability. The biodrying process
demonstrates statistical control, as the majority of data points fall within the established
control limits. However, several outliers—extreme drying efficiency values—are apparent
on the chart, indicating occasional occurrences of special cause variation. These deviations
suggest that certain cycles may have been influenced by irregular factors, such as variations
in waste composition, operational inconsistencies, or environmental conditions. Although
the process is generally stable, it consistently underperforms relative to the desired lower
specification limit of 30% drying efficiency. This indicates a need for further optimization
of the biodrying process to achieve higher and more consistent efficiencies. Addressing the
factors contributing to outliers and overall underperformance could enhance both the stability
and effectiveness of the system, ensuring it meets operational and environmental goals.

4.3. Biobox Performance Variability

Figure 3 presents a boxplot illustrating the distribution of drying efficiency across the
12 bioboxes, offering a detailed visualization of their individual performance.

While the range of drying efficiencies shows slight variations between bioboxes, statis-
tical analysis using an Analysis of Variance (ANOVA) test confirms that these differences
are not statistically significant (p value = 0.188). Thus, the observed variability in drying
efficiency across the bioboxes can be attributed to random fluctuations rather than any
systemic differences in performance. This finding suggests that all 12 bioboxes operate
with comparable efficiency under similar conditions, emphasizing the consistency of the
biodrying process across the system. Such consistency is critical for ensuring reliable
performance in waste management operations and underscores the effectiveness of the
system design in maintaining uniformity across the bioboxes.
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Figure 3. Boxplot showing the distribution of drying efficiency across 12 bioboxes. The boxes
represent the interquartile range (IQR), the horizontal line within each box represents the median
(50th percentile), and the whiskers indicate the range of values within 1.5 times the IQR. Small circles
represent outliers, which are values that fall outside this range, observed for certain bioboxes due to
variability in the drying efficiency data. While slight variations in efficiency are observed, an ANOVA
test confirms no statistically significant differences in performance among the bioboxes, indicating
consistent operation.

4.4. Influence of Amount of Waste Loaded into the Bioboxes on Drying Efficiency

Figure 4 illustrates the relationship between the amount of waste filled into the
bioboxes and the resulting drying efficiency.
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Figure 4. Scatter plots illustrating the relationship between the amount of waste filled into bioboxes
and drying efficiency. The left panel shows the distribution of data points, while the right panel
includes a fitted linear regression line (slope = 0.59), indicating that for every additional ton of waste
filled, drying efficiency increases by approximately 0.59%. A moderate positive correlation (r = 0.41)
is observed, suggesting that larger waste loads are associated with slightly higher drying efficiencies.

In the left panel, the scatter plot illustrates the relationship between the amount of
waste filled into the bioboxes and drying efficiency (%). Each data point represents an
observation, revealing the distribution and variability of drying efficiency across different
input volumes. The plot highlights a general trend where higher tonnage corresponds
to slightly improved drying efficiency, though the variation in data points suggests other
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factors may also contribute to this relationship. In the right panel, the scatter plot includes
a linear regression line that quantifies the relationship between tonnage filled and drying
efficiency (%). The regression line, derived from a statistical model, demonstrates a positive
trend, indicating that drying efficiency increases slightly as the amount of waste filled into
the bioboxes rises.

The regression analysis reveals a moderate positive correlation (r = 0.41) with a
statistically significant relationship (p < 0.00001), suggesting that higher input tonnage
contributes to slightly improved drying efficiency. This improvement is likely due to
enhanced heat retention and thermal dynamics during the biodrying process, which are
more effective in larger waste loads. Together, these visualizations offer a clear depiction of
the interaction between waste tonnage and process efficiency, providing critical insights for
optimizing biobox loading strategies in biodrying operations.

A multiple linear regression model was constructed to predict drying efficiency based
on the following three key predictors: the amount of waste loaded into the bioboxes
(“Loaded (t)”), the biobox number, and the month of operation. The target variable was the
percentage of water removed during the biodrying process. To ensure a robust evaluation
of the model, the dataset was divided into training (80%) and testing (20%) subsets. The
regression equation derived from the analysis is as follows:

Dry.e f f ic.(%) = 0.46 ∗ (Loaded (t))− 0.034 ∗ (Biobox no.)− 0.36 ∗ (Month) + 49.96 (3)

The analysis produced an R-squared value (R2) of 0.25, indicating that the model
explains 25% of the variability in drying efficiency (“Dry. Effic.”). While this suggests some
predictive power, a significant portion of the variability remains unexplained, pointing
to the influence of additional factors not included in the model. The Mean Squared Error
(MSE) of 34.90 reflects the average squared difference between the predicted and actual
drying efficiencies. Among the predictors, “Loaded (t)” had the strongest positive influence,
with a coefficient of 0.46. This indicates that for every additional ton of waste filled,
drying efficiency increased by approximately 0.46%. The “Month” variable showed a
small negative impact (−0.36), suggesting that drying efficiency slightly decreases in later
months, potentially due to seasonal variations. The biobox number (“Biobox no.) had a
negligible negative influence (−0.034), demonstrating minimal variation in performance
across different bioboxes. This model highlights the importance of operational factors
such as input tonnage and seasonality in influencing biodrying efficiency. However, the
relatively low R² value underscores the need to incorporate additional predictors, such as
ambient temperature, humidity, and waste composition, to improve the model’s accuracy
and provide a more comprehensive understanding of the biodrying process.

4.5. Seasonal Variations in Drying Efficiency

The analysis of seasonal trends shown in Figure 5 revealed significant variations in
drying efficiency across the months.

The ANOVA test showed a highly significant difference in efficiency between months
(p < 0.00001). The line plot indicated that the lowest efficiencies were observed in the
summer and fall months, particularly in July, August, September, and October. This
suggests that environmental factors, such as temperature and humidity, may play a role in
drying efficiency.

The drying efficiency by season is shown in the bar plot in Figure 6.
According to the analysis, spring had the highest average drying efficiency (28.4%),

followed by winter (25.5%). Summer and fall had the lowest efficiencies, both averaging
around 22.6%. It can be concluded that drying efficiency is generally lower during the
warmer months, which aligns well with the findings of the seasonal trends analysis.
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Figure 6. A bar plot comparing the average drying efficiency across the four seasons. Spring exhibits
the highest average efficiency (28.4%), while summer and fall have the lowest, both around 22.6%.
This indicates lower efficiency during the warmer months, likely due to environmental factors.

5. Discussion
The results of this study demonstrate the effectiveness and stability of the biodry-

ing process using Herhoff Rotteboxes®. By applying Statistical Process Control (SPC)
techniques, particularly control charts, we were able to monitor the key performance
indicator—weight reduction—and assess the consistency of the process over multiple
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biodrying cycles. The analysis provides valuable insights into both the stability and the
efficiency of the process, with implications for optimizing waste management operations.

5.1. Process Stability and Control

The X-bar control chart (Figure 1) demonstrates that the biodrying process using Her-
hoff Rotteboxes® exhibits overall stability, with most data points falling within the upper
and lower control limits. This stability is crucial for maintaining consistent performance in
waste management operations. However, the presence of occasional outliers exceeding the
control limits suggests instances of special cause variation that warrant further investiga-
tion. These outliers could be attributed to factors such as variations in waste composition,
environmental conditions, or operational parameters, which have been shown to influence
biodrying performance [4,21–24]. The mean drying efficiency of approximately 28%, al-
though promising, falls below the desired lower specification limit of 30%. Other studies
have achieved drying efficiencies higher than 30%, but with longer drying times [25–27].
This underperformance indicates the need for process optimization. Similar challenges in
achieving target drying efficiencies have been reported in other biodrying studies and were
related to aeration rates, waste characteristics, and other factors [28,29].

5.2. Biobox Performance Variability

The boxplot analysis (Figure 3) reveals slight variations in drying efficiency across
the 12 bioboxes, although the differences are not statistically significant. This relative
consistency in performance across the bioboxes is advantageous for overall process man-
agement. However, the lack of significant differences also suggests that there might be
systemic factors affecting all bioboxes similarly, which could be targeted for overall process
improvement.

5.3. Influence of Amount of Waste Loaded into the Bioboxes on Drying Efficiency

The moderate positive correlation (r = 0.41) between the amount of waste filled into
the bioboxes and drying efficiency (Figure 4) is a noteworthy finding. This relationship
suggests that larger tonnages of waste loaded into the bioboxes tend to achieve slightly
higher drying efficiencies. These findings are in agreement with the study by Bosily et al.,
which also found that the efficiency of the biodrying process is influenced by various
geotechnical factors, such as the initial moisture content, organic content, bulk density,
dry density, particle density, and porosity [30]. One possible explanation for the observed
finding is that the biological component of municipal solid waste (MSW) has a relatively
high density [31]. Consequently, bioboxes loaded with higher-density material may contain
a greater proportion of biological material. This results in higher temperatures during
aerobic degradation, which in turn enhances convective drying of the material [32–34].
This observation aligns with the findings of Velis et. al [3], who noted that the scale of oper-
ation could influence biodrying performance. The statistical significance of this correlation
(p < 0.00001) underscores its importance in process optimization. Waste management facili-
ties might consider optimizing the loading of bioboxes to maximize efficiency, balancing
this against other operational constraints and safety considerations.

The multiple linear regression model developed to predict drying efficiency revealed
several important insights into the biodrying process. With an R-squared value of 0.25, the
model explains 25% of the variability in drying efficiency, indicating that, while it captures
some key factors, there are likely additional variables influencing the process that were
not included in this analysis. Among the predictors, the amount of waste loaded into
the bioboxes had the strongest positive influence, with a coefficient of 0.46. This suggests
that, for every additional ton of waste filled, drying efficiency increased by approximately
0.46%, aligning with the earlier observed moderate positive correlation (r = 0.41) between
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waste load and efficiency. There are several other studies that have also analyzed the
influence of different parameters on the biological treatment of waste (anaerobic digestion
and biodrying), but they did not specifically address the effect of bulk densities of waste
on biodrying efficiencies [35,36]. The model also captured a slight negative impact of
the “Month” variable (−0.36), supporting the observed seasonal variations in efficiency.
Interestingly, the biobox number had a negligible negative influence (−0.034), confirming
the earlier finding of consistent performance across the different bioboxes. While the
model provides valuable insights, its relatively low explanatory power suggests that
other factors, such as waste composition, ambient temperature, humidity, and microbial
activity, may have a more significant impact on the biodrying process [21,23,26,37]. Future
research should aim to incorporate these additional variables in order to develop a more
comprehensive predictive model for optimizing biodrying operations.

5.4. Seasonal Variations in Drying Efficiency

The significant variations in drying efficiency across the months (Figure 5) and seasons
(Figure 6) provide valuable insights into the environmental factors affecting the biodrying
process. The lower efficiencies observed during summer and fall months (July to October)
suggest that ambient temperature and humidity play crucial roles in the biodrying process.
This seasonal effect aligns with observations by Zhang et al. [12], who reported that envi-
ronmental conditions significantly impact biodrying performance. Other authors observed
similar findings during the biological treatment of waste [38,39]. The highest average dry-
ing efficiency in spring (approximately 28%) compared to the lowest in the summer and fall
(around 22%) indicates a need for seasonal adjustments in process parameters. This finding
is particularly important for waste management facilities operating in regions with distinct
seasonal variations. Operators might consider modifying aeration rates, retention times, or
other operational parameters during warmer months to compensate for reduced efficiency.

5.5. Process Optimization Opportunities

The consistent underperformance relative to the 30% target efficiency, coupled with
the observed seasonal variations, highlights several opportunities for process optimization,
as follows:

Seasonal adjustments: Implementing adaptive control strategies that account for
seasonal variations in temperature and humidity could help to maintain a more consistent
performance year-round. This can include adjustments to the biodrying times, as suggested
by some studies [4,40], or mixing fresh waste with landfilled waste, as suggested by the
study of Widyarsana et al. [41]. The study tested different ratios, identifying a 1:1 mixture
as the most effective, achieving a moisture reduction of 9–29.1%.

Waste characterization: Given the potential influence of waste characteristics on
drying efficiency, more detailed characterization of incoming waste streams could provide
valuable insights for process optimization. This approach is supported by Sugni et al. [14],
who emphasized the importance of waste properties in biodrying outcomes.

Advanced process control: The implementation of more sophisticated control strate-
gies, such as those suggested by Tom et al. [16], could help to reduce variability and
improve overall efficiency. This might include real-time monitoring and adjustment of
aeration rates based on temperature and moisture content data.

Optimized loading: The positive correlation between waste volume and drying effi-
ciency suggests that optimizing the loading of bioboxes could improve overall performance.
However, this must be balanced against practical constraints and safety considerations.
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5.6. Limitations and Future Research Directions

While this study provides valuable insights into the biodrying process using Herhoff
Rotteboxes®, several limitations should be acknowledged, as follows:

This study does not account for detailed waste composition or initial moisture content,
which could provide a more nuanced understanding of process performance. Environmen-
tal parameters, such as ambient temperature and humidity, were not directly measured,
limiting our ability to quantify their impact on the process. The analysis focuses on weight
reduction as the primary performance indicator, while other factors, such as calorific value
improvement or biological stability, were not assessed.

Future research could address these limitations by incorporating detailed waste char-
acterization and tracking of initial moisture content to better understand their influence on
drying efficiency. Additionally, monitoring and analyzing environmental parameters along-
side process data could help to quantify their impact and develop predictive models for
process performance. Expanding the range of performance indicators to include factors such
as calorific value improvement, which is crucial for waste-to-energy applications, would also
be beneficial. Furthermore, investigating the microbial dynamics during the biodrying process
could optimize biological activity and potentially enhance drying efficiency.

In conclusion, this study demonstrates the effective application of SPC techniques to
monitor and analyze the biodrying process in Herhoff Rotteboxes®. The findings highlight
the overall stability of the process while identifying the key factors influencing drying effi-
ciency. By addressing the identified areas for optimization and conducting further research,
waste management facilities can enhance the efficiency of biodrying operations, contribut-
ing to improved resource recovery and reduced environmental impact in municipal solid
waste management.
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