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Pharmacogenomics (PGx) is one of the core elements of personalized medicine. PGx information reduces
the likelihood of adverse drug reactions and optimizes therapeutic efficacy. St Catherine Specialty Hos-
pital in Zagreb/Zabok, Croatia has implemented a personalized patient approach using the RightMed R©

Comprehensive PGx panel of 25 pharmacogenes plus Facor V Leiden, Factor II and MTHFR genes, which is
interpreted by a special counseling team to offer the best quality of care. With the advent of significant
technological advances comes another challenge: how can we harness the data to inform clinically action-
able measures and how can we use it to develop better predictive risk models? We propose to apply the
principles artificial intelligence to develop a medication optimization platform to prevent, manage and
treat different diseases.
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online: 17 January 2020
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Pharmacogenomics as a cornerstone of personalized medicine
According to England’s National Health Service, personalized medicine can be defined as the tailoring of medical
treatment to the individual characteristics of each patient. The approach relies on scientific breakthroughs in our
understanding of how a person’s unique molecular and genetic profile influences susceptibility to certain diseases
and predicts which medical treatments will be safe and effective, and which ones will not [1].

The traditional path of drug development which has marked the 20th century, has been based on identifying
therapies which target an entire population. However, over time, we have come to recognize that patients bear
distinctive familial traits which cause variations in response to therapy, and we have tailored treatments based on
these traits. Over the years, there has been a gradual paradigm shift from the traditional approach of ‘one drug fits
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Table 1. Genes-drugs interaction with the highest level of clinical relevance (Clinical Pharmacogenetics
Implementation Consortium guidelines recommend a change in prescribing of the affected drug based on
evidence that includes consistent results from well-designed, well-conducted studies).
Classification of genes Example of genes Drug examples Effect Ref.

I. Genes involved in the first
phase of drug metabolism
– cytochrome P450 enzymes

CYP2C9 Phenytoin, warfarin Certain genotype may influence drug
substrate metabolism – consequent
changes in drug efficacy and safety

[18,19]

CYP2C19 Amytriptiline (es)citalopram, sertraline,
clopidogrel, voriconazole

[20–25]

CYP2D6 Tricyclic antidepressants, atomoxetine,
codeine, tramadol, fluvoxamine,
paroxetine, ondansetron, tropisetron,
tamoxifen

[20,24–27]

CYP3A5 Tacrolimus [28]

CYP4F2 Warfarin [19]

II. Genes involved in the second
phase of drug metabolism

UGT1A1 Atazanavir Safety – risk of hyperbilirubinemia [29

III. Other genes involved in drug
metabolism

TPMT/NUDT15 Azathioprine†, mercaptopurine†,
thioguanine†

Efficacy and safety [30]

DPYD Capecitabine, tegafur, fluorouracil Safety – increased drug toxicity [31]

IV. Genes for drug transporters SLCO1B1 Simvastatin Safety – risk of myopathy [32]

V. Genes for drug targets VKORC1 Warfarin Efficacy [19]

CFTR Ivacaftor‡ Efficacy [33]

VI. Genes for other proteins
important for drug action and
safety

HLA-A (Ox)carbamazepine Safety – increased risk of SJS/TEN [34]

HLA-B (Ox)carbamazepine‡, abacavir‡,
fosfo(phenytoin), allopurinol

Safety – increased risk of SJS/TEN [18,35,36]

IFNL3 Peginterferon-alfa2a and 2b, ribavirin Efficacy [37]

G6PD Rasburicase‡ Toxicity – risk of hemolysis [38]

CACNA1S/RyR1 Inhalational
anesthetics/suxamethonium

Toxicity – increased risk of malignant
hyperthermia

[39]

†Testing recommended (according to FDA).
‡Testing required (according to FDA).

all’ to a more personalized, patient-oriented treatment [2,3]. Today, medicine embraces a more predictive, preventive,
participatory and personalized approach to patients, health and diseases. This so-called P4 medicine faces a lot of
challenges and barriers but offers just as many opportunities for the improvement of care and therapy outcomes [4].

Statistics demonstrate that over 4 billion prescriptions are issued each year in the US, however, only around
50% of them show the expected therapeutic efficacy. In the US alone, the direct and indirect cost of chronic pain
management can range from $560 to 635 billion annually [5–7]. Adverse drug reactions (ADRs) account for up
to 7% of all hospital admissions, up to 20% of re-admissions and are the fourth leading cause of death. Their
estimated cost is $136 billion annually [8–11]. Genetic factors can account for up to 95% of an individual’s drug
response [12] and are estimated to contribute to as much as 20% of the total number of reported ADRs [8,9].

Historically, the concept of personalized medicine had its first mention in a monograph title in 1998 [13]. While
some of the field’s core concepts date back to the early 1960s, the basic idea can be credited to the Canadian
physician, Sir William Osler (1849–1919) who recognized that no two individuals react or behave alike under the
abnormal conditions we know as disease [14]. The advancement of new technologies, including SNP genotyping
and microarray/biochips, have been among the key drivers for the implementation of personalized medicine in
practice [2,15,16].

Considering challenges in contemporary medicine, knowledge about the influence of genetic variation on
drug response might be of great importance in predicting therapeutic outcome. Dosage adjustments according
to the patient’s genotype for certain drugs and drug classes have already been implemented into relevant clinical
guidelines (Table 1). In fact, NIH-funded resource called the ‘Pharmacogenomics Knowledgebase’ (PharmGKB) is
dedicated to the curation and dissemination of pharmacogenomic (PGx) information [17]. Drug labels containing
PGx information are approved by regulatory agencies worldwide, including: the US FDA, the EMA and the
Pharmaceuticals and Medical Devices Agency of Japan.

An accomplishment of PGx and personalized medicine that can be emphasized is therapy adjustment according
to CYP450 polymorphisms [40]. This family of enzymes is responsible for the metabolism of the majority of drugs.
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Variations in highly polymorphic genes that code for some of the CYP enzymes influence their ability to metabolize
certain drugs and consequently lead to differences in efficacy and safety in select patients. Poor metabolizers (PMs)
have less active or inactive alleles that can cause drug overdose or an increase in toxicity. Conversely, ultrarapid
metabolizers (UMs) who express multiple copies of a particular gene may experience lack of efficacy. The opposite
effects are expected for prodrugs (e.g., clopidogrel, codeine), which can be non-effective in PM, while in UM,
increased serum levels of active compounds along with the increased risk of toxicity are seen. Pharmaceutical
companies investigate the metabolic pathways of potential new drugs in the early phases of drug development and
it is now common for variations in CYP genes to be tested in patients during clinical trials [41,42].

The rise in ‘omics’ studies and exploration in recent years has generated more data whose interpretation requires
methods well beyond the grasp of traditional statistical techniques. A massive influx of data relevant to disease
symptoms, diagnostics, biomarkers, therapy, adverse effects – among others, has been collected over time. Thus,
there is an obvious need for AI-powered platforms that allow the analysis and discovery of patterns in heterogeneous
clinical data sets to improve overall patient care and ensure more prompt diagnostics.

Data-driven and networks-driven thinking and methods will play a critical role in the emergence of personalized
healthcare [43]. Big Data is defined as “high-volume, high-velocity and high-variety information assets that demand
cost-effective, innovative forms of information processing for enhanced insight and decision-making” [44]. The
powerful merge between Big Data analytics and PGx will allow us to analyze, catalog, differentiate and utilize
factors that contribute to a patient’s drug response.

Big Data in biomedicine: the emerging role of AI
Artificial intelligence (AI) is making strides in various scientific fields, and biomedicine is no exception. The
implementation of AI is of great interest in drug discovery, clinical trials, diagnostics, imaging and the overall
healthcare system (i.e., risk management, remote patient monitoring, hospital management) [45]. Furthermore, the
involvement of IT companies such as Google, Amazon or IBM into healthcare is becoming commonplace, applying
AI principles to everything from medical devices to lifestyle management solutions [46].

Alan Turing conceptualized the idea of AI in the 1950s by developing a test which measured a machine’s ability
to exhibit intelligent behavior equivalent to that of a human [47]. During 1960s and 1970s computer programs
ELIZA and PARRY were created by Joseph Weizenbaum and Kenneth Colby, respectively. While ELIZA, one
of the first chatterbots, was developed to simulate conversations and give users an illusion of understanding, the
PARRY implemented a crude model of the behavior of a paranoid schizophrenic [48]. In 1997 the AI concept gained
more attention from the public, because the Deep Blue computer, specifically designed for playing chess, beat the
famous chess player Kasparov [49]. Shortly thereafter, the core of AI became the training of computer algorithms to
perform cognitive behavior (i.e., learning or problem solving) associated with human intelligence [45,46].

To understand AI, some of the basic concepts have to be identified. As an application of AI, machine learning
(ML) aims to enable machines to perform their work skillfully by using intelligent software. Statistical learning
methods constitute the backbone of intelligent software that is used to develop machine intelligence. The term
machine learning means to enable machines to learn without programming them explicitly. There are four general
subtypes of ML: supervised, unsupervised, semi-supervised and reinforcement learning methods. The objectives
of ML are to enable machines to make predictions, perform clustering, extract association rules or make decisions
from a given dataset [50].

While ML algorithms are based on predefined engineered features with explicit parameters based on expert
knowledge, deep learning (DL) algorithms, as a subset of ML, are designed to continually evaluate data with a logic
structure analogous to how a human would make conclusions. To be able to do this, DL uses layers – algorithms
called artificial neural networks (ANN), specifically deep neural networks (DNN). As such, ANN/DNN are more
advanced to ML given their own rule-association and pattern discovery capacity. In contrast, if the ML algorithm
makes a wrong outcome prediction, then a human has to act and make an adjustment to the core formula [45,51–53].

As part of the clinical decision algorithm, the presence and utilization of AI models in PGx implementation will
be seen at different stages: from patient selection (stratification) to the changes in the prescription guidelines.

One of the critical components of the broad-scale implementation, and therefore, the democratization of PGx,
will be using AI methods for the stratification of patients. This requires high-complexity data analytics for the
categorization of patients into subpopulations which can be selected in the design of clinical trials or the clinical
scenario. Such data includes: sociometric data, demographic data and heterogeneous biomedical data [54].
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Figure 1. SWOT analysis of artificial intelligence implementation in clinical practice (in the context of pharmacogenomics). In this
schematic view, the SWOT analysis summarizes all the features of introducing AI into clinical practice and patient care.
ADR: Adverse drug reaction; ANN: Artificial neural network; AI: Artificial intelligence.

We believe that DL algorithms will play a significant role in overcoming the challenges associated with the
implementation of PGx data in the electronic health record (EHR), as it will address the high dimensionality of
the EHR data structure, noise, heterogeneity, sparseness, incomplete data fields, random error, systematic biases
and the extraction of relevant clinical phenotypes among others. Related to PGx, DL could play a critical role in
individual drug response prediction as well as in medication selection and dosing, all based on data analysed from
big data databases [54].

In the following paragraphs we briefly analyze some strengths, weaknesses, opportunities and threats of AI
implementation in clinical practice, especially in the context of PGx (Figure 1).

Strengths
In 2018, the FDA approved 14 algorithms for diagnostic image interpretation [45]. Additionally, in the Labowitz
et al. study, the application of a sophisticated mobile application that used AI to visualize the patient and anticoagu-
lant drug ingestion, resulted in adherence improvements in patients on anticoagulation therapy [55]. In biomedicine,
especially in the patient care field where PGx is an integral component, AI can provide benefits on many levels
(Figure 1.). For example: in therapy management (i.e., simplifying result interpretations, adherence monitoring)
and risk predictions for pharmacologists or pharmacists; for healthcare systems in providing cost and time savings;
and lastly, for patients so they can monitor their health status [45,46]. Cost-savings as a result of AI-related initiatives
in healthcare are estimated to be $300 billion per year in the US, or 0.7% of GDP [56].
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Unsupervised ML algorithms can be deployed to discover patterns, correlations and structure that emerge from
this Big Data. The use of AI in this dimension of the field of biomedicine is commonly seen and successfully
applied in pharmacovigilance studies [57,58]. In addition, the combination of big data and ML algorithms could
help with patient recruitment and selection for clinical trials but it could also enable patients to seek enrollment
themselves [59].

Weaknesses
On the other hand, the limitations of AI have already been observed, and there are obstacles that need to be overcome
(Figure 1). AI has to be powered by large data sets and the collection of such data can be challenging. Another
challenge is to develop algorithms that can query heterogeneous data sets containing genomic, transcriptomic,
proteomic and activomic data [60].

Though AI provides value to the clinical decision-making process, the importance of human intelligence, cannot
be overstated. For example, although drug–drug interaction databases do exist as a clinical decision support tool,
human interpretation is required to assess the many clinical factors that may impact a patient’s drug response and
to weigh the risks and benefits of certain drug combinations [60,61].

Opportunities
PGx represents one field of medicine where the application of ML algorithms can not only optimize medication
choice and dosage but even predict ADRs. A most recent example demonstrated that validated PGx markers
combined with a patient’s clinical measures, specifically total baseline depression scores, could accurately predict
SSRI remission/response in patients with major depressive disorder (MDD) [62]. Companies like OneOme (https:
//oneome.com/home-international) are also applying ML principles to the development of a PGx risk stratification
platform for patient populations. In this case, patients are assigned a PGx risk score based on medication history
and utilization, level of evidence supporting drug–gene interactions for current medications as well as their clinical
history of ADRs.

Additionally, AI could be used to process a large amount of data present in multifactorial diseases (i.e., psychiatric
disorders). By processing available information, disease models could be built with predictable outcomes. By
simultaneously analyzing data from various sources and at different points in time, a continuous model could be
developed using updated content [63].

In surgical settings, AI algorithms could assist surgeons in pre- and post-operative care, decision-making as well
as prevention of illnesses, providing an interdisciplinary approach to patient care. This includes interpretation of
radiologic findings, pathologic findings, healing prognosis – among others [64].

In countries and populations with limited resources, AI could be a critical tool for improving healthcare. By
assisting the predictive, diagnostic and therapeutic processes, AI becomes a powerful ally in a setting which is
resource-limited. Furthermore, the digitalization of healthcare could be augmented by connecting the neural
networks among countries with varying levels of development with the goal being the improvement of the general
health of both the developing as well as developed countries [65].

Threats
There are several recognized issues and threats related to AI (Figure 1). For example, there is the infamous case of
IBM’s Watson making a dangerous recommendation in a particular oncology case. The patient was newly diagnosed
with lung cancer and showed evidence of severe bleeding [66]. Watson’s recommendation was a combination
chemotherapy and bevacizumab, despite an FDA black box warning that the drug was contraindicated in patients
experiencing severe bleeding. However, it must be taken into consideration that the algorithm was based on a
small number of synthetic cases with very limited real data obtained from oncologists. This may raise a question
about liability: is the developer or the operator responsible for making the wrong therapy recommendation? It was
additionally argued that the state of AI hype has far exceeded the state of AI science, especially when it pertains to
validation and readiness for implementation in patient care [45]. If AI were to be introduced into clinical practice
prior to its optimal readiness, the potential mistakes might discourage the use of AI in its entirety.

Another important issue is related to potential breaches of protected health information and the possibility that
this information might be used to cause harm. There has to be governmental legislation and proper policy and
advocacy to mitigate such risks [45,46]. The General Data Protection Regulation (GDPR) has been implemented in
the EU as a very strict policy that protects EU citizens from any harm resulting from data breaches. However, it
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is also an obstacle in some cases, preventing the full implementation of AI into the healthcare system [46]. There is
also the issue of distrust and suspicion stemming from patients. How much time or how many generations have to
be raised in a machine-trusted era to end the suspicion? [67].

It is also important to reassure that no algorithm is meant to replace a physician’s expertise and experience;
instead it must be seen as a supplementary clinical tool [68].

The role of PGx in therapy optimization: opportunities & limitations
Although one might argue that the conventionally used ‘trial-error’ approach leads to positive clinical outcomes
for the majority of treated patients, some of them may suffer from either a lack of therapeutic response or serious
adverse reactions as demonstrated in the following examples.

Warfarin is a common anticoagulant used in clinical practice with highly variable response rates. Traditional
clinical practice suggests that treatment be initiated at a fixed dose at first and adjusted according to the patient’s
international normalized ratio (INR). This takes time and requires full cooperation from the patient. Using PGx,
warfarin dosing is made simpler and more reliable, as inter-individual variability in more than 60% of the patients
can be explained by the analysis of CYP2C9, VKORC1 and CYP4F2 variants combined with the patient’s age and
weight [3,69].

With a big data-driven tool, it is possible to integrate and even generate predictive impact models for most of the
known factors that influence anticoagulation therapy response in patients, such as: age, race, height, weight, lifestyle,
liver disease, amiodarone use, statin use, any ‘ azole’ use, any ‘sulfa’ antibiotic, clinical indications, current INR,
target INR, as well as the phenotype implications of CYP2C9, VKORC1, CYP4F2, all of which have an essential
role in estimating the loading and maintenance dose of warfarin. DL algorithms have shown some advantages in
this dosing process as well, including: high power and accuracy, ability to model nonlinear effects, interpretation
of large genomic data sets, robustness to parameter assumptions and dispense with normal distribution test. For
example, random forest regression, boosted regression tree and support vector regression models were utilized to
predict warfarin maintenance dose in African–Americans. More than 70% of patients in low and median dose
subgroups have been appropriately predicted with an ANN algorithm [70].

Another example in which the importance of PGx cannot be overstated, is in the case of severe cutaneous
adverse reactions (SCARs). It was previously thought that SCARs are idiosyncratic or unpredictable. However, the
relationship between HLA alleles and drug-induced SCARs has been demonstrated for several drugs. One example
is that of carbamazepine or phenytoin-induced Stevens–Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN)
associated with the HLA-B*15:02 allele among the Han Chinese in Taiwan. Another one is allopurinol-induced
SJS/TEN in patients with the HLA-B*58:01 allele. With this drug–gene characterization, the prevention of SCARs
is possible [71].

A recent case report in a pancreatic adenocarcinoma patient showed the importance of a personalized medicine
approach. The patient was homozygous for the UGT1A1∗28 allele and a heterozygous carrier of a no-activity
allele DPYD variant. Deficiencies in the enzymatic function of UGT1A1 and DPYD caused by genetic polymor-
phisms may result in decreased metabolism of irinotecan and 5-fluorouracil (5-FU), leading to increased risk for
chemotherapy-induced toxicity. The patient had received a reduced dosage of FOLFIRINOX (chemotherapeutic
protocol which consists of folic acid, 5-FU, irinotecan and oxaliplatin) and the dosage was adjusted based on the
results of PGx testing. The treatment had been well-tolerated with no evidence of severe ADRs after the adminis-
tration of five cycles. Importantly, at one of the last follow-ups, MRI examination showed a reduction in the size of
the tumor. Without appropriate testing, the tolerability of the therapy and consequently, the efficacy, would have
been compromised [72].

Moreover, genotype results might prove to be of crucial importance in better characterizing interethnic differ-
ences in drug response and may help to better inform drug development [73]. The availability of genetic information
from diverse ethnic groups would serve to broaden the knowledge on population genetics and already documented
differences in global and local populations, in addition to creating data for previously undocumented popula-
tions [74]. The discovery of population-distributed rare single nucleotide variations could also be achievable with a
next-generation sequencing type of assay in the future [75].

Besides genome composition, other factors, such as epigenetic components and environmental inputs can affect
the phenotype which leads to a change in the clinical drug response. Epigenetics is the study of heritable phenotype
changes, through chromatin modifications and remodeling. The potential of epigenetic application in medicine
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is vast. It will be possible to test the relevance of epigenetic components in specific diseases, to exploit them as
prognostic and diagnostic markers, and to use them as actionable targets for therapy [76].

Another example is the phenomenon of phenoconversion. For example, the co-administration of a drug that is
a strong inhibitor of drug metabolism enzymes (DME) can significantly change the biotransformation rate of drug
substrates of the respective enzymes. Thus, a person with the genotype of an extensive metabolizer (EM) could
become a PM over time. Although this type of phenoconversion is transient, it can persist for weeks after strong
inhibitors are discontinued. This is related to the half-life of the inhibitor and its affinity for the DME that it
inhibits. Similarly, phenoconversion is also related to some diseases, like advanced cancer, where the future activity
of CYP2C19 was found to be severely compromised, resulting in a PM status in 37% of the patients who had a
normal genotype [77].

We should not forget the societal impact and broader perspective. Pharmacoeconomics data show that ADRs
may cost the US healthcare system up to 30.1 billion dollars annually due to increased hospitalizations, extended
hospital stays, additional clinical investigations and increased pharmacotherapy costs [78]. For these reasons alone,
personalized prescribing should be considered as a cost-mitigation strategy. At the center of this personalized
approach is PGx testing, which performed once can provide lifetime benefits. In fact, a 2016 systematic review of
studies (80 studies in total) published between August 2010 and September 2014 investigating the cost–effectiveness
of PGx screening tests showed that 55% of studies concluded that PGx testing was cost-effective, 16% of studies
showed that PGx was cost-saving and 13% showed that PGx was cost-dominant, which is defined as resulting
in clinical benefits as well as cost-savings. Despite the study’s findings that PGx testing is a cost-effective or cost-
saving strategy in most cases, we acknowledge the limitations and uncertainties in the studies themselves, including
assumptions made with regards to the availability of tests results for clinical decision-making purposes, the cost of
the PGx test and most importantly, the lack of clinical evidence supporting PGx testing [79].

An example of the potential of PGx in cost-saving can be found in its application in the choice of treatment
of MDD. Due to the current trial-and-error treatment strategies, MDD presents an important opportunity to
demonstrate the cost–effectiveness of PGx testing. MDD affects 16 million adults aged 15–44 in the US and is
currently the leading cause of disability worldwide [80,81]. At current prevalence rates of 12–20% among all depressed
patients in the US, treatment-resistant depression may present an annual added societal cost of $29–$48 billion,
driving the total societal costs of MDD by as much as $106–$118 billion [82]. Due to the compounding effect of
comorbid conditions, MDD is predicted to have the largest associated disease burden by the year 2030. Assuming
a PGx test costs $2000, annual cost-saving predictions are almost $4000 per patient with PGx-guided medication
management [80].

With many cost-effectiveness studies based on real-world data (e.g., based on claims databases or EHRs) still
underway, mathematical modeling studies have made the case for multi-gene PGx panel testing. A recent Markov
model developed by Technomics Research and OneOme, used a systemic review of the literature to estimate direct
costs and estimated probabilities related to treatment-resistant major depression over the course of 1 year of a
patient’s life. Variables included: probability of adverse reaction to therapy, probability of prescription effectiveness,
healthcare utilization probability (hospitalization, ED admission, etc.), healthcare utilization reimbursement (for
ADR-related hospital stay, suicide-related hospital stay, follow-up visits, etc.) and antidepressant reimbursement.
The average direct cost savings were estimated at $560 and as high as $2093 compared with standard of care. With
indirect costs and comorbid benefits being out of scope for this study, the findings suggest that a moderately priced
PGx test can generate substantial cost-savings in as little as a 1 year period [83].

The cost–effectiveness of PGx testing has been studied in other clinical areas as well. A decision-analysis model in
patients with metastatic colorectal cancer showed that UGT1A1 genotype-guided dosing of irinotecan would result
in 25% dose reductions in 11% of patients due to the UGT1A1*28 genotype, translating to potential savings of
$7.96 M across a population of 29,000 cases [84]. Not only has PGx-guided therapy been identified as cost-effective
in treating patients with drugs like irinotecan, azathioprine, warfarin, citalopram, it can even be a cost-saving
strategy [85].

In some fields of medicine, like in anesthesia, the implementation of PGx is still pending the development of
additional evidence before broader implementation into clinical practice [86].

Overview of PGx testing in St Catherine Specialty Hospital
The concept of PGx-guided therapy integrates several levels which are interrelated, starting from DNA profiling
and data analysis, using current molecular methods and bioinformatic tools, leading to result interpretation and
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Table 2. RightMed Comprehensive pharmacogenomics panel provides information on next 25 genes known to affect
how patients respond to medications.
Involvement of genes in drug action Genes of interest

Genes responsible for synthesis of enzymes involved in the first phase of drug
metabolism – cytochrome P450 enzymes

CPY1A2, CYP2B6, CYP2C9, CYP2C19, CYP2C Cluster, CYP2D6, CYP3A4, CYP3A5,
CYP4F2

Genes responsible for synthesis of enzymes involved in the second phase of drug
metabolism

TPMT, UGT1A1

Genes responsible for synthesis of other enzymes that are important for drug
metabolism

DPYD, VKORC1, NUDT15

Genes responsible for synthesis of drug transporters SLC6A4, SLCO1B1

Genes responsible for synthesis of drug receptors HTR2A, HTR2C, DRD2, OPRM1, GRIK4, COMT

Genes responsible for synthesis of other proteins important for drug function IFNL4, HLA-A, HLA-B

decision-making to offer the best available therapy. Continuous education of personnel involved in every step of
this process is a prerequisite for the success of the personalized medicine concept.

St Catherine Specialty Hospital in Zagreb/Zabok, Croatia, which is pioneering the application of personalized
medicine in clinical practice and where hundreds of patients have received PGx testing, understands the importance
of moving into big data-driven clinical support algorithms as the next step to enhancing their internal clinical process.
Essential to this process is ensuring interactive feedback between clinical end-users (physicians and other healthcare
providers) and developers, so that stratification algorithms can be adapted to new insights in disease biology, new
molecular data and changes in clinical settings [87].

At St Catherine Specialty Hospital, patients who are referred for PGx testing are first interviewed by a clinical
specialist during a routine checkup visit. Patients receive detailed information about the testing protocol and are
asked to sign an informed consent form. During the interview a detailed information about personal and family
medical history, specific reason for PGx testing, body mass index, history of allergies, ADR details, a complete list
of drugs including dosage and method of application, over the counter (OTC) drugs, food supplements and even
specific food, as well as tobacco and alcohol consumption is collected. Following that, a buccal sample is taken in
order to obtain DNA from the patient. OneOme’s RightMed test kit (ORACollectDx, DNA Genotek) is composed
of a 1 ml saliva collection tube. Each tube has a unique barcode which is assigned to a specific patient and recorded
in the test requisition form along with the patient’s demographic data. Collected patient data is centralized in
OneOme’s database portal (https://portal.oneome.com/orders/). Once collected, the sample is sent in accordance
with the provided kit instructions to OneOme’s in-house CLIA/CAP-accredited laboratory. The DNA is then
analyzed using the RightMed R© panel (Table 2), developed by OneOme in collaboration with Mayo Clinic and
brought to clinical practice by St Catherine Specialty Hospital. This approach to PGx testing determines SNPs
using a TaqMan real-time PCR method and CNV analysis. Results of the DNA analysis are generated in individual
test reports available in OneOme’s HIPAA-secure portal. OneOme’s data curation and clinical annotations are
performed by a team of clinical pharmacists and scientists, supported by scientific evidence that meets OneOme’s
rigorous inclusion criteria and profesional guidelines (e.g., Clinical Pharmacogenetics Implementation Consortium
(CPIC), Dutch Pharmacogenomics Working Group, French National Pharmacogenetics Network /Group of
Clinical Onco-Pharmacology and Canadian Pharmacogenomics Network for Drug Safety).

Results of PGx testing are then interpreted by a genetic counseling team. The clinical decision support tool used
for drug–gene interaction interpretation as well as possible drug–drug/food/supplements interaction is RightMed R©

Advisor [88]. The interpreted results and clinical recommendations are then presented to the patient by his or her
attending clinician, whose role is to advise on the best pharmacological option based on the main principles of
individualized medicine: the right drug for the right patient at the right time (Figure 2).

Clinical cases from St Catherine Specialty Hospital
Clinical case I
A 66-year-old patient with benign prostate hypertrophy, arterial hypertension, diabetes mellitus type II who
suffered from acute coronary syndrome with stent replacement in his right coronary artery (RCA) has come to the
hospital complaining of nausea and unsatisfactory blood pressure regulation with lisinopril. Bisoprolol, metformin,
rosuvastatin, clopidogrel were the other drugs included in his therapeutic regimen. The patient’s PGx status was
assessed. He had CYP2C19 *1/*2 genotype which corresponds to a phenotype of an intermediate metabolizer.
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Figure 2. A schematic representation of implementation personalized pharmacogenomic based treatment and healthcare system. (A)
The first step is to collect medical and patient history via a specific form followed by a buccal swab for DNA sampling for RT-PCR.
(B) RightMed R© panel comprehensive test processes the pharmacogenomic results using an algorithm. RightMed R© Advisor is being
generated here. (C) Results are then interpreted by a multi-disciplinary team. In addition to drug–gene interactions, the RightMed R©

Advisor platform checks for drug–drug, drug–food (supplement) interactions. (D) The results aid in providing better patient care, superior
therapy outcome and greater drug effectiveness while at the same time reducing the rate of adverse drug reactions.

The implication of this variant is reduced conversion of clopidogrel to its active metabolites and therefore reduced
platelet inhibition and a higher risk for recurrence of a cardiovascular event. Here, proper platelet inhibition is of
great importance due to one stent already replaced in RCA.

It is also important to mention that pantoprazole inhibits CYP2C19 and additionally decreases the levels of
clopidogrel’s active metabolites. The patient was advised to initiate therapy with prasugrel or ticagrelor, instead of
clopidogrel, as they do not undergo the same metabolism and do not have the reported drug–drug interactions
with pantoprazole [89]. Furthermore, clopidogrel increases levels of rosuvastatin which could potentially lead to
myopathy, acute renal injury and liver damage [90]. Lisinopril, an angiotensin converting enzyme inhibitor included
in his daily therapy can increase risk of hypoglycemia [91]. Therefore, the patient was advised to monitor blood
sugar levels closely if he continues to use the above-mentioned drugs concurrently.

Clinical case II
A 75-year-old patient had a fracture of the distal radial bone with the development of osteoporosis on the
same arm which led to painful sensations. Ibuprofen was introduced as a drug of choice for pain management,
however patient’s pain was not managed adequately. Therefore, a combination of tramadol and dexketoprofen was
recommended. Pantoprazole, metformin and rosuvastatin were also included in her therapeutic regimen. After
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coming to the hospital, her PGx profile was assessed. The patient’s CYP2D6 *4/*4*68 genotype corresponded
to a PM phenotype, while the other genotype CYP2C19 *2/*17 corresponded to an intermediate to normal
metabolizer phenotype. Due to the poor activity of CYP2D6, we predicted that tramadol would produce little
therapeutic response since its biotransformation into active metabolite through CYP2D6 is compromised [5]. To
assure optimal pain control, tramadol therapy was discontinued and tapentadol was introduced, which doesn’t
have relevant drug–gene interactions [92]. Furthermore, the patient’s intermediate to normal CYP2C19 activity
can lead to an increased exposure to pantoprazole. We therefore suggested a dose reduction for pantoprazole or
alternatively, a substitution with rabeprazole, a drug that has normal plasma concentrations despite the patient’s
CYP2C19 genotype [93].

Clinical case III
A 55-year-old male patient with history of untreated hypertension, hyperlipidemia, glucose intolerance and chronic
obstructive pulmonary disease suffered ST-elevation myocardial infarction after physical exertion. Upon hospital
admission, coronarography revealed total stenosis of right coronary artery, which was then successfully treated
with percutaneous coronary intervention. Creatine kinase (CK), C-reactive protein, erythrocyte sedimentation rate
(ESR), white blood cells were significantly increased. The patient was treated with anticoagulants, antiarrhythmics,
acetylsalicylic acid, antihypertensives and simvastatin (80 mg/day). Several weeks later, the patient developed
weakness of truncal muscles, most prominent in upper-body and neck, leading to head-drop and myasthenia-like
weakness. CK values increased beyond the initial values and the other laboratory values normalized. EMG of
trapezius showed myopathic changes, nerve conduction velocity (NCV) was normal. Serum CK was 850 U/L,
while myoglobin in urine was positive, as well as antibodies for 3-hydroxy-3-methylglutaryl-coenzyme A reductase
(HMGCR).

The patient’s PGx status was assessed. He had a SLCO1B1 *1A/*17 genotype, indicating a decreased function of
SLCO1B1 (intermediate metabolizer phenotype), with an increased risk of simvastatin-induced myopathy [32]. The
findings suggested both muscle-toxicity with mitochondrial dysfunction and some sort of autoimmune mechanism
involving HMGCR antibodies. Both have been described as side-effects of statin therapy (statins ‘double-hit’).
Simvastatin was, therefore, promptly removed from the therapy and L-carnitine and Co-Q10 introduced. 2 weeks
later, the patient was able to hold up his head while walking (3-4/5) and his CK serum levels have normalized
(S-CK 105 U/L), but a certain level of weakness still remained, in oscillating severity.

Clinical case IV
A 49-year-old female patient was diagnosed with major depressive disorder in 1998, and since then has been
on numerous antidepressants (ADs) without any clinical effect, including amitriptyline, maprotiline, venlafaxine,
fluvoxamine, citalopram, sertraline, sulpiride and paroxetine which is the only AD she is taking now. In 2019, after
21 years of unsucessful treatment, she received PGx testing to determine if there were any significant drug–gene
interactions (DGI).

PGx testing revealed a homozygous CYP2C19 genotype *2/*2, associated with PM phenotype with no to very low
enzyme activity, important for metabolizing amitriptyline, sertraline and citalopram [20,21]. Furthermore, venlafaxine
showed moderate DGI. Due to polymorphisms in HRT2A and kainite GRIK4 encoding for serotonin and kainite
receptors, there is significantly reduced likelihood of response to citalopram therapy [94]. CYP2D6 genotype *4/*35,
an important enzyme for metabolizing fluvoxamine and paroxetine, showed decreased activity [21]. These major
and moderate DGIs, as well as receptor polymorphisms, could explain poor clinical outcomes. The patient was
recommended to take bupropion and/or trazodone which do not undergo the aforementioned metabolic pathways
and have minimal DGIs.

Clinical case V
A 33-year-old chronic myeloid leukemia (CML) patient, came to the hospital for PGx testing. The patient was first
diagnosed with CML in 2004 and had a history of ADRs to tyrosine kinase inhibitors (TKI) imatinib, nilotinib
and dasatinib [95]. Seven years after the diagnosis of CML in 2004 and complete remission on imatinib, ADRs
first occurred. The patient reported pain in the mandible and the extremities. The patient’s therapy changed from
imatinib to nilotinib, but generalized maculopapular rash presented. It was successfully treated with antihistamines.
Nilotinib therapy was then discontinued due to planned pregnancy and the patient experienced a relapse of CML
with BCR-ABL/ABL1 transcripts of 18.9%. Dasatinib was introduced and CML was in remission. 2 years later,
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urine protein levels were elevated (6.19 g/l), as well as erythrocyte sedimentation rate (ESR = 90 mm/3.6 ks). The
diagnosis of nephrotic syndrome was established. Consequently, a reduction to dasatinib dose brought urine protein
level to normal. PGx testing determined that patient’s CYP3A4 enzyme genotype is wild type (*1/*1) associated with
extensive metabolism phenotype, which implies normal rates of TKI metabolism [96]. The finding was inconsistent
with the observed nephrotic syndrome and other reported ADRs. A possible explanation would be a transient
phenoconversion of CYP3A4 to PM phenotype, leading to accumulation of the drug in the patient’s blood, which
can be attributed to inflammation noted by elevated ESR, at the time of the nephrotic syndrome episode [97,98]. This
case shows that indicating a broader approach that recognizes genetic, clinical and epigenomic factors is required
to make an evidence-based decision on personalized therapy regimen, alongside further development of existing
guidelines.

These several case reports show the importance of PGx in providing optimal treatment to patients. By doing
PGx profiling in addition to analyzing other patient-related factors, we have not only prevented potentially severe
ADRs but also assured the best possible therapy. PGx could change the whole paradigm of clinical specialists and
contribute to modifications of their standard postulates by establishing every patient as an individual and thus,
every treatment regimen as unique.

The help of machine learning algorithm in providing best quality of care: experience from St
Catherine Specialty Hospital
As already discussed, the potential of applying AI in PGx is exciting, but challenging at the same time. Firstly,
to create an efficient AI system, foundations are crucial. In the case of St Catherine Specialty Hospital, the
foundations consist of two parts. First, the patient’s general data and complete medical history including past
and current medication use are obtained and transferred into an electronic database. The second part is the
PGx report where genotype-predicted interactions for medications, as well as drug–drug interactions and other
parameters are analyzed. The report also has to be stored electronically so it can be used at any given point
in time. At St Catherine Specialty Hospital, these two components have been implemented in everyday clinical
practice with interdisciplinary team consisting of physicians of various specialties and pharmacists. Furthermore,
proactive (www.invitae.com/en/physician/category/CAT000043/) and diagnostic genetic health screening tests
(www.invitae.com/en/physician/panelsgenes/), which analyze pathogenic genetic variants or variants of uncertain
significance, related to cancers, cardiovascular diseases and some other disorders are also being applied in routine
practice.

After patients leave the clinic, active tracking of their health status is very important. Tracking can be done by
way of smartphone applications, smart watches or other medically approved devices, as well as by routine clinic
visits. All changes in patient health and therapy status need to be updated, reported and stored in an electronic
health record to complement the above mentioned patient-related PGx and medical report. Thus, over time, we
will be able to gather data from thousands of patients in a single electronic record system, presenting an opportunity
to apply AI principles. Along with active patient tracking and by programming AI to query these electronic data
sets, we can train it to observe existing patterns, patient behaviors and health outcome changes and therefore make
new patterns and find solutions to newly formed problems and clinical enigmas. This may include which drugs to
use and and not use for a particular patient, at a particular time. We mustn’t forget the research potential of AI.
With proper training and data collection, AI can find novel correlations and patterns and give great momentum to
researchers and future findings and discoveries.

Conclusion & future perspective
Personalized medicine is the cornerstone of modern medicine. With so many hospital admissions being attributed
to a ‘one-size-fits-all’ prescribing approach and ADRs being the fourth leading cause of death in the US [99], not to
mention the huge economic implications this creates, a tailored approach for every patient is needed. At the center
of this approach should be PGxs with the goal to improve drug safety and efficacy. Furthermore, therapy for each
patient should be designed according to their personal characteristics, health status, lifestyle and pharmacogenetic
profile.

There are still challenges, however. One of them is the implementation of PGx testing in clinical practice on a
much broader level. If this were to be done, patients would easily present their PGx results to a healthcare institution
and the goal of prescribing the right drug for the right patient at the right time would be more readily achieved.
The help of AI specifically for PGx is needed so that large sums of data coming from patients who do PGx tests are
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analyzed altogether rather than case-by-case as it is done today. The results of the application of AI will promote a
better understanding of the heterogeneity in processes that contribute to how a patient reacts to a specific drug at
a specific time and dose, thus; allowing prescribers to tailor, or ‘personalize’, medicines to the nuanced and often
unique features possessed by individual patients [100].

Not only would this make the process faster, but new data on genomic variations, drug–gene, drug–drug
interactions and more could emerge, which could lead to new research and even better quality and more cost-
effective healthcare. Other challenges include the training of physicians who would need to interpret the PGx
results with AI assistance. Furthermore, ethical questions, along with protected health information breaches emerge
as a potential problem. Proper governmental legislation, policy and advocacy are needed to mitigate such risks.
Additionally, the shortcomings of PGx which are seen with the phenomenon of phenoconversion and epigenetics
still need to be addressed by the scientific community.

Although more effort is needed to implement PGx in today’s clinical practice on a broader scale, there’s undeniable
evidence that personalized medicine is the treatment approach of the future and that PGx is at the center of it, with
the benefits of cost reductions and improved quality of care which every healthcare system should value. Though the
development of AI-based technologies in biomedicine is evolving rapidly, its implementation into every day patient
care has not yet become a reality. Therefore, this is an evolutionary not a revolutionary process. We should embrace
the challenges ahead of us and use the available tools to pioneer the application of AI principles to PGx-guided
treatment. This is how future treatments will be made safer, more effective and cost-effective which, in turn, will
benefit us all.

Executive summary

The role of pharmacogenomics in therapy optimization: opportunities & limitations
• The ultimate aim of personalized medicine is to tailor medical treatment to the individual characteristics of each

patient. Pharmacogenomic (PGx) testing has been identified as cost-effective in treating patients with drugs like
irinotecan, azathioprine, warfarin, citalopram and others. Thus, PGx-guided treatment can be cost-effective and
even a cost-saving strategy.

• Even though PGx does provide valuable insights, the impact of environmental factors noticeable in epigenetic
changes and phenoconversion should also be included in the personalized medicine narrative.

Big Data in biomedicine: the emerging role of artificial intelligence
• An increasing amount of data relevant to disease symptoms, diagnostics, biomarkers, therapy, adverse effects

– among others, has been collected largely due to the availability of various diagnostic and therapeutic tools and
global informatization.

• In biomedicine artificial intelligence can provide benefits: in diagnostics; therapy management and risk
predictions; for patients so they can monitor their health status; and for healthcare systems in providing money,
time and personnel savings.

• AI requires the collection of very large data sets, legislative support and well-programmed algorithms in order to
optimize all the tools currently available or in development, which are still lacking.

Overview of PGx testing in St Catherine Specialty Hospital
• St Catherine Specialty Hospital has embraced the personalized medicine concept striving to design the best

available treatment to the patients based on their genotype.
• Patients receive detailed written and oral information about the testing protocol and are asked to sign an

informed consent form.
• The RightMed R© Comprehensive test panel covers 27 genes (CYP1A2, CYP2B6, CYP2C Cluster, CYP2C9, CYP2C19,

CYP2D6, CYP3A4, CYP3A5, CYP4F2, COMT, DPYD, DRD2, F2, F5, GRIK4, HLA-A, HLA-B, HTR2A, HTR2C, IL28B
(IFNL4), MTHFR, NUDT15, OPRM1, SLC6A4, SLCO1B1, TPMT, UGT1A1 and VKORC1) and provides
genotype-derived guidance for more than 300 commonly prescribed medications. The obtained genetic data is
interpreted by St Catherine’s counseling team who additionally take into consideration the patient’s personal,
disease and therapy history to recommend the best quality of care. The counseling team makes use of the clinical
decision support tool, RightMed Advisor, to look at potential drug–drug and drug–drug–gene interactions.

Conclusion & future perspective
• Despite some limitations of artificial intelligence at the current time, contemporary medicine should remain open

to the advancement of new technologies and try to implement them in a patient-centered approach while still
retaining a responsible sense of objectivity.

• PGx AI concept should be integrated into Electronic Health Records to provide decision support as well as to
reduce clinician burnout and improve patient care.

• Moving forward, future treatments should be safer, more effective and cost-effective which will, in turn, benefit
all of society.
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