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Abstract

Prevalence of multiple sclerosis varies with geographic latitude. We hypothesized that this fact

might be partially associated with the influence of latitude on circadian rhythm and conse-

quently that genetic variability of key circadian rhythm regulators, ARNTL and CLOCK genes,

might contribute to the risk for multiple sclerosis. Our aim was to analyse selected polymor-

phisms of ARNTL and CLOCK, and their association with multiple sclerosis. A total of 900 Cau-

casian patients and 1024 healthy controls were compared for genetic signature at 8 SNPs, 4

for each of both genes. We found a statistically significant difference in genotype (ARNTL

rs3789327, P = 7.5�10−5; CLOCK rs6811520 P = 0.02) distributions in patients and controls.

The ARNTL rs3789327 CC genotype was associated with higher risk for multiple sclerosis at

an OR of 1.67 (95% CI 1.35–2.07, P = 0.0001) and the CLOCK rs6811520 genotype CC at an

OR of 1.40 (95% CI 1.13–1.73, P = 0.002). The results of this study suggest that genetic vari-

ability in the ARNTL and CLOCK genes might be associated with risk for multiple sclerosis.

Introduction

Multiple Sclerosis (MS) is the most common disabling neurological disease of young adults,

starting most often between 20 to 40 years of age. One of the interesting epidemiological char-

acteristics of multiple sclerosis, chronic progressive inflammatory demyelinating disease of the

central nervous system, is a gradient of increasing prevalence with geographic latitude, from

the Equator to the North and South [1, 2]. Climate, sunlight and day/night dynamics have

been investigated as possible causes of the disease [3]. Widely accepted risk factor that contrib-

utes to this geographical trend is low vitamin D level. Exposure to sunlight acts protectively

against MS by increasing vitamin D levels, however, sun exposure and vitamin D status might

independently influence risk for MS [4].
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Daily fluctuations of temperature and light intensity and its spectral composition, as well as

changes in day length and temperature during different seasons are main factors that maintain

the 24-hour period of human circadian rhythms [5]. Circadian rhythms serve to align physio-

logical functions with the environment and are controlled by evolutionarily conserved, self-

sustained, yet tuneable, internal clocks. Their main responsibility is to translate the informa-

tion about time to the organism in such a way, that it can effectively adjust physiological and

behavioural responses during the daily cycle. The core regulators are two interlocked tran-

scriptional and post-translational feedback loops, one of them being positive feedback loop

through ARNTL(BMAL1)/CLOCK heterodimers [6, 7]. The circadian clock influences hor-

monal axes regulation, behaviour, cognitive function, metabolism, cell proliferation, apoptosis,

and responses to genotoxic stress and is therefore crucial for optimal health.

Desynchronization of circadian rhythms has been linked to various disorders—neurode-

generative disorders, metabolic disorders, neuropsychiatric diseases, cardiovascular dysfunc-

tion, cancer and dysregulation of the immune system [8–12]. Furthermore, working in shifts,

which disrupts circadian rhythms and leads to dysregulation of the immune system has been

suggested to be associated with higher risk for MS [13, 14].

We therefore hypothesized that genetic variability of key circadian rhythm regulators,

ARNTL and CLOCK genes, might contribute to the risk for MS.

Methods

Ethics statement

The study was approved by Slovenian National medical ethics committee (reference number:

98/12/10). The study was conducted according to the Declaration of Helsinki. All patients and

controls gave written informed consent to participate in the study.

Patients

A retrospective cross-sectional case-control genetic association study was performed. A total

of 900 patients and 1024 healthy controls were recruited by collaborating genetic centres.

Study included patients with definitive MS disease who fulfilled McDonald’s criteria for MS

[15]. There were 620 female and 280 male patients. Patients’ details are presented in Table 1.

All patients filled up the structured questionnaire about family history and risk factors associ-

ated with MS. The control group consisted of ethnically, age- and sex- matched healthy indi-

viduals, 476 male and 550 female subjects. All patients and control subjects were Caucasian of

the Slavic (Slovene, Croatian and Serbian) origin.

Genotyping

Eight tagging single nucleotide polymorphisms (SNPs) were chosen from both genes. SNP’s

selection was based on the known genetic linkage in both genes, according to HapMap Phase 3

(http://www.hapmap.org) as previously described [16]. Of these, four intronic SNPs were

selected in the CLOCK gene (rs11932595, rs6811520, rs6850524, and rs13124436), and four

intronic SNPs in the ARNTL gene (rs3789327, rs1481892, rs4757144, and rs12363415).

Genomic DNA was isolated from the peripheral blood samples using standard procedures.

SNPs genotyping was carried out by real time PCR method performed on 7000 Sequence

Detection System (Applied Biosystems, Foster City, CA, USA) using KASPar SNP genotyping

chemistry as recommended by manufacturer. The protocol for PCR amplification was as fol-

lows: initial denaturation step at 94˚C for 15 minutes, followed by 20 cycles of denaturation at

94˚C for 10 sec, annealing at 57˚C or 61˚C for 5 sec, extension at 72˚C for 10 sec, and final
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extension at 72˚C for 40 sec.The allelic discrimination analysis was performed using SDS Soft-

ware Version 1.2 (Applied Biosystems, Foster City, CA, USA).

Genotype assignment was performed and interpreted independently by three investigators.

The STREGA guidelines were followed throughout this study [17].

Statistical analysis

The significance of the difference of observed alleles and genotypes between MS patients and

control subjects, including odds ratios (OR) and their respective 95% confidence intervals

(CI), were determined using the Chi-Square test (χ2). Also, deviations from genotype distribu-

tions predicted by the Hardy-Wienberg equilibrium were tested using the χ2 test. Calculated

associations were regarded as significant when they reached the p�0.05. Appropriate correc-

tions of significance values for multiple testing were applied using the Benjamini-Hochberg

correction method (false-discovery rate–FDR values) as multiple SNPs were analysed.

Haplotype frequencies were estimated using haplo.stats package 16 [18]. The haplo.score
function was used to directly ascertain differences in haplotype distributions across the groups

of MS patients and healthy controls. A global test of association and per-haplotype association

test were performed for both investigated genes. To reduce the effects of multiple testing and

minimize the likelihood of spurious associations among rare haplotypes, we excluded all hap-

lotypes with a frequency below 5% from downstream tests. All employed analyses were per-

formed in R statistical environment (R 2.15.0).

Results

The MS patient group consisted of 620 females and 280 males, 47.5±26.5years of age at blood

sampling. The female to male ratio was 2.21.The control group consisted of 550 female and

476 male subjects of the same ethnic background (mean age 46.5±24.5 years).

The observed distribution of genotypes showed no significant difference when compared

with those predicted from the Hardy-Weinberg equilibrium for either patients or controls

(P>0.05), with the exception of rs12363415, which was excluded from further analyses. Geno-

type and allelic distribution of the ARNTL and CLOCK polymorphisms in MS patients and

healthy controls are shown in Table 1.We found a statistically significant difference in the

genotype distribution of rs3789327 in ARNTL gene (P = 7.5�10−5) and rs6811520 in CLOCK

Table 1. Clinical characteristics of MS patients (N = 900).

All (N = 900) Women (N = 620) Men (N = 280)

Age a 40.76 ± 11.87 41.11 ± 12.40 40.02 ± 10.69

Age at onset a 30.45 ± 9.13 30.53 ± 9.29 30.25 ± 8.80

Course N(%):

Primary progressive (PP) 48 (5.33%) 28 (4.52%) 20 (7.14%)

Relapsing-remitting (RR) 596 (66.22%) 413 (66.61%) 183 (65.36%)

Secondary progressive (SP) 229 (25.44%) 159 (25.65%) 70 (25.00%)

Benign MS 14 (1.56%) 9 (1.45%) 5 (1.79%)

CIS b 13 (1.44%) 11 (1.77%) 2 (0.71%)

Duration (years) a 10.23 ± 8.64 10.28 ± 8.39 10.13 ± 9.19

EDSS a,c 3.66 ± 2.42 3.70 ± 2.48 3.57 ± 2.29

a mean ± SD
b Clinicaly Isolated Syndrome (CIS)
a,c Disability was assessed by using Kurtzke’s Expanded Disability Status Scale (EDSS).

https://doi.org/10.1371/journal.pone.0190601.t001
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gene (P = 0.02). As shown in Table 2, the CC genotype of rs3789327 significantly increased

risk for MS at an OR of 1.68 (95% CI 1.35–2.07, P = 0.0001). Also, the CC genotype of

rs6811520 significantly increased risk for MS at an OR of 1.40 (95% CI 1.13–1.73, P = 0.002).

We performed analysis for genotype distribution of the selected SNPs in MS patients and

controls stratified according to gender. Statistical significance was limited to the female popu-

lation of MS patients (rs3789327 p-value = 0.007, x2 = 15.03; rs6811520 p-value = 0.007, x2 =

15.05) while in the male population we have not observed any statistically significant differ-

ences in distribution of genotypes/alleles in the ARNTL and CLOCK genes (rs3789327

p-value = 0.06, x2 = 9.6; rs6811520 p-value = 3.1, x2 = 1.63).

We performed analysis for genotype distribution of the selected SNPs in MS patients and

controls according to the age of disease onset, EDSS score, and MS type (PP/RR/SP). We have

not observed any statistically significant distributions of polymorphisms in the ARNTL and

CLOCK genes according to the age of disease onset and EDSS score.

However, the stratified analysis by clinically defined subtypes of MS has shown a statistically

significant difference in the distribution of rs3789327 polymorphism genotypes of the ARNTL

gene limited to RR form of MS (P-value 2.5�10–5, x2 = 25.1).

In addition, inferred haplotypes were analysed in both genes. A statistically significant dif-

ference in haplotype distribution between the groups of MS patients and healthy controls was

found at both gene loci: at ARNTL gene locus for haplotype CGG (P = 4.00�10−3) and TGA

(P = 0.03) and at CLOCK gene locus for haplotype TCAG (P = 1.00�10−3) (Tables 3 and 4).

Discussion

We hypothesized that genetic variation in the key genes regulating circadian rhythm might

contribute to the MS risk. Namely, genetic epidemiology data demonstrated significantly

Table 2. Genotypes of circadian rhythm genes for SCS MS consortium.

Genotypes Total control (%) Total MS (%) χ2 P corr. OR [95% confidence interval]

rs3789327 CC 198 (19.68) 257 (29.11) 22.89 7.49�10–5 CC/CT+TT

1.68 [1.35–2.07], P = 0,0001CT 489 (48.61) 375 (42.47)

TT 319 (31.71) 251 (28.43)

rs1481892 CC 93 (9.57) 73 (9.97) 0.16 1.00 GG/CC+GC

1.02 [0.84–1.23]GC 424(43.62) 313 (42.76)

CC 455 (46.81) 346 (47.27)

rs4757144 AA 280 (31.67) 190 (27.54) 3.28 1.00 GG/AA+AG

1.04 [0.81–1.32]GA 422 (47.74) 354 (51.30)

GG 182 (20.59) 146 (21.16)

rs6811520 CC 598 (64.09) 512 (72.01) 11.75 0.02 CC/CT+TT

1.40 [1.13–1.73], P = 0,002CT 274 (29.37) 166 (23.35)

TT 61 (6.54) 33 (4.64)

rs6850524 CC 151 (15.07) 138 (15.94) 2.38 1.00 GG/CC+GC

1.12 [0.93–1.36]GC 502 (50.10) 403 (46.54)

GG 349 (34.83) 325 (37.53)

rs11932595 AA 306 (33.89) 250 (30.38) 4.96 0.59 GG/AA+AG

1.3 [1.02–1.67]GA 450 (49.83) 397 (48.95)

GG 147 (16.28) 164 (20.22)

rs13124436 AA 88 (11.47) 83 (10.81) 0.36 1.00 GG/AA+AG

1.06 [0.86–1.29]GA 336 (43.81) 331 (43.10)

GG 343 (44.72) 354 (46.09)

https://doi.org/10.1371/journal.pone.0190601.t002
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different allele, genotype and haplotype distribution of CLOCK gene among worldwide popu-

lations, potentially interesting for health association studies [19]. To our knowledge, this is the

first report on association between genetic variability of key circadian rhythm regulators,

ARNTL and CLOCK genes, and multiple sclerosis risk.

There are several lines of evidence supporting the involvement of circadian rhythm in the

pathogenesis of MS. Studies have shown that shift work at young age increases the risk for MS

[13]. Besides sleep restriction/deprivation, shift work also disrupts circadian cycles, and these

both lead to melatonin secretion disturbances and augmented pro-inflammatory activity and

could be a factor in the inflammatory reactions in the pathophysiologic process of MS. Melato-

ninis directly involved in circadian and seasonal rhythms and it exerts anti-inflammatory

effects through restraining the production of pro-inflammatory cytokines [20, 21]. The corre-

lation between melatonin secretion disturbances and MS have already been shown; namely,

lower serum melatonin levels were present in MS patients compared to healthy controls [22].

Moreover, melatonin has been demonstrated to directly influence CLOCK and ARNTL expres-

sion through post-transcriptional and/or post-translational activities and treatment with mela-

tonin in mice significantly altered gene expression patterns of specific circadian genes [23].

Altered circadian relationship between serum NO, CO2, and UA has also been noticed in MS

subjects, suggesting that this alternation may contribute to or reflect the disease processes in

multiple sclerosis [24].

Last but not least, clock-related circadian disruption was demonstrated to exist in a mouse

model of multiple sclerosis, EAE [25]. Normal fluctuations of CLOCK mRNA levels at specific

time points during 24h period were significantly reduced in EAE mice, suggesting clock-

dependant circadian rhythm disturbances.

Moreover, the link between disturbed circadian rhythms and many different diseases

including neurodegenerative diseases has been shown to exist in numerous studies [8–12]. It

has been suggested that disturbed circadian rhythms may alter ordered daily cellular molecular

Table 4. Haplotypes in CLOCK gene.

CLOCK GENE

rs6811520 rs6050524 rs11932595 rs13124436 Hap freq. (%) P corr. % control % MS

C C A G 15.56 0.23 14.17 17.46

C C G G 5.21 0.53 4.77 5.62

C G A A 19.54 1.00 20.66 18.44

C G G A 12.43 1.00 11.49 13.29

C G G G 24.49 1.00 24.49 24.59

T C A G 18.14 1.00�10–3 20.68 14.99

https://doi.org/10.1371/journal.pone.0190601.t004

Table 3. Haplotypes in ARNTL gene.

ARNTL GENE

rs3789327 rs1481892 rs4757144 Hap freq. (%) P corr. % control % MS

C C G 14.95 1.00 14.70 15.20

C G A 22.10 0.18 21.02 23.17

C G G 8.44 4.00�10–3 6.93 10.34

T C G 11.94 1.31 12.15 11.66

T G A 27.61 0.03 29.31 25.58

T G G 10.51 1.00 11.40 9.63

https://doi.org/10.1371/journal.pone.0190601.t003
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metabolic mechanisms and therefore contribute to neurodegeneration on a long term basis

[10]. Since cellular metabolic mechanisms are related not specifically to neurodegeneration

but to all states of health and disease, circadian rhythms are an important mechanism to be

studied in chronic diseases.

The potential limitation of this study is that the association has been investigated in the

population of Slave origin; on the other hand, a representative, homogeneous population

cohort presents the strength of the study.

In conclusion, our data suggest that variability at ARNTL and CLOCK gene loci might be

associated with MS. Further studies on populations with different genetic background are nec-

essary to validate association.
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