
Glucocortiocoid Treatment of MCMV Infected
Newborn Mice Attenuates CNS Inflammation and
Limits Deficits in Cerebellar Development

Kosmac, Kate; Bantug, Glenn Robert; Pernjak-Pugel, Ester; Cekinović,
Đurđica; Jonjić, Stipan; Britt, William J.

Source / Izvornik: PLoS Pathogens, 2013, 9

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1371/journal.ppat.1003200

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:184:792777

Rights / Prava: Attribution 4.0 International / Imenovanje 4.0 međunarodna

Download date / Datum preuzimanja: 2025-03-10

Repository / Repozitorij:

Repository of the University of Rijeka, Faculty of 
Medicine - FMRI Repository

https://doi.org/10.1371/journal.ppat.1003200
https://urn.nsk.hr/urn:nbn:hr:184:792777
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://repository.medri.uniri.hr
https://repository.medri.uniri.hr
https://www.unirepository.svkri.uniri.hr/islandora/object/medri:2462
https://dabar.srce.hr/islandora/object/medri:2462


Glucocortiocoid Treatment of MCMV Infected Newborn
Mice Attenuates CNS Inflammation and Limits Deficits in
Cerebellar Development
Kate Kosmac1*, Glenn R. Bantug2¤, Ester P. Pugel3, Djurdjica Cekinovic3, Stipan Jonjic3, William J. Britt1,2,4

1 Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America, 2 Department of Pediatrics, University of Alabama

at Birmingham, Birmingham, Alabama, United States of America, 3 Department of Histology and Embryology, Faculty of Medicine University of Rijeka, Rijeka, Croatia,

4 Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America

Abstract

Infection of the developing fetus with human cytomegalovirus (HCMV) is a major cause of central nervous system disease in
infants and children; however, mechanism(s) of disease associated with this intrauterine infection remain poorly
understood. Utilizing a mouse model of HCMV infection of the developing CNS, we have shown that peripheral inoculation
of newborn mice with murine CMV (MCMV) results in CNS infection and developmental abnormalities that recapitulate key
features of the human infection. In this model, animals exhibit decreased granule neuron precursor cell (GNPC) proliferation
and altered morphogenesis of the cerebellar cortex. Deficits in cerebellar cortical development are symmetric and global
even though infection of the CNS results in a non-necrotizing encephalitis characterized by widely scattered foci of virus-
infected cells with mononuclear cell infiltrates. These findings suggested that inflammation induced by MCMV infection
could underlie deficits in CNS development. We investigated the contribution of host inflammatory responses to abnormal
cerebellar development by modulating inflammatory responses in infected mice with glucocorticoids. Treatment of infected
animals with glucocorticoids decreased activation of CNS mononuclear cells and expression of inflammatory cytokines (TNF-
a, IFN-b and IFNc) in the CNS while minimally impacting CNS virus replication. Glucocorticoid treatment also limited
morphogenic abnormalities and normalized the expression of developmentally regulated genes within the cerebellum.
Importantly, GNPC proliferation deficits were normalized in MCMV infected mice following glucocorticoid treatment. Our
findings argue that host inflammatory responses to MCMV infection contribute to deficits in CNS development in MCMV
infected mice and suggest that similar mechanisms of disease could be responsible for the abnormal CNS development in
human infants infected in-utero with HCMV.
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Introduction

Viral infections in the fetus and young infant are well described

causes of abnormal brain development that often result in

permanent neurological sequelae, including disorders of motor

and cognitive functions. Altered CNS development and neuro-

logic disease have been documented in the developing fetus and

young infant following infection with a number of viruses, such as

herpes simplex virus (HSV), rubella, lymphocytic choriomenin-

gitis (LCMV) and human cytomegalovirus (HCMV) [1–7]. A

variety of mechanisms can lead to interruption of the develop-

mental program of the CNS including: damage to the brain

parenchyma secondary to apoptotic or necrotic loss of resident

cells within the CNS, damage to the supporting vasculature and

microvascular supply of the CNS resulting in decreased blood

flow and/or damage to the blood brain barrier, altered cellular

positioning and disruption of synapse formation leading to a

failure in neuronal connectivity and circuitry formation [8,9]. In

the case of infection with viruses that exhibit specific cellular

tropism, the loss or dysfunction of specific populations of resident

cells within the CNS often underlies disease. In other cases,

cellular tropism is broad and disease is thought to result from

direct viral damage to supporting structures, such as the

vasculature or the glial architecture. Additionally, indirect

mechanisms of disease following CNS infection include viral

induced host inflammatory responses [10,11]. Host responses

following virus infections often lead to more global CNS damage

secondary to the production of soluble effector molecules that can

amplify proinflammatory responses of resident cells as well as

promote cytotoxic activity by effector cells of the adaptive

immune system [12–23]. Although these mechanisms of disease,

as well as other proposed mechanisms, are consistent with clinical

findings in patients with viral encephalitis, a precise description of

the pathogenesis of CNS disease in virus infected human fetuses

and infants is often limited by the lack of informative tissue

specimens.
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Because of limitations inherent in studies of the human CNS,

small animal models have been developed to elucidate mecha-

nisms of disease associated with viral infections of the developing

CNS. These models have utilized a number of different viruses

including HSV, murine cytomegalovirus (MCMV), LCMV,

alphaviruses and more recently West Nile Virus (WNV) [4,24–

30]. Studies of CNS disease following both peripheral and

intracerebral HSV inoculation have described a necrotizing

encephalitis, which is more severe in animals with deficits in

innate and adaptive immunity [31–33]. However, more recent

studies have argued that in addition to the direct cytopathic effects

associated with HSV replication, host derived innate immune

responses contribute to CNS damage in infected mice [34,35].

Similarly, experimental models employing LCMV infection have

provided direct evidence that host-derived inflammation is a major

component of CNS disease [4,36]. In these models, limiting CD8+
virus specific T lymphocyte responses, or more global immuno-

suppression, dramatically reduced the severity of CNS disease

[4,37]. The contribution of immunopathological responses are

particularly relevant to disease in young animals because

expression of inflammatory genes during the dynamic develop-

mental program of the CNS appears to result in a disease

phenotype that differs from that seen in adult animals. Thus,

substantial CNS damage in young infants could result from

infection with viruses that are infrequently pathogenic in adults. In

contrast, an effective immune response does appear to be

necessary to limit the severity of CNS infection with alphaviruses

and WNV [24–26,38–42]. Responses derived from the adaptive

immune system, in particular the production of antiviral antibod-

ies, determine the susceptibility of newborn animals to alphavirus

infection of the CNS [25,38,43,44]. Thus disease outcome in

young animals with viral infections of the CNS reflects a balance

between unregulated inflammation and the control of virus

replication [18,32,45–51].

Intrauterine infection with HCMV is the most common cause of

congenital (present at birth) infection in humans and occurs in

approximately 1/200 live births in the United States [52]. A small

but significant number of newborn infants infected in-utero exhibit

a variety of neurodevelopmental abnormalities secondary to

HCMV infection of the CNS [5,6]. Because little is known about

the mechanisms of disease associated with this intrauterine

infection, we developed a murine model of CNS infection that

utilizes peripheral inoculation of newborn animals with limiting

amounts of MCMV. In contrast to other murine models that have

utilized intracranial inoculations of MCMV almost exclusively, the

model we have developed uses intraperitoneal inoculation of

limiting amounts of MCMV and requires virus replication in the

periphery, viremia and neuroinvasion. These latter features of this

murine model, particularly the hematogenous spread to the CNS,

appear to more closely recapitulate the presumed pathogenesis of

fetal CNS infection with human cytomegalovirus. MCMV infection

of the brain in these newborn mice results in a focal, non-necrotizing

encephalitis with little evidence of specific cellular tropism but with

global and symmetric deficits in brain development [53]. Altered

development occurred in areas of the brain that exhibited no

evidence of viral proteins or nucleic acids, suggesting that

inflammatory responses to infection, and not direct effects of virus

infection, were responsible for the altered development in the brain

of neonatal animals [53]. To determine the potential role of host

derived inflammation as a mechanism of disease in this model, we

first needed to separate the linkage between virus replication and

host inflammatory responses. This was accomplished by treating

young animals with corticosteroids to limit host responses, and

therefore inflammation, during virus infection. Although inflam-

mation in MCMV infected animals was reduced at several levels,

viral replication was unaffected. More importantly, the anti-

inflammatory activity of corticosteroids attenuated the previously

described developmental abnormalities in the cerebella of infected

animals. This finding strongly argued that virus replication was not

a direct cause of the developmental abnormalities within the CNS

following MCMV infection and suggested that inflammatory

responses played a major role in the disease phenotype [53].

Results

Focal MCMV infection of the early postnatal CNS results
in a robust inflammatory response within the CNS

In an earlier report we described altered cerebellar develop-

ment, including delayed cortical lamination, associated with

MCMV infection of the CNS in newborn mice [53]. Disruption

of lamination within the cerebellar cortex was frequently observed;

however, altered lamination in areas immediately adjacent to virus

infected cells was atypical in an overwhelming number of

examined sections. Thus, histologic evidence of direct virus

cytopathology as a cause of abnormal lamination of the cerebellar

cortex was rare (Figure 1A). The predominant histopathologic

findings of this CNS infection were widely distributed foci of virus

infected cells and surrounding mononuclear cells throughout the

cerebrum and cerebellum [53]. In contrast to the focal nature of

virus infection and mononuclear cell infiltration, defects in

cerebellar morphogenesis were global and, most importantly,

symmetric as illustrated by the delayed foliation and reduced

cerebellar area in virus infected animals (MCMV) compared to

uninfected (control) animals at post-natal day (PND) 8 (Figure 1B).

Notably, studies of infants infected in-utero by HCMV have also

described global and symmetric deficits in brain morphogenesis

without a significant component of focal or asymmetric loss of

brain parenchyma, in the majority of documented cases [6,54–61].

From these findings, we have proposed that global alterations in

cerebellar development are likely associated with soluble factors

produced by the host inflammatory response and not related to

direct effects of viral cytopathology.

Author Summary

Intrauterine infection with human cytomegalovirus
(HCMV) is a leading cause of developmental brain damage.
In the U.S., an estimated 2,000 infants a year develop brain
damage as a result of intrauterine infection with HCMV. In
this study, we examined the contribution of host immune
responses induced by CMV infection to abnormal devel-
opment of the CNS by treating neonatal mice infected
with MCMV with glucocorticoids. We found that glucocor-
ticoid treatment of infected mice decreased the inflam-
matory response within the CNS without altering the level
of virus replication. In addition, abnormalities in the
structure of the cerebellum, as well as abnormalities in
granule neuron precursor cell proliferation were normal-
ized in MCMV infected mice following glucocorticoid
treatment. These studies suggest that the host immune
response to CMV infection is damaging to the developing
CNS and that it may be possible to limit CNS disease by
modulating inflammation. Moreover, understanding how
inflammation and the immune response may alter the
developmental program within the CNS could offer
important insight into the mechanisms of disease leading
to abnormal brain development following intrauterine
infection.

MCMV Induced Inflammation Alters CNS Development
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To characterize the nature of the inflammatory response in the

cerebellum of infected animals, we analyzed several immunologic

parameters in the brains of control and infected animals at PND8.

This time point was selected because virus replication in the CNS

was established and deficits in cerebellar development were clearly

observable [53]. Initially, we assayed the phenotype of CNS

mononuclear cells in control and virus infected animals. Although

CD8+ and CD4+ T-lymphocyte infiltrates, peripheral blood

macrophages and activated microglia could be readily detected

in the cerebellar parenchyma at PND14, mononuclear cells were

present in the CNS of MCMV infected mice by PND8, prior to

the detection of infiltrating T-lymphocytes [62]. Mononuclear cells

isolated from control and infected brains were stained with two

markers for tissue macrophages, F4/80, a marker for cells of

myeloid lineage and CD45, a pan-leukocyte marker. The

differential expression of CD45 by F4/80+ cells has been

employed to distinguish between quiescent microglia (low),

activated microglia (intermediate) and infiltrating macrophages

(hi) [63]. In control animals, F4/80+ cells expressing CD45hi/int

were present in low abundance (3.0%) (Figure 2A). We observed

an increase in the proportion of CD45hi/intF4/80+ cells in the

CNS of infected mice (9%) (Figure 2A) [62]. Furthermore, MHC

class II expression was increased in this population of cells in

MCMV infected mice, a finding consistent with the activation of

these cells following infection (Figure 2B). These results demon-

strated an increase in the inflammatory response within the CNS,

including increased activation of resident macrophages and

recruitment of peripheral blood macrophages early in infection,

prior to the appearance of virus specific CD8+ T-lymphocytes. To

further define the activation state of brain macrophages in the

CNS of MCMV infected mice, cerebellar sections from PND8

control and infected animals were stained with anti-Iba-1, a

marker for activated microglia/macrophages [64,65]. In sections

from the cerebella of control mice, few Iba-1+ cells were observed

(Figure 2C). However, the number of Iba-1+ cells in the

cerebellum was significantly increased following infection with

MCMV (Figure 2C). In addition, Iba-1 staining was observed in

the meningial layer within the cerebellum of MCMV infected

animals, suggesting an infiltration of cells from the periphery

(Figure 2C). Importantly, cellular infiltrates and activated mono-

nuclear cells in the cerebellum were readily detected in the

parenchyma of the cerebellum and not limited to foci of virus

infected cells (data not shown), suggesting that the generalized

inflammation observed in the brains of MCMV infected mice was

induced by soluble mediators produced in response to virus

infection. Finally, we attempted to determine the frequency of Iba-

1+ cells with an ameboid morphology suggestive of activated

microglia and/or macrophages as compared to Iba-1+ cells with a

ramified morphology consistent with quiescent or resting microg-

lia/macrophages. We found cells consistent with both morphol-

ogies in infected and control animals but were unable to

definitively assign differences in populations between the two

experimental groups (data not shown).

Given the increase in the number of Iba-1+ cells and the

increased activation of CD45hi/intF4/80+ cells, we next quantified

the expression of inflammatory cytokines in virus-infected

cerebella by quantitative real time PCR. We selected several

proinflammatory cytokines, as well components of interferon

Figure 1. Neonatal infection with MCMV results in a focal encephalitis with global deficits within the cerebellum. A. Expression of
immediate early gene 1, protein pp89 (IE-1) (green) in the cerebellum, a non-structural protein encoded by MCMV very early in infection, PND8, 606.
Note the focal nature of infection in the external granule cell layer (EGL) of the cerebellar cortex. B. Cresyl violet staining showing a global effect of
virus infection on cerebellar area and folia development, 46. Note the smaller size, delayed foliation and delayed fissure formation in the cerebellum
of infected animals.
doi:10.1371/journal.ppat.1003200.g001

MCMV Induced Inflammation Alters CNS Development
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induced responses (IFIT1 and STAT1), as markers for inflamma-

tion in the cerebella of infected animals. The expression of TNFa
(10-fold), IFNb (7-fold), STAT1 (10-fold) and IFIT1 (175-fold)

were significantly increased in infected animals as compared to

control animals (Figure 2D). Together, these results demonstrated

that by PND8 activated cells of the innate immune response and

proinflammatory cytokines were present in the developing

cerebellum of mice infected with MCMV as newborns.

Treatment of virus-infected mice with corticosteroids
decreases CNS inflammation

Thus far our findings suggested that soluble factors produced by

the inflammatory response to virus infection in the CNS were

responsible for the global alterations in cerebellar development.

Endogenous glucocorticoids have been demonstrated to protect

against immune-mediated pathology in MCMV infected adult

mice, suggesting that treatment with glucocorticoids could alter

the pathological changes in the CNS of MCMV infected newborn

mice [66,67]. To examine the effects of glucocorticoid treatment

on postnatal cerebellar development, control and MCMV infected

mice were treated with dexamethasone (dexa), a glucocorticoid

with potent anti-inflammatory activity, which has been routinely

used in the treatment of CNS inflammation in both clinical

medicine and experimental animal models of human disease

[17,68–72]. Control and MCMV infected newborn mice were

treated daily with dexa or vehicle on PND4-6 and liver, spleen,

brain and cerebellum were isolated from all groups on PND8.

There was no significant difference in the number of plaque

forming units (PFU) of virus in the spleen, liver or brain of dexa

treated/infected animals when compared to vehicle treated/

Figure 2. Infiltration of inflammatory cells and induction of proinflammatory cytokines in the brains of MCMV infected mice. A.
Percentage of CD45hi/int, F4/80+ mononuclear cells in the brain following infection with MCMV, PND8. Plots are representative of 1 of 4 replicates,
n = 4 mice pooled/replicate. B. Expression of MHC Class II, gated on CD45hi/int, F4/80+ population. Histogram is representative of 1 of 4 replicates, n = 4
mice pooled/replicate. C. Expression of Iba-1 (red), a marker for activated macrophages/microglia, and TOPROIII (blue), a nuclear marker, in the
cerebellum of control and infected mice at PND8, 206, scale bars = 50 mm. The number of Iba-1+ cells was quantified from 4 sections/animals, n = 8
mice/experimental group. Data are shown as mean +/2 SEM. P values were calculated using a two-tailed T test. D. Inflammatory gene expression in
the cerebellum of control and infected mice at PND8. Data are shown as mean +/2 SEM. P values were calculated using a two-tailed T test, n = 5
mice/experimental group.
doi:10.1371/journal.ppat.1003200.g002

MCMV Induced Inflammation Alters CNS Development
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infected animals, signifying that treatment with dexa had minimal

effects on viral replication (Figure 3A). We next assessed whether

dexa treatment exhibited an anti-inflammatory effect following

MCMV infection. Dexamethasone significantly reduced the

frequency of CD45hi/intF4/80+ macrophages in the brains of

infected mice compared to vehicle treated/infected mice

(Figure 3B). Interestingly, the frequency of CD45lo F4/80+ cells

was reduced in the brains of MCMV infected mice as compared to

control and dexa treated mice suggesting that the number of

quiescent, or resting, microglia was decreased in infected animals,

perhaps secondary to an increase in activated microglia in this

experimental group ( Figure 3B). A reduction of MHC class II

expression in this population was also observed in dexa treated/

infected mice (data not shown). Similarly, the number of Iba-1+

cells was significantly decreased in the cerebellum of dexa treated/

infected mice compared to vehicle treated/infected mice

(Figure 3C). Consistent with the findings described above, the

expression of IFIT1 was significantly decreased in the cerebellum

of infected animals following treatment with dexa (Figure 3D). We

also determined that dexa treatment normalized the expression of

IFIT2 and STAT1 in the cerebellum of MCMV infected mice

(Figure 3D). Together, these results demonstrated that dexa

treatment decreased inflammation in the CNS of MCMV infected

animals without significantly altering levels of virus replication.

Treatment of MCMV infected mice with dexamethasone
normalizes cerebellar development, but has significant
off-target effects

The finding that dexa treatment of MCMV infected mice

significantly reduced the inflammatory response in the CNS raised

the possibility that dexa treatment could also prevent the aberrant

cerebellar development observed following infection. Dexameth-

asone treatment of infected mice normalized the expression of the

developmentally regulated genes gli1 and N-myc (both effectors of

the sonic hedgehog (SHH) pathway responsible for granule neuron

proliferation), as well as GABRA6 (a marker for granule neuron

differentiation) and CDK5 (primarily expressed in differentiated

neurons) (Figure 4A) [73–75]. Notably, some of these genes have

previously been shown to be altered following MCMV infection

[53]. However, dexa treatment of control animals also resulted in

a significant reduction in the expression of both GABRA6 and

CDK5 in the cerebellum when compared to control animals

receiving only vehicle (Figure 4A). These differences in expression

were not due to an effect of dexa on transcription because the

expression of Zic2, a transcription factor expressed predominantly

in granule neuron progenitors, was unaltered following treatment

(Figure 4A) [76]. Morphometric measurements from the cerebella

of infected mice demonstrated that the increased thickness of the

EGL, previously associated with delayed migration of granule

neuron progenitors, appeared to have been normalized following

treatment with dexa (data not shown). However, the EGL in dexa

treated/control animals was decreased in thickness compared to

vehicle treated/control animals (data not shown). Dexamethasone

treatment of control mice also resulted in a significant decrease in

cerebellar area when compared to vehicle treated/control mice

(Figure 4B). In addition, the cerebellar area of dexa treated/

infected animals was further decreased compared to vehicle

treated/infected animals (Figure 4B). Importantly, we did not

observe a significant increase in activated caspase 3 staining in

sections from these mice, indicating that increased apoptosis of

granule neuron progenitor cells (GNPCs) did not contribute to the

reduced size of the cerebellum in dexa treated/infected animals

(data not shown). These findings suggested that dexa treatment of

MCMV infected mice resulted in significant off-target effects in

cerebellar development, a result that would limit the interpretation

of findings from our studies of cerebellar development in dexa

treated animals. Similar off-targets effects of dexa on cerebellar

development have been previously described and thought to be

secondary to the anti-proliferative effects of this specific glucocor-

ticoid on GNPCs [77,78]. Finally, our findings raised the

possibility of an additive effect of dexa and MCMV infection on

cerebellar development.

Treatment of MCMV infected mice with prednisolone
normalizes altered cerebellar development

The off-target effects of dexa on cerebellar development have

been attributed to the resistance of this glucocorticoid to

inactivation by 11b-hydroxysteroid dehydrogenase type 2 (11b-

HSD2), an enzyme which is highly expressed in the postnatal

cerebellum in rodents as well as humans [78–80]. This enzyme is

induced by SHH during development of GNPCs in the cerebellar

cortex and appears to be protective in terms of limiting both the

apoptotic and anti-proliferative effects of corticosteroids

[78,79,81,82]. In contrast to dexa, other glucocorticoids such as

hydrocortisone and prednisolone can be inactivated by 11b-HSD2

and have not been associated with the level of off-target effects

observed following treatment with dexa [78]. Thus, we repeated

the previous experiments using prednisolone (pred), a corticoste-

roid with predominant glucocorticoid activity, which has also been

used to attenuate inflammation associated with infections of the

CNS, both in animal models and clinical medicine [69,83–86].

Control and MCMV infected newborn mice were treated once a

day on PND4-7 with vehicle or pred. This time course of

treatment was necessary secondary to the shorter in-vivo half-life

of pred compared to dexa (Figure 5A) [87,88]. Initially, we

determined the effects of pred treatment on virus replication in

MCMV infected mice. We found no significant difference between

the level of virus replication in the liver or brain of pred treated

animals compared to vehicle treated/infected animals. However,

minimal increases in viral genome copy number were observed in

both the spleen and cerebellum of pred treated/infected animals

(Figure 5B).

We next determined the effect of pred treatment on the

frequency of Iba-1+ cells in the cerebellum of both uninfected and

MCMV infected mice. As described previously, the number of

Iba-1+ cells was increased in the cerebellum of MCMV infected

mice compared to control mice (Figure 5C). Following pred

treatment, the frequency of Iba-1+ cells was reduced in MCMV

infected animals (59% reduction) compared to vehicle treated/

infected animals (Figure 5C). The number of Iba-1+ cells in pred

treated/control animals was not significantly different from the

number of positive cells in the cerebellum of vehicle treated/

control animals (Figure 5C). The observed reduction of Iba-1+

cells in the cerebellum of pred treated/infected mice indicated that

pred decreased macrophage/microglia activation in the CNS of

newborn mice following MCMV infection. In agreement with our

previous findings, treatment of infected mice with pred also

decreased the frequency of CD45hi/intF4/80+ macrophages in the

CNS of infected mice (Figure 5D). Treatment of control animals

with pred had no significant effect on either the CD45hi/intF4/80+

macrophage population or the CD45lo F4/80+ resting microglial

population (Figure 5D). The observed reduction of Iba-1+ cells in

the cerebellum and the decreased percentage of CD45hi/intF4/80+

macrophages in the CNS of pred treated/infected mice indicated

that pred decreased the number of activated macrophage/

microglia in the CNS of newborn mice following MCMV

infection.

MCMV Induced Inflammation Alters CNS Development
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Figure 3. Treatment of MCMV infected neonates with dexamethasone decreases infiltration of inflammatory cells and expression
of interferon stimulated genes in the CNS without increasing levels of virus replication. A. Infectivity assay showing viral titers in the liver,
spleen and brain of infected mice treated with vehicle or dexamethasone (dexa). Each circle represents plaque forming units (PFU)/mg of tissue for an
individual animal, p values calculated using two-tailed T test. B. (Top) Dot plots showing the percentage of CD45lo and CD45hi/int, F4/80+

mononuclear cells in the brain of infected animals following treatment with dexa, gated on mononuclear cells. Plots are representative of 1 of 4
replicates. (Bottom) Bar graphs showing the percent of CNS mononuclear cells that are CD45lo and CD45hi/int, F4/80+ macrophages. Data are shown
as mean +/2 SEM, n = 4 mice pooled/replicate, 4 replicates/experimental group. P values calculated using one-way ANOVA. C. (Top) Bar graph
depicting the number of Iba-1+ cells within the cerebellum of vehicle treated or dexa treated MCMV infected mice. Data are shown as mean +/2 SEM.
The number of Iba-1+ cells was quantified from 4 sections/animal, n = 5–8 mice/experimental group. P values calculated using two-way ANOVA.
(Bottom) Representative Iba-1 staining depicting activated macrophages within the cerebellum of vehicle treated or dexa treated infected mice,
PND8, 206 scale bars = 50 mm. (Left) Iba-1-red, TOPROIII-blue, (Right) Black and white rendering of immunofluorescent images to increase contrast,
white signals represent Iba-1 staining. D. Quantitative real-time PCR analysis of transcription of IFIT1, IFIT2 and STAT1 in the cerebellum of infected
mice following treatment with dexa. Data are shown as mean +/2 SEM, fold change normalized to control = 1, n = 5 mice/experimental group. P
values calculated using two-way ANOVA.
doi:10.1371/journal.ppat.1003200.g003

MCMV Induced Inflammation Alters CNS Development
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We next determined the effects of pred treatment on the

expression of proinflammatory cytokines previously shown to be

elevated in the cerebellum following MCMV infection (Figure 2D).

Consistent with the findings described above, we observed a

reduction in the transcription of TNFa (25%), IFNb (70%) and

IFIT1 (65%) within the cerebellum of MCMV infected mice

treated with pred (Figure 6A). Pred treatment also decreased

cytokine levels of IFNb (25%) and IFNc (43%) within the

cerebellum (Figure 6B). Interestingly, cytokine levels of TNFa
were not affected following pred treatment. These results

illustrated that treatment with pred could attenuate MCMV

induced inflammation in the CNS independent of changes in virus

replication, thereby uncoupling the level of virus replication and

the host inflammatory response within the cerebellum.

Prednisolone treatment ameliorates inflammation
associated cerebellar morphogenic abnormalities in
MCMV infected mice

Since treatment with pred significantly reduced the inflamma-

tory response in the CNS and has been reported to lack the off-

target effects observed with dexa, we next determined if pred

treatment could also limit the abnormal development of the

cerebellum that was observed in MCMV infected animals.

Because of the large number of mice used in these experiments,

the variation in animal size and the size dependent variation in

brain area, we normalized measurements of cerebellar area

between experimental groups by expressing cerebellar area as a

percentage of brain area. The ratio of cerebellar area/brain area

was found to be similar for pred treated/control and pred treated/

infected animals when compared to vehicle treated/control

animals; however, vehicle treated MCMV infected mice showed

a significant reduction in this ratio (Figure 7A). These results

confirmed the decrease in cerebellar area previously observed

following infection with MCMV and, more importantly, demon-

strated normalization of altered cerebellar size in infected mice by

treatment with pred. These findings were consistent with our

hypothesis that inflammatory mediators, released in response to

MCMV infection, were a primary cause of altered cerebellar

development.

In addition to the decrease in cerebellar area, we have

previously documented an increase in the thickness of the EGL

in MCMV infected animals [53]. Since treatment of infected mice

with pred lead to normalization of cerebellar area, we next

determined whether this treatment would also normalize the

increased thickness of the EGL following infection. As expected,

the EGL was thicker in MCMV infected mice compared to

control mice. This abnormality in cerebellar development was

corrected in infected mice following treatment with pred

(Figure 7B, D). There was no measureable difference in the

thickness of the EGL in control animals treated with pred

compared to vehicle treated/control animals (Figure 7B, D). To

determine if the increase in the thickness of the EGL following

Figure 4. Treatment with the glucocorticoid dexamethasone normalizes developmental gene expression in the brains of infected
mice but leads to cerebellar hypoplasia. A. Cerebellar expression of developmentally regulated genes from uninfected and infected mice
treated with vehicle or dexa analyzed by quantitative real-time PCR. Data are shown as mean +/2 SEM, fold change normalized to control = 1, n = 5
mice/experimental group. P values calculated using two-way ANOVA. B. Quantification of cerebellar area (expressed as a percentage of total brain
area) in mice treated with vehicle or dexa. Data are shown as mean +/2 SEM, measurements were taken from 5 sections/mouse, n = 5–7 mice/
experimental group. P values were calculated by two-way ANOVA.
doi:10.1371/journal.ppat.1003200.g004
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infection was secondary to an increase in cellularity, the number of

GNPCs in the EGL was quantified. Consistent with an increase in

thickness, we found an increase in the number of GNPCs within

the EGL following infection (Figure 7C). Concomitant with

normalizing the increased thickness of the EGL, treatment of

infected mice with pred also normalized the number of GNPCs

within the EGL. We did not find any significant difference in the

number of GNPCs in the EGL between vehicle treated/control

animals or pred treated/control animals (Figure 7C). The

normalization of MCMV induced abnormalities in the morpho-

genesis of the cerebellar cortex following treatment with pred

demonstrated that we could limit morphogenic abnormalities

within the cerebellum of infected mice by modulating inflamma-

tory responses.

Prednisolone attenuates inflammation associated
impairments in cerebellar granule neuron precursor
differentiation

Previously, we documented that following infection, morpho-

logical deficits within the cerebellum coincided with a significant

reduction in the transcription of developmentally regulated genes

expressed within GNPCs [53]. Since pred treatment reduced

inflammation and corrected morphological deficits within the

cerebellum of infected mice, we hypothesized that pred treatment

could also correct abnormalities in the transcription of these

genes. Similar to our studies using dexa, we assayed gli1, N-myc,

GABRA6 and CDK5 expression in the cerebella of uninfected

and MCMV infected mice treated with vehicle or pred.

Consistent with our previous findings, expression of both

GABRA6 and CDK5 was decreased following infection with

MCMV when compared to control mice (Figure 7E). Following

treatment with pred the expression of both genes was normalized

within the cerebella of MCMV infected mice. Similarly, the

transcription of gli1 and N-myc was elevated in the cerebellum

following infection and treatment of infected mice with pred

decreased the expression of both genes (Figure 7E). Importantly,

pred treatment had no effect on the transcription of gli1, N-myc,

GABRA6 or CDK5 in control animals (Figure 7E). As a control,

the expression of Zic2 was analyzed and was found to be similar

in the cerebella of all groups (Figure 7E) [76]. These results

indicated that decreasing inflammation in MCMV infected

animals by treatment with pred normalized the expression of

developmentally regulated genes in the absence of measurable

off-target effects.

Figure 5. Treatment with prednisolone decreases the infiltration of inflammatory cells into the brain of MCMV infected mice. A.
Schematic showing the time course of MCMV infection and prednisolone (pred) treatment. B. Quantitative real-time PCR for IE-1 showing viral
genome copy number in the liver, spleen, brain and cerebellum of infected mice treated with vehicle or pred. P values calculated by Mann-Whitney
test, n = 22–25 mice/experimental group for liver, spleen and brain; n = 5–7 mice/experimental group for cerebellum. C. (Top) Quantification of Iba-1+
cells in the cerebellum of vehicle or pred treated, control and infected mice. Data shown as mean +/2 SEM. P values calculated by two-way ANOVA.
Iba-1+ cells were counted in 4 sections/animal, n = 6 mice/experimental group. (Bottom) Panels of representative sections analyzed by confocal
microscopy showing Iba-1 staining (red) and TOPROIII (blue) in the cerebellum of control or infected mice treated with vehicle or pred. Panel below
represents black and white rendering of immunofluorescent images to increase contrast, white signals represent Iba-1+ cells. All images taken at 206,
scale bars = 50 mm. D (Left) Representative dot plots showing the percentage of CD45lo and CD45hi/int, F4/80+ macrophages in the brain of vehicle or
pred treated animals, gated on mononuclear cells. Plots are representative of 1 of at least 3 replicates, n = 4 mice pooled/replicate. (Right) Bar graphs
showing the percentage of mononuclear cells that are CD45lo and CD45hi/int, F4/80+ macrophages in the CNS. Data are shown as mean +/2 SEM,
n = 4 mice pooled/replicate, 3–5 replicates/experimental group. P values were calculated using two-way ANOVA.
doi:10.1371/journal.ppat.1003200.g005

Figure 6. Treatment of infected neonatal mice with prednisolone decreases the expression of proinflammatory cytokines and
interferon stimulated genes in the brain of MCMV infected mice. A. Quantitative real-time PCR analyzing the transcription of TNFa, IFNb and
IFIT1 in the cerebellum. Fold changed normalized to control = 1. Data shown as mean +/2 SEM. P values calculated by two-way ANOVA, n = 5 mice/
experimental group. B. Concentration of TNFa, IFNb and IFNc in the cerebellum of PND8 control and infected mice treated with vehicle or pred. Data
are shown as mean +/2 SEM, n = 3 cerebella pooled/replicate, 3 replicates/experimental group. P values were calculated using two-way ANOVA.
doi:10.1371/journal.ppat.1003200.g006
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Altered granule neuron proliferation following MCMV is
corrected subsequent to treatment with prednisolone

In MCMV infected mice, the upregulation of gli1 and N-myc

was inconsistent with the deficit in GNPC proliferation observed

in our previous studies [53]. This suggests that an alternative

mechanism could be responsible for the deficit in GNPC

proliferation within the cerebellum of infected mice [53]. Given

our previous findings (increased thickness of the EGL, decreased

GNPC differentiation, decreased GNPC migration to the IGL and

decreased thickness of the IGL), we postulated that a block or

delay within the GNPC cell cycle, downstream from the actions of

gli1 and N-myc, would be most consistent with our observations.

The failure of GNPCs to complete a program of proliferation in

the EGL would prevent their differentiation and subsequent

Figure 7. Treatment with the glucocorticoid prednisolone limits altered morphogenesis and developmental gene expression in the
cerebella of MCMV infected mice. A. Cerebellar area of control or MCMV infected mice treated with vehicle or pred. Data are shown as mean +/2
SEM. Stereological measurements from 5 sections/mouse, n = 5 mice/experimental group. P values calculated using two-way ANOVA. B. External
granule cell layer (EGL) thickness in vehicle or pred treated control and MCMV infected mice. Data are shown as mean +/2 SEM. EGL thickness was
determined from 4 measurements/section, 8 sections/mouse, n = 6–8 mice/experimental group. P values calculated using two-way ANOVA. C.
Granule neuron progenitor cells (GNPCs) in the cerebella of control and infected mice treated with vehicle or pred. Data are shown as mean +/2 SEM.
GNPC numbers from 8 sections were counted per mouse, n = 5–6 mice/experimental group. P values calculated using two-way ANOVA. D.
Representative cerebellar sections showing a thickening of the EGL following MCMV infection that is corrected with pred treatment, 606, scale
bars = 20 mm. EGL containing GNPCs are shown in white, the adjacent molecular layer is shown in black. E. Transcription of developmentally
regulated genes within the cerebellum of vehicle or pred treated, control and infected mice. Data are shown as mean +/2 SEM. Fold change
normalized to control = 1, n = 5 mice/experimental group. P values calculated using two-way ANOVA.
doi:10.1371/journal.ppat.1003200.g007
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migration into the IGL. This mechanism would also account for

the increased cellularity of the EGL and the decreased cellularity

of the IGL in infected animals [53,89–91]. To investigate this

possibility, PND8 animals were injected with BrdU, a marker of

cells in S phase. Serial sections from the cerebellum were stained

with antibodies reactive with BrdU and Ki67, a marker of cycling

cells, and the number of positive cells was quantified for each

marker (Figure 8A). No difference was observed in the percent of

total GNPCs that were positive for Ki67 in the EGL of MCMV

infected animals compared to control animals (Figure 8B).

However, a decrease in the percent of cycling cells (Ki67+)

positive for BrdU was detected in infected animals when compared

to control animals (Figure 8C). The decrease in BrdU reactivity

within GNPCs of infected mice was therefore not secondary to a

decrease in the overall number of cells in the cell cycle. Moreover,

the previously described minimal level of apoptosis of GNPCs in

either group of animals indicated that there is likely a block or

delay in the cell cycle of GNPCs following infection [53].

If the inflammatory response in the CNS of infected mice

contributed to the block/delay in the proliferation of GNPCs, our

results described above would argue that the anti-inflammatory

effects of pred could alleviate this block and restore the

proliferative capacity of GNPCs in the EGL. Analysis of Ki67

expression in pred treated groups revealed that the percent of

GNPCs in the cell cycle was similar to that of infected or control

animals that were treated with vehicle (Figure 8B). When

compared to vehicle treated/control animals there was no

significant difference in the percent of BrdU+ cells in EGL of

Figure 8. Treatment with the glucocorticoid prednisolone normalizes granule neuron progenitor cell proliferation in MCMV
infected mice. A. Representative images of brain sections depicting the expression of cell cycle markers in the EGL of control or infected mice
treated with vehicle or pred; BrdU (green), Ki67 (red), TOPROIII (blue), 606, scale bars = 20 mm. B–C. Stereological quantification of BrdU+ and Ki67+

GNPCs in the EGL of vehicle or pred treated, control and infected mice. Data are shown as mean +/2 SEM, 8 sections were counted per mouse, n = 5–
6 mice/experimental group. P values calculated using two-way ANOVA. Vehicle treated control vs. MCMV were significantly different (p#.001) as
determined by two-tailed T test. D. (Top) Detection of phospho-cyclin B1 and cyclin B1 in the cerebellum by immunoblotting. Actin loading control
shown at bottom. Each lane represents 2 cerebella pooled, n = 2 lanes/experimental group. (Bottom) Densitometry showing the expression of p-
cyclin B1, relative to actin, in the cerebellum of vehicle or pred treated, control and infected animals. Data are representative of 3 replicate blots. P
value calculated by two-way ANOVA. Control vs. MCMV were significantly different (p#.02) as determine by two-tailed T test.
doi:10.1371/journal.ppat.1003200.g008
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pred treated/infected animals indicating that pred treatment of

infected animals normalized the deficit in GNPC proliferation

associated with MCMV infection (Figure 8C). Importantly, the

percent of BrdU+ GNPCs in the EGL of pred treated/control

animals was not significantly different from vehicle treated/control

animals. Together, these findings argue that pred treatment

alleviated alterations in the cell cycle of GNPCs that were

associated with MCMV infection. Furthermore, these results

support our hypothesis that modulating the inflammatory response

following MCMV infection could limit deficits in cerebellar

morphogenesis, likely through reversing the delay in GNPC

proliferation.

To further define the disruption in the cell-cycle of GNPCs

following infection we assayed the levels of two cyclins, cyclin D1

and cyclin B1, in control and MCMV infected mice. Levels of

cyclin D1 were not significantly different between control or

infected animals, suggesting that infection with MCMV did not

alter the signals associated with entry of GNPCs into G1 (data not

shown) [92]. Similarly, pred treatment did not alter cyclin D1

levels in infected or control animals (data not shown). Although

there was no observable difference in the levels of total cyclin B1

expression between infected and control mice (Figure 8D), the

level of phosphorylated-cyclin (p-cyclin) B1, a marker for G2/M,

was decreased within the cerebella of infected animals compared

to control animals (Figure 8D) [93,94]. Together with the

decreased number of BrdU+ GNPCs, this data further argued

for a block/delay in the cell cycle following infection. Cerebella

from both control and MCMV infected mice treated with pred

displayed levels of p-cyclin B1 that were similar to vehicle treated/

control mice (Figure 8D). Although this data did not reveal the

precise point where cell cycle progression was delayed, it further

confirmed that altered development of the cerebellum in infected

animals was associated with delayed proliferation of GNPCs

within the EGL. Treatment with pred corrected this deficit and

normalized the morphological abnormalities within the cerebel-

lum following infection. These results were consistent with a

mechanism in which the developmental abnormalities associated

with focal encephalitis in MCMV infected newborn mice resulted

from the host inflammatory response as opposed to a direct virus-

mediated mechanism.

Discussion

Previously we have shown that intraperitoneal inoculation of

newborn mice with MCMV resulted in a focal CNS infection that

involved all regions of the brain that but did not exhibit specific

cellular tropism [53]. Histologically, the foci consisted of a small

number of virus-infected cells, mononuclear cells and reactive

astroglial cells [53]. Although there was no observable difference

in the size of the cerebrum between infected and uninfected

animals, cerebellar hypoplasia was readily apparent in infected

animals and was associated with delayed foliation and decreased

area of the cerebellar cortex, findings attributable to the decreased

proliferation of GNPCs within the EGL [53]. Morphogenic

abnormalities of the cerebellar cortex included increased thickness

of the EGL, decreased thickness of the IGL, abnormal arboriza-

tion of Purkinje neuron dendrites and thinning of the molecular

layer [53]. Interestingly, the altered morphogenesis of the

cerebellum was symmetric even though foci containing virus

infected resident cells and infiltrating mononuclear cells were

scattered widely throughout the parenchyma of the cerebellum.

These later findings strongly argued that the developmental

abnormalities were secondary to a soluble mediator generated

during virus-induced inflammatory responses in the CNS and not

from direct cytopathic effects of virus infection. In this report, we

have described findings consistent with this mechanism; specifi-

cally, evidence that attenuation of inflammatory responses in

infected mice, by treatment with anti-inflammatory glucocorti-

coids, normalized developmental abnormalities in the cerebellum

without affecting the level of virus replication.

Our results demonstrated that several measures of GNPC

proliferation were altered in MCMV infected mice, including a

decrease in the frequency of cells in S phase and a decrease in the

levels of phospho-cyclin B1 within the EGL of MCMV infected

mice. Several explanations could account for these findings,

including a decrease in the number of GNPCs entering the cell

cycle, premature exit of GNPCs from the cell cycle and a block or

delay in the cell cycle of GNPCs following infection. Premature

exit of GNPCs from the cell cycle represented an obvious

explanation for the decreased cerebellar size but other measures

of GNPC proliferation were inconsistent with this explanation.

The increased cellularity of the EGL following MCMV infection

and the similar percentages of Ki67+ GNPCs in infected and

control mice argued that there was no difference in the number of

GNPCs entering the cell cycle nor was there an increased number

of GNPCs exiting the cell cycle. Because we found a decrease in

certain markers of proliferation but no change in the number of

cycling GNPCs following MCMV infection in this study as well as

in a previous study, a more consistent interpretation of our data is

that the cell cycle of GNPCs in the EGL is prolonged in MCMV

infected animals [53]. Prolongation of the cell cycle could delay

the completion of the programmed proliferation and subsequent

differentiation of GNPCs that is required for normal morphogen-

esis of the cerebellar cortex. Variation in the rate of cell division of

GNPCs in the EGL has been described, suggesting that the

duration of the cell cycle in these cells is not autonomous and can

be influenced by extracellular cues [90,95,96]. Though we have

not fully characterized the nature of this alteration in the cell cycle

of GNPCs, it was reversible, in that the delay was corrected when

MCMV infected animals were treated with glucocorticoids.

Although a unifying mechanism for the normalization of

cerebellar development in pred treated MCMV infected mice

remains incompletely described, our results were most consistent

with a decrease in the inflammatory response in the CNS leading

to normalization of the proliferative capacity of GNPCs in the

cerebellar cortex. This mechanism is based on previous studies

that have demonstrated that GNPCs undergo what is thought to

be a programmed number of cell divisions prior to exiting the cell

cycle, entering a differentiation program and then migrating from

the EGL into deeper layers of the cerebellar cortex [90,95,96].

This well choreographed developmental pathway has been

extensively studied and many of the molecular signals associated

with this pathway have been described [74,91,95–100]. We are

proposing that if the cell cycle of GNPCs is prolonged, subsequent

to inflammation in the cerebellum, then normal morphogenesis of

the cerebellar cortex fails to take place and the expression of

developmentally regulated genes that depend on differentiation

and correct cellular positioning will be delayed. Findings from this

study are consistent with a reversible, generalized slowing of the

GNPC cell cycle in infected mice. Reversal of this slowing could be

expected to result in a rebound in GNPC proliferation, permitting

the completion of the developmentally programmed cell divisions,

differentiation into migrating granule neurons, migration into the

IGL and expression of the associated differentiation genes. The

reversibility of this mechanism is consistent with the partial

resolution of defects in cerebellar development observed in vehicle

treated MCMV infected mice following virus clearance and

regulation of the inflammatory response later in infection [53].
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Additional support for the reversibility of a slowing of the cell cycle

has been reported in a study of 11b-HSD2 2/2 transgenic mice

treated with corticosterone [79]. Findings from this study

demonstrated a rebound in the cerebellar area and the size of

the IGL in these transgenic mice following withdrawal of steroid

treatment [79]. Even though the effector molecules and pathways

that lead to altered proliferation of GNPCs and cerebellar

development in this model of a human CNS infection remain

undefined, such a mechanism could argue for a common pathway

leading to the developmental abnormalities associated with

inflammation following infection of the developing brain of the

fetus and newborn infant by a number of microbial agents.

Alteration in the rate of proliferation of progenitor cells in the

developing CNS could lead to deficits in developmental, stage

dependent cell positioning and potentially result in a number of

long term neurological abnormalities.

A recent study that carefully detailed the effects of glucocorti-

coids on the developing cerebellum described several phenotypes

following treatment with different glucocorticoids [78]. These

investigators demonstrated that the phenotypic response of

GNPCs to glucocorticoids was dependent on the presence of

11b-HSD2, an enzyme that is expressed at higher levels in the

cerebella of both newborn rodents and humans as compared to

other regions of the CNS [78–80,101]. Previous studies have

indicated that the inactivation of glucocorticoids by 11b-HSD2

limits the anti-proliferative and apoptotic inducing activities of

endogenous and exogenous glucocorticoids [78,79]. Because

dexamethasone (dexa) is not efficiently inactivated by 11b-

HSD2, treatment of neonatal mice with dexa resulted in increased

GNPC apoptosis (short term treatment) or decreased GNPC

proliferation (chronic treatment), secondary to exit from the cell

cycle presumably from accelerated GNPC differentiation [77,78].

Interestingly, in this study chronic prednisolone (pred) treatment

resulted in an intermediate phenotype due to the inactivation of

this specific glucocorticoid by 11b-HSD2 [78]. Our findings were

consistent with the results presented in this report in that treatment

with dexa, but not pred, resulted in a significant decrease in the

size of the cerebellar cortex in both uninfected and infected mice.

We also noted that in two independent experiments the cerebellar

area in dexa treated/infected mice was smaller than that of both

dexa treated/control mice or vehicle treated MCMV infected

mice. These findings suggested that the effects of dexa and

MCMV infection were additive and raised the possibility that the

effect of dexa on GNPC proliferation in this setting differed from

those that followed MCMV infection. Interestingly, dexa treat-

ment did result in normalization of the expression of genes

associated with GNPC differentiation (GABRA6 and CDK5) in

the absence of normalization of GNPC proliferation, a finding

consistent with accelerated GNPC differentiation in animals

following treatment with dexa [77,78]. The premature exit of

GNPCs from the cell cycle likely accounted for the cerebellar

hypoplasia and decreased cerebellar area that was observed in

dexa treated animals. In contrast, when infected mice were treated

chronically with pred, we observed a correction of the abnormal

cell cycle of GNPCs that was also associated with normalization of

the morphogenic abnormalities in the cerebellar cortex. Following

normalization of the cell cycle in pred treated animals, GNPCs

completed their programmed proliferation in the EGL, migrated

into the deeper layers of the cerebellum and expressed develop-

ment specific genes. We have not identified a specific mecha-

nism(s) to explain the correction of proliferation deficit(s) in

GNPCs following pred treatment, but it is unlikely that in pred

treated mice, GNPCs exited the cell cycle and differentiated as was

observed in dexa treated mice. This argument is based on three

findings; (i) a similar frequency of GNPCs were cycling in both

pred treated and vehicle treated mice, (ii) the frequency of BrdU+

GNPCs in the EGL was increased following pred treatment and

(iii) measures of cerebellar morphogenesis (EGL thickness,

cerebella area and EGL cellularity) were normalized in infected

mice following treatment with pred. Several experimental models

of CNS infection in newborn animals have also noted beneficial

outcomes following treatment with anti-inflammatory agents, but

in some cases and in contrast to our findings, increased disease

severity secondary to increased replication of the microorganism

was also observed [17,67,68]. Experimental rodent models of

herpes simplex encephalitis have demonstrated a beneficial effect

of steroid treatment when combined with an antiviral agent

suggesting that host-derived inflammation contributes to the

outcome of CNS infection with this virus [102,103]. In findings

that paralleled our results, treatment of Borna disease virus (BDV)

infected adult rats with dexa limited inflammation and also

appeared to improve neurologic function in infected animals [17].

In clinical medicine, the use of glucocorticoids to limit CNS

inflammation in patients with mycobacterial infections of the brain

is well established [69,70]. These agents have also been utilized to

limit neurological sequelae that follow bacterial meninigitis

associated with pyogenic bacteria [71]. Several studies have

demonstrated that glucocorticoids efficiently limit the innate

immune response to microorganisms in the CNS, including the

expression of proinflammatory cytokines, chemokines and inter-

feron stimulated genes [17,104]. However, the use of glucocorti-

coids, particularly dexa, in young infants remains controversial

because of the well documented adverse effects this agent has on

brain development [105,106].

The importance of SHH in the proliferation of GNPCs in the

cerebellar cortex has been studied extensively [107–113]. The

proliferation of these neuron progenitors in response to SHH has

been reported to involve the transcription factors gli1 and N-myc

[109,114–117]. It was therefore somewhat unexpected to find that

expression of both gli1 and N-myc was increased in the cerebella of

MCMV infected mice as compared to control mice. Interestingly,

we noted that transcription of patched (Ptch) was also increased in

the cerebella of MCMV infected mice, a finding that paralleled the

increased expression of gli1 and could represent a regulatory

response to SHH induced responses [118,119]. We do not have a

definitive explanation for the increase in gli1 and N-myc

expression but noted that when MCMV infected mice were

treated with glucocorticoids the expression of these SHH effectors

was normalized. Consistent with our observations, previous reports

have suggested that proinflammatory cytokines can modulate the

SHH pathway [120,121]. As an example, increases in GNPC

proliferation have been documented in transgenic mice with

constitutive IFNc expression in the CNS [122]. In these engineered

mice, SHH and gli1 expression was induced by IFNc via a STAT1

dependent pathway. More recent studies have reported that IFNc
treatment of cultured granule neurons leads to increased prolifer-

ation and that STAT1 binds directly to the SHH promoter

[123,124]. Interestingly, both IFNc and STAT1 were upregulated

in the cerebella of MCMV infected mice coincident with an increase

in the expression of N-myc and gli1 (Figure 3D; Figure 6B).

Moreover, treatment with pred reduced the cytokine levels of IFNc
and normalized the expression of both N-myc and gli1 following

MCMV infection. Studies of cytokines during CNS development

have detailed both neuroprotective and deleterious roles, suggesting

a delicate balance between the homeostatic and immune functions

of cytokines in the developing CNS [125–128]. Our findings suggest

that cytokines released following neonatal infection with MCMV

could have deleterious effects on developing GNPCs within the
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cerebellum and that modulating the inflammatory response associ-

ated with this infection could limit damage to the developing CNS.

An important aspect of this study is that the pathological and

histopathological findings in this murine model appear very similar

to those reported in human infants with congenital CMV infection.

The focal encephalitis, characteristic of MCMV infection in mice,

has also been noted in autopsy findings from infants with congenital

HCMV infections. Furthermore, in this model histopathological

findings of mononuclear cell infiltrates and reactive gliosis, termed

micronodular gliosis, are remarkably similar to those found in

infected human infants [55,57,60,129,130]. Cerebellar hypoplasia is

an invariant finding in this murine model and also frequently

reported in infants with congenital HCMV infections that have been

studied by imaging or, in a smaller number, following autopsy

[57,131,132]. Reports describing MRI findings in infants with

congenital HCMV infection have suggested that cerebellar hypo-

plasia is characteristic of this intrauterine infection. However, it

should also be noted that the murine model we have developed has a

significant limitation, dictated by the route of virus inoculation and

the age of the developing brain at the time of infection. CNS

development in newborn mice is believed to be at a stage similar to

that of a mid to late 2nd trimester human fetus. Thus, in the murine

model we have developed, cortical damage associated with an earlier

gestational age of fetal infection will not be adequately modeled. Yet

it is also important to note that the vast majority of infants with

congenital HCMV infections also do not exhibit structural damage

to the cerebral cortex, raising the possibility that only a minority of

infants are infected early in gestation. In agreement with this

possibility, recent studies have provided evidence suggesting that

transmission of virus to the developing fetus occurs more frequently

in the later stages of pregnancy [133]. Thus, with the awareness of

limitations inherent in studies carried out in rodents, we would argue

that the findings we have generated from our studies suggest that

inflammation in the developing brain should be considered a

potential contributor to at least some of the developmental

abnormalities that have been associated with intrauterine HCMV

infections. Furthermore, if inflammation and the soluble mediators

present in the CNS account for the altered proliferative capacity of

neural progenitor cells, our results could be extrapolated as a

potential explanation for maldevelopment of the brain associated

with other intrauterine infections resulting in CNS inflammation.

Even though our findings in this murine model of congenital

CMV infection have demonstrated a beneficial effect of glucocor-

ticoid therapy in maintaining the developmental program during

MCMV infection, we cannot directly extrapolate our findings in

this model system to human disease or other infections of the CNS.

However, the potential intersections between neurodevelopmental

pathways and those that contribute to CNS inflammation in

neonatal animals would suggest that more selective approaches to

limiting CNS inflammation could open new therapeutic avenues

and lead to improved outcomes. These approaches combined with

antiviral therapy, to limit virus replication until host responses can

efficiently clear virus from the CNS, could offer a more optimal

approach for management of this important perinatal infection.

Further exploitation of this model could provide insight into the

feasibility of such an approach and perhaps aide in defining

markers of CNS inflammation, allowing for a more selective

introduction of anti-inflammatory therapy.

Materials and Methods

Ethics statement
All animal breeding and experiments were performed in accor-

dance to the guidelines of the University of Alabama – Birmingham

Institutional Animal Care and Use Committee (IACUC) in strict

compliance with guidelines set forth by the NIH (OLAW Assurance

Number - A3255-01). Research was conducted under a protocol

approved by IACUC. All experiments done at the University of

Rijeka were in accordance with the University of Rijeka – Croatia

animal use and care policies in accordance to the guidelines of the

animal experimentation law (SR 455.163; TVV) of the Swiss Federal

Government.

MCMV infection and corticosteroid treatment
Infection of mouse pups was performed as previously described

[53]. Briefly, newborn Balb/c mice (6–18 hrs post-partum) were

infected with 500 PFU of MCMV-Smith (ATCC VR-1399) by i.p.

(intraperitoneal) inoculation. Control and MCMV infected pups

were treated on PND4-6 by i.p. injection with dexamethasone

sodium phosphate (dexa; APP Pharmaceuticals); 1 mg/kg in 50 ml

of sterile PBS. Dexa was administered once a day and mice were

sacrificed on PND8 between 36 and 42 hours after the last

treatment was administered. For Prednisolone experiments,

animals were treated with prednisolone sodium phosphate (pred;

commercial pharmacy); 7 mg/kg (equivalent to 1 mg/kg dexa) in

50 ml of sterile PBS on PND4-7. Treatments were administered

once a day and mice were sacrificed on PND8 between 16 and

18 hrs post injection. As a control, uninfected and MCMV

infected animals were given i.p. injections with 50 ml sterile PBS

alone (vehicle). Animals were sacrificed on PND8, perfused with

ice cold PBS and organs were harvested and processed for the

appropriate downstream application. All mice were purchased

from The Jackson Laboratory (Bar Harbor, ME).

Virus growth and titer analysis
Stocks of MCMV-Smith strain were propagated by infection of

mouse embryonic fibroblasts (MEFs). Infected media was harvest-

ed at 5–7 days post-infection and frozen at 280uC. For dexa

experiments, organs were collected, weighed and homogenized. A

10% homogenate in media was utilized for standard plaque assays

[134]. For pred experiments, organs were collected and DNA was

isolated using Trizol according to the manufacturer’s instructions

(Roche Applied Science). 1 mg of DNA was then used for

quantitative real-time PCR with the following primers for MCMV

IE-1 Exon 4: Forward: 59-GGC TTC ATG ATC CAC CCT GTT A –

39; Reverse: 59-GCC TTC ATC TGC TGC CAT ACT – 39. Primers

were used at a concentration of 250 nM/reaction. The following

FAM-TAMRA (BHQ-2) probe was used at a concentration of

300 nM/reaction for real-time detection: 59-/56-FAM/AGC CTT

TCC TGG ATG CCA GGT CTC A – 39. Real time PCR was

performed by Taqman based assay using the StepOne Plus system

from Applied Biosystems (Carlsbad, CA).

Immunofluorescence, immunohistochemistry and
cerebellar morphometry

For immunofluorescence studies, mice were injected on PND8

with 50 mg/g of BrdU (Sigma Aldrich) in 16PBS, 6 hrs. prior to

harvest. Mice were then perfused with PBS and brains were fixed

in 4% paraformaldehyde (PFA) overnight, cryoprotected in 30%

sucrose-PBS and embedded in Tissue Tek O.C.T. compound

(Andwin Scientific). 8-mm sagittal sections were cut using a Leica

cryostat. Cut sections were dried for 4 hours at room temperature

(RT), rehydrated in 16 PBS then used for immunofluorescence

assays. For Iba-1 staining, sections were blocked in 16PBS, .05%

Triton X-100, 20% normal goat serum, 5% BSA for 2 hr. at RT.

Sections were then stained with anti-Iba-1 overnight at 4uC.

Subsequently, sections were washed with PBS, .05% Triton X-100
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and then incubated for 2 hrs. at RT in the dark with secondary

antibody, followed by a 15 min. incubation with TOPRO-3 iodide

(1:1000, Molecular Probes) at RT. Following staining for Iba-1,

sections were post-fixed with 2% PFA for 20 min. at RT. Sections

were washed and mounted using Vectashield Fluorescent mount-

ing medium (Vector Laboratories). For BrdU/Ki67, sections were

blocked in 16 PBS, 1% Triton X-100, 20% normal goat serum,

1 M glycine, 5% BSA for 1 hr. at RT. Blocking was followed by a

2 N HCL acid wash for 10 min. on ice, 10 min. at RT and

20 min at 37uC. Sections were then buffered in .1 M Borate buffer

for 12 min. at RT, washed in PBS, 1% Triton X-100 and labeled

as previously described. Primary antibodies utilized in this study

were anti-Iba-1 (1:200, Wako, Japan), anti-Ki67 (1:200, ab66155;

Abcam), anti-IE1 (Chroma101 [53]) and anti-BrdU (1:50, ab6326;

Abcam). Secondary antibodies used were: Alexa Fluor 594 -

conjugated anti-Rabbit; Alexa Fluor 488 - conjugated anti-mouse

(Molecular Probes) and Goat anti-Rat – FITC (Southern Biotech),

respectively. Images of stained sections were collected by using an

Olympus Fluoview confocal microscope (206 objective for Iba-1

and 606 objective for BrdU/Ki67). For cell counts, images were

saved as TIFF files and opened in Image J [135]. An area box was

created and the number of cells in the EGL within this box was

counted for each section.

Frozen sections were used for all morphometric measurements.

EGL measurements were done on serial sections using Image J

software. Measurements were obtained from sections stained with

BrdU, Ki67 and TOPRO3. Images were collected with a confocal

microscope. 4 measurements were taken from the primary fissure

of the EGL in each section and 8 serial sections were measured per

animal. For area measurements, the first 5 sections in each series

were stained with 1% cresyl violet in ethanol for 10 min. followed

by washing with 16PBS until dye no longer ran off. Sections were

mounted with 50% glycerol, 50% PBS and pictures were taken

using an Olympus BX41 microscope with a 26 objective.

Representative sections showing a close up of the cerebellum used

in the paper were obtained with a 46 objective. Cerebellar area

and brain area was measured using Image J software [135].

Flow cytometry
CNS mononuclear cells were isolated by using a percoll density

gradient protocol [62]. Isolated cell populations were stained in

FACS buffer (2% BSA and 0.2% sodium azide) for 30 min at 4uC
in the dark and fixed in 2% PFA. All samples were stained with

CD45-FITC and F4/80-APC (eBioscience) and MHCII-IA/IE

(Biolegend). Samples were acquired using a FACSCalibur (BD

Biosciences) flow cytometer and analyzed using FlowJo7.6.1.

Due to low cell number and poor cell viability, mononuclear cell

isolations from neonatal brain was performed as follows for

prednisolone treated groups. Brains were homogenized using a

GentleMACs tissue homogenizer (Milteniy Biotech). Homoge-

nates were strained through a 40 mm nylon strainer, followed by

centrifugation at 4006g for 4 min at 4uC. Homogenates were

washed once with 16PBS (without Ca++/Mg++) and centrifuged

again at 4006g, 4 min at 4uC. Mononuclear cells were isolated by

resuspending the pellet in a 37% continuous Percoll gradient

followed by centrifugation at 6906g for 20 min, 4uC with gentle

braking. Pellets were washed once with FACS buffer (16PBS, 2%

BSA, .2% Sodium Azide), then lysed for 5 min with 1 ml RBC

lysis buffer (Sigma Aldrich). Lysis was inhibited by adding 10 mls

FACS buffer and the pellet was collected by centrifugation

(4006g, 4 min at 4uC). Pellets were again washed with FACS

buffer, followed by resuspension in FACS buffer with FC block

(1:100, eBioscience). Mononuclear cells were blocked for 30 min

on ice, counted using a TC20 cell counter (Bio-Rad) and 100 ml of

cell suspension was transferred to individual wells of a round

bottom, polystyrene 96 well plate. 100 ml of FACS buffer was

added to each well and the plate was centrifuged (4006g, 4 min at

4uC) to pellet the cells. Mononuclear pellets were washed 26with

FACS buffer, followed by staining with CD45 – PerCP (1:300),

Cd11b – PE (1:200) and F480 – FITC (1:300) (eBioscience) for

1 hr at 4uC in the dark. Following staining, 150 ml of FACS buffer

was added to each well and cells were pelleted by centrifugation.

Cells were again washed 26with FACS buffer followed by fixation

with 4% PFA for 20 min at 4uC in the dark. Following fixation,

cells were washed 26 with FACS buffer, resuspended in 200 ml

FACS buffer and transferred to 5 ml polystyrene FACS tubes (BD

Falcon). Samples were acquired using a FACSCalibur (BD

Biosciences) flow cytometer and analyzed using FlowJo7.6.1.

Dexamethasone experiments were repeated using this protocol

and data were compared to the previous protocol. No differences

were observed in the frequency of CD45lo or CD45hi/int/F480+

mononuclear cell populations in any group when compared to our

previous findings; however, mononuclear cell numbers were

greatly improved.

Quantitative real time PCR
Total cerebellar RNA from control and experimental mice was

isolated using Trizol reagent (Roche Applied Science); 500 ml

Trizol/cerebellum according to manufacturer’s protocol. cDNA

from each sample was synthesized using the Superscript III First

Strand synthesis kit (Invitrogen). Taqman based real time PCR

was employed for determining the mRNA expression of genes of

interest in experimental animals relative to uninfected controls.

Taqman assay mixes for TNF-a (Mm99999068), IFN-b
(Mm00439552), STAT1 (Mm00439518), IFN-c (Mm99999071),

gli1 (Mm00494645), N-myc (Mm00476449), Zic2 (Mm01226725),

CDK5 (Mm00432437) and GABRA6 (Mm01227754) were

obtained from Applied Biosystems. Real time PCR was performed

using the StepOne Plus system from Applied Biosystems. The

housekeeping gene 18S was used as a control for all experiments.

The fold change (target gene expression relative to 18S) for control

animals was set to a value of 1 +/2 SEM and the relative fold

change for each experimental group was determined by normal-

izing to control animals.

ELISA
Cerebella were harvest from PND8 animals. Samples were

pooled (3 cerebella/sample) and homogenized in ELISA buffer

(16PBS, .25% Triton X-100) containing protease/phosphatase

inhibitors (Thermo Scientific). Lysates were rotated for 20 min at

4uC then sonicated 36 for 5 sec, followed by centrifugation at

12K6 g for 10 min at 4uC. Aliquots were made and stored at

280uC until use. ELISAs were performed according to the

manufacturer’s instructions: TNFa (eBioscience), high sensitivity

IFNc (ebioscience, San Diego, CA) and IFNb (PBL Interferon

Source). Cytokine concentrations (pg/ml) were normalized for

amount of tissue used (mg).

Immunoblot of cerebellar lysates
Cerebella harvested from control and experimental groups at

PND8 were homogenized in RIPA buffer (50 mM Tris-HCl,

NaCl 150 mM, 1% NP-40, 0.25% Na-Deoxycholate, 1 mM

EDTA) containing protease/phosphatase inhibitors (Thermo

Scientific) and cleared of insoluble material by centrifugation at

12K6 g. 50 mg of protein solubilized in sample buffer (5%

SDS,2% 2-mercaptoethanol, Tris pH 8) and separated by SDS-

PAGE electrophoresis using a 10% acrylamide gel. Electropho-

retically separated proteins were immobilized on nitrocellulose
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membranes and used for Western blot analysis. Membranes were

probed overnight at 4uC for actin (1:1000, MAB1501; Millipore),

cyclin D1, cyclin B1 and phospho-Cyclin B1 (Ser 147) (1:500,

2978, 4138 and 4131 respectively; Cell Signaling Technology).

Immunoblots were incubated for 1 hr with HRP-conjugated anti-

mouse or anti-rabbit secondary antibodies (Southern Biotech) then

developed with ECL reagent (Perkin Elmer). Densitometry was

performed using Quantity One software (Bio-Rad) and levels of

protein were normalized to actin for each lane.

Statistics
Statistical significance of comparisons of mean values was

assessed by a two-tailed Student’s t test, one-way analysis of

variance (ANOVA) followed by Bonfferronni’s multiple compar-

ison test, two-way ANOVA followed by Bonfferronni’s posttest, or

a Mann-Whitney test using Prism 4 software (GraphPad).
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